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a b s t r a c t

The irregular shape packing problem is approached. The container has a fixed width and an open
dimension to be minimized. The proposed algorithm constructively creates the solution using an ordered
list of items and a placement heuristic. Simulated annealing is the adopted metaheuristic to solve the
optimization problem. A two-level algorithm is used to minimize the open dimension of the container.
To ensure feasible layouts, the concept of collision free region is used. A collision free region represents
all possible translations for an item to be placed and may be degenerated. For a moving item, the
proposed placement heuristic detects the presence of exact fits (when the item is fully constrained
by its surroundings) and exact slides (when the item position is constrained in all but one direction).
The relevance of these positions is analyzed and a new placement heuristic is proposed. Computational
comparisons on benchmark problems show that the proposed algorithm generated highly competitive
solutions. Moreover, our algorithm updated some best known results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Cutting and packing problems are classical problems of finding
themost efficient layout given an input set of items and a container
with the objective of minimizing waste. These problems have
significant economical and ecological impact. Cutting and packing
problems arise in several industries such as garment, wood, ship
and glass.

According to the typology proposed by Wäscher et al. [1], the
problem considered here is the two-dimensional irregular open
dimension problem (ODP). The problem can be stated as the
minimization of the length of a rectangular container with fixed
width. Each irregular item is represented by a polygon and can be
rotated by a finite set of angles. An example of its application is
found in the garment factory. The items, in this case, referred to
as markers or stencils, are irregular and need to be arranged in a
very long sheet of fabric with a fixed width. In order to minimize
fabric waste, items must be arranged in such a way that they
occupy a rectangular container with minimal length, which can be
considered a variable. Additionally, in the garment problem, there
is a limitation with regard to the rotations of items. Items are not
allowed to rotate freely, as the weave of the cloth and drawing
patterns should be considered.
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Universidade de São Paulo, Brazil. Tel.: +55 11 3091 5759.
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In cutting and packing problems involving irregular items, the
task of obtaining layouts in which the geometric conditions hold,
i.e. all the items must lie entirely inside the container and not
overlap, is a very complex one. Bennell andOliveira [2] investigated
existing approaches in the literature.

Fowler et al. [3] demonstrated that the considered problem is
NP-complete. As a consequence, most proposed solutions in the
literature adopt heuristics, either deterministic or probabilistic. In
thiswork, a probabilistic heuristic, simulated annealing is adopted.
Simulated annealing was proposed by Kirkpatrick et al. [4] in the
field of combinatorial optimization and is largely used to solve
combinatorial problems of several areas.

Numerous solution methods have been proposed for the
irregular packing problem. Dowsland and Dowsland [5] reviewed
those methods; however, a more recent survey was performed by
Hopper and Turton [6].

Gomes and Oliveira [7] proposed a 2-exchange mechanism
to search over a placement sequence. A bottom–left procedure
was adopted as the placement heuristic and only feasible place-
ments were considered. Gomes and Oliveira [8] considered the
relaxed placement problem, in which pieces may overlap, and
used a separation algorithm to obtain feasible layouts. Length
minimization was obtained by hybridizing simulated annealing
to guide the search over the solution space and a compaction
algorithm based on linear programming. An initial solution was
obtained using a constructive heuristic TOPOS [9]. This heuris-
tic was later improved by Bennell and Song [10], and combined
with a beam search to deterministically obtain the final solution.

0010-4485/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
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Fig. 1. Translations applied to a polygon (left) represented by a region in space
(right).

Burke et al. [11] proposed a new bottom–left heuristic and imple-
mented a new shape representation that incorporated circular arcs
and holes. Egeblad et al. [12] formulated a polynomial time algo-
rithm to determine the amount of overlap. Considering only verti-
cal and horizontal translation, they proposed a fast neighborhood
search in order to obtainminimum overlap and, consequently, fea-
sible layouts. Imamichi et al. [13] combined a swap procedurewith
iterative local search and a separation algorithm based on nonlin-
ear programming to solve the overlapping minimization problem.
Leung et al. [14] adopted a similar approach, but used a tabu search
to escape local optima.

Some recent works adopted the collision free region in
order to determine feasible layouts in containers with fixed
dimensions [15]. Sato et al. [16] developed a robust algorithm
to determine the collision free region and improved previously
published results [17,18].

This paper is structured as follows. Section 2 describes the
concepts needed for understanding the proposed solution: the
no-fit polygon and the inner-fit polygon. Section 3 describes the
collision free region and its external edges and vertices. Section 4
presents the proposed two-level algorithm inwhich the inner level
is a simulated annealing algorithm. In this section, the proposed
placement heuristic that detects, the presence of exact fits (when
the item is fully constrained by its surroundings) and exact slides
(when the item position is constrained in all but one direction)
for a moving item, is explained. Finally, computational results are
presented and conclusions are drawn.

2. Supporting concepts

Before describing the collision free region, some concepts are
introduced, namely the no-fit polygon and the analogous concept
of inner-fit polygon. These concepts were proposed to deal with
packing problems involving irregular items.

2.1. No-fit polygon

For two-dimensional irregular packing problems, obtaining a
feasible layout, i.e. in which no items collide or protrude from
the container, is a complex task. There is the need to employ
a geometric tool to determine whether two items collide, touch
or are separated. The raster method, direct geometry and no-
fit polygons are some of the tools proposed in the literature.
The no-fit polygon, which was first introduced by Art [19], is
chosen as it is more precise than the raster method and has a
lower computational cost as compared to the direct geometry
method [2].

The no-fit polygon represents the set of forbidden translations
that, when applied to the movable item, causes it to overlap the
fixed item. It is said that the no-fit polygon is induced by the fixed
item to the movable item. The translations are mathematically
represented by a set of vectors and can be graphically represented
by a region in space defined by a reference point (see Fig. 1). For an

Fig. 2. No-fit polygon induced by item Pi to item Pj determined using a sliding
scheme.

  

    

        

Fig. 3. Inner-fit polygon for a container and a movable item Pj .

item P , let i(P) be its interior, ∂(P) be its boundary and c(P) be its
complement.

Definition 2.1. Consider two fixed polygons Pi and Pj. The no-fit
polygon induced by item Pi to item Pj, denoted by NFP(Pi, Pj), is
the set of translation vectors applied to Pj that leads it to a collision
with Pi. Thus,

NFP(Pi, Pj) =

v⃗ | ∃ a ∈ i(Pj), a + v⃗ ∈ i(Pi)


.

Theno-fit polygon canbeobtained through a sliding scheme [20].
This is accomplished by sliding themovable item along the contour
of the fixed item. The no-fit polygon is defined by the trace of the
reference point. Fig. 2 shows an example of a no-fit polygon ob-
tained by using this sliding scheme.

Minkowski sums are used here to determine the no-fit polygon.
When only convex polygons are involved, the no-fit polygon can be
computed in linear time [21]. In order to compute the Minkowski
sum of non-convex items, a convex decomposition is performed in
a preprocessing stage.

2.2. Inner-fit polygon

The inner-fit polygon is a concept derived from the no-fit
polygon and it represents the set of translations that places an item
entirely inside a container. The inner-fit polygon can be obtained
by sliding the item along the internal contour of the container (see
Fig. 3).

Definition 2.2. The inner-fit polygon induced by container C to
item Pj, denoted by IFP(C, Pj), is the set of translation vectors
applied to Pj that leads it to be inside the container. Thus,

IFP(C, Pi) =

v⃗ | ∀ a ∈ i(Pi), a + v⃗ ∈ C


.
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Fig. 4. Collision free region (CFR) formovable item P4 given a subset of placed items
{P1, P2, P3}.

In the studied problem, only rectangular containers are
considered. In this particular case, the inner-fit polygon of any
given item is rectangular and, moreover, is only dependent on the
bounding box and reference point of the item.

3. Collision free region

The collision free region, that was originally introduced by
Martins and Tsuzuki [15], is themain tool employed in this work to
achieve feasible layouts. For each item, it represents all the possible
positions for its placement. This allows the construction of any
given solution by placing items sequentially without overlap.

Consider a feasible layout with a containerC and a set of placed
itemsP = {P1, . . . , Pn}. A new item Pm,m = n+1,will be inserted
into the container, keeping the layout feasible. The collision free
region represents a set of translations for item Pm (see Fig. 4).

Definition 3.1. The collision free region is the set of all the
translations, that, when applied to a specific item, places the
specific item inside a container without colliding with the already
placed items.

When there are no placed items, the collision free region is
the inner-fit polygon. The first step to determine the collision
free region is to obtain the corresponding inner-fit polygon. The
next step is to subtract the no-fit polygons induced by the placed
items. The collision free region, denoted CFR(C, P , Pm), can be
determined by using

CFR(C, P , Pm) = IFP(C, Pm) −


Pi∈P

NPF(Pi, Pm). (1)

Gomes and Oliveira [7] mathematically defined the set A of
admissible points for the placement of item Pk as:
A = {(x, y) : (x, y) ∈ i(IFP(C, Pk)) ∧ (x, y) ∉ i(NFP(Pi, Pk)),

Pi ∈ P }. (2)
Set A represents the collision free region for the movable

item Pk, given container C and a subset of already placed items
P = {P1, . . . , Pn}. Gomes and Oliveira [7] only considered the
bottom–left vertex of the collision free region. As explained in the
following section, it is possible to determine vertices and edges
from the collision free region that respectively represent exact fits
and exact slides.

3.1. Degenerated edges and vertexes

A collision free region may be composed of polygons, degener-
ated edges and degenerated vertices. These degenerated elements,
edges and vertices, are always external to the polygons in the colli-
sion free region, as they represent additional allowed positions for
the item placement.

When placing an item in a degenerated edge, that represents an
exact slide, one can observe that the itemwill only be able tomove

  

  

 

   

  

  

     
  

 

 

  

 

  

a b

Fig. 5. Placement of an item on a degenerated edge, that represents an exact slide.
(a) Collision free region (CFR) for item P2 . (b) Placement in a degenerated edge. It is
possible to observe that the item can onlymove horizontally across the degenerated
edge.

  

    

  

    

         

   

         
     

 

  

    
  

      

a b

Fig. 6. Placement of an item at a degenerated vertex, that represents an exact fit.
(a) Collision free region (CFR) for item P2 . (b) Placement in a degenerated vertex. It
is possible to observe that the item is fixed in the degenerated vertex.

in one direction in the layout (see Fig. 5). If a placement occurs in
a degenerated vertex, that represents an exact fit, no movement is
possible (see Fig. 6).

Degenerate elements in the collision free region have three
possible sources. Based on their source, a possible classification of
degenerated edges and vertices is:

• No-fit polygon generated: No-fit polygons involving non-
convex items might contain degenerated edges and vertices.
They represent positions where the two items lock together.
For no-fit polygons, degenerated edges and vertices are always
internal to polygons (see Fig. 7(a)).

• Obstructed region generated: Obstructed region is the union
of two or more no-fit polygons and can be considered an in-
termediate step to determine the collision free region using
Eq. (1). It is possible to find degenerated elements that are
exclusive to the obstructed region, different from the degener-
ated elements in the individual no-fit polygon. They also repre-
sent positions where items lock together, but it is dependent on
the placement of the items (see Fig. 7(b)).

• Container generated: Positions where the items fit exactly
inside the container (see Fig. 7(c)).

Detection of degenerated edges and vertices wasmade possible
by employing non-manifold Boolean operations to determine
the collision free region. The Boolean operations (union and
difference) were implemented using fixed precision with 128
bits and edge intersections were determined using the sweep
algorithm proposed by Hobby [22]. Degenerated edges represent
exact slides and degenerated vertices represent exact fits.

4. Proposed approach

A new algorithm is proposed in this work so as to solve the
two-dimensional irregular open dimension problem. Each item
can be rotated by a finite set of angles. Simulated annealing is the
adopted probabilistic metaheuristic in this approach and it is used
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Fig. 7. Degenerated elements examples. (a) No-fit polygon generated, P1 is fixed
and P2 is movable. (b) Obstructed region generated, P1 and P2 are fixed and P3 is
movable. (c) Container generated, P1 is fixed and P2 is movable.

to solve an intermediate problem in which the container has fixed
dimensions. The objective is to place all items inside the container
without overlap. An outer level is then responsible for controlling
the container length.

As the placement of items is performed sequentially, the
collision free region dictates the placement procedure. In order to
restrict and guide the search in the solution space, a placement
heuristic is adopted. It takes advantage of the particular properties
of degenerated edge and vertex placement.

4.1. Simulated annealing

Simulated annealing was proposed by Kirkpatrick et al. [4] for
the combinatorial optimization. It is based on the Metropolis algo-
rithm [23], which is capable of simulating the atoms configuration
in equilibrium at a given temperature. Kirkpatrick et al. [4] adapted
theMetropolis algorithm to reflect the behavior of atoms during an
annealing process. During the process, atoms naturally migrate to
a minimum energy configuration, even if a higher energy config-
uration occurs during the process. The idea is that the annealing
process can be considered analogous to a process of solving a mul-
tivariate optimization problem, in which the objective is to mini-
mize the value of a function.

During the simulated annealing execution, random modifica-
tions are applied to the solution and the objective function is re-
calculated. The new solution is immediately accepted if the value
of its function is lower than the previous solution. Otherwise, the
solution can be accepted given the following probability:

P(1E) = e−
1E
kt , (3)

1E is the difference between the current function value and the
previous value, P(1E) is the probability of accepting a solution
with a higher objective function value than its predecessor, k is a
parameter analogous to the Stefan–Boltzmann parameter and t is
the temperature.

A simulated annealing solution x is a set of placements for all
items, in which the placement sequence, orientation and position

   

Fig. 8. Example of items placement inwhich some values of the position parameter
and the associated placement position are shown.

of each item are represented. The initial solution is randomly
chosen, placement sequence is a set of integer numbers that
identifies the items, orientation is an integer number from the set
of allowable orientations and position is a pair of real numbers
from the interval [0, 1].

The first position number represents a placement along the
collision free region boundary. Fig. 8 shows the relationship
between the position parameter and the actual layout placement
of an item. The origin corresponds to the bottom–left placement.
When the collision free region is represented by more than one
contour, degenerated edge or degenerated vertex, it is necessary
to use the second parameter to determine the item position. This
parameter determines at which contour, or degenerated element,
the placement occurs, each with equal probability of being chosen.
If an item has an associated empty collision free region, then the
item cannot be placed inside the container with the already placed
items.

At each iteration, just one randomly chosen modification is
applied to the solution.When the placement sequence is modified,
two items are swapped in the list. Otherwise, a random item is
chosen and either its orientation or its position is changed. The
three types of modification (placement sequence, orientation and
position modifications) have the same probability of being chosen.

A container with fixed dimensions is adopted and the objective
function is the container wasted space, i.e. unoccupied area. This
objective function assumes only a discrete set of values [18]. A ge-
ometric cooling scheme, in which the temperature is multiplied by
a factor α < 1 after the occurrence of a given number of accepted
solutions, is used. The local stop condition is satisfied when, at a
given temperature, the number of accepted solutions or objective
function evaluations reach a threshold value. The global stop con-
dition coincides with the simulated annealing convergence, which
is checked before each temperature change, and is satisfied when,
at the given temperature, computed objective function values for
all solutions are equal to the lowest found (see inner loops of
Fig. 9).

4.2. Two-level algorithm

A two-level algorithm is proposed to solve the open dimension
packing problem. The inner level consists of the simulated
annealing algorithm, which considers the container dimensions as
fixed.

The external level controls the value of the open dimension and
the initial temperature of the simulated annealing algorithm. If the
internal level completes its execution and a feasible layout with
all the irregular items placed is found, the external level shrinks
the container and resets the simulated annealing algorithm.When
no such layout is found, the open dimension of the container
is increased and the internal level is restarted. For the external
level, two parameters rdec and rinc are used to respectively control
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Fig. 9. The proposed algorithm with an internal simulated annealing algorithm.

the shrinkage and expansion of the container. Fig. 9 shows the
proposed algorithm.

Egeblad et al. [12], Imamichi et al. [13] and Leung et al. [14]
used a similar two-level approach to solve the strip packing
problem. Nevertheless, a relaxed placement method is considered
and the objective is to minimize the amount of overlap. In these
approaches, the container dimensions are fixed and a search for
a feasible layout is performed. When considering only feasible
placements, it is possible to directly minimize the length of
rectangular enclosure of the layout, thus eliminating the need
for an iterative process. In this work, however, a two-level
approach is considered in order to take advantage of the adopted
placement heuristic, as the container influences the generation
of degenerated elements and, as a consequence, also affects the
number of exact fits and exact slides. This is further discussed in
the following section.

5. Proposed placement heuristics

The collision free region represents all the possible positions for
the placement of a new item. Martins and Tsuzuki [18] studied
the placement of items at the collision free region boundary.
Deterministic placement heuristics are often adopted in the
literature with the intention of decreasing the solution space.
The primary deterministic placement heuristic is the bottom
left heuristic, which adopts the bottom left placement for every
item [24].

The collision free region was originally introduced by Martins
and Tsuzuki [15]. They determined the collision free region using
conventional Boolean Operators and considered containers with
fixed dimensions, which were 20% larger than the total area
of items. The movable item was placed along the collision free
region boundary. Martins and Tsuzuki [25] combined a simulated
annealing algorithmwith deterministic heuristic (bottom–left and

 

a

b c

Fig. 10. (a) This placement problem has three items on the left and a rectangular
container on the right. (b) The only possible optimal solution using all three items.
(c) Collision free region for the largest item, which consists of a single degenerated
edge. In order to obtain the optimal solution, the item should be placed in the
midpoint of the degenerated edge. Placing the first item on a collision free region
vertexwill always result in a failed attempt to reach the optimal solution, regardless
of the chosen placement order.

larger first). They showed that it is possible to create problem
instances in which a global optimum layout is not reachable once
a deterministic heuristic is adopted. Martins and Tsuzuki [18]
increased the probability of placing the movable item in one of
the collision free region vertices and Martins and Tsuzuki [17]
exclusively placed items on vertices of the collision free region.
Sato et al. [16] implemented a robust algorithm to determine the
collision free region using 2D non-manifold Boolean operations.

Results from these previous works showed that placing items
exclusively in the collision free region vertices greatly improved
the performance without compromising the quality of final
layouts. Accordingly, this limitation is also applied in this work.
There are, however, special cases in which the algorithm is
not capable of finding the optimal solution when adopting this
limitation (see Fig. 10). Nonetheless, these cases are unlikely to
appear in real situations. In the proposed placement heuristics,
a collision free region vertices classification dictates the movable
item placement, as some types of vertices are prioritized while
others are discarded as will be explained as follows.

5.1. Ignoring concave vertices

Consider only two convex items, one fixed and the other
movable. The no-fit polygon induced by the fixed item to the
movable item is also a convex polygon. It is possible to note that,
when themovable convex item is placed in a no-fit polygon vertex,
the items have only one contact point (see Fig. 11).

Now consider the case in which there are more convex fixed
items, and one convex movable item. To obtain the forbidden
translations, one can determine the obstructed region, a result
of the union of all no-fit polygons induced by fixed items. The
result of a union operation of convex polygons may result in a
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Fig. 11. No-fit polygons of two convex items. Placement at no-fit polygon vertices
causes items to touch. Regardless of which vertex is chosen, items Pi and Pj always
have only one contact point.

a b c

d e

Fig. 12. No-fit polygon induced by convex fixed item (a) P1; (b) P2; (c) P3 .
(d) Obstructed region for item P4 and the set of items {P1, P2, P3}. (e) Circled vertices
indicate intersection points between fixed items. It can be observed that all these
vertices are concave. Also, all convex vertices originate from the no-fit polygons and
represent one contact point positions.

a b

Fig. 13. (a) Item placed at an intersection point of two regions belonging to the
obstructed region. P3 has two contact points (upper right and bottom left corners)
evenwhen placed at a convex vertex of the obstructed region. (b) Obstructed region
with a circled vertex showing the intersection point.

non-convex polygon. It can be noted that obstructed region
vertices are either vertices from original polygons or intersection
points. Vertices created from intersection points can be observed
to be concave vertices (see Fig. 12). It can thus be said that convex
vertices originated from the input no-fit polygons and represent
one-contact point positions. One exception is when two separated
regions touch, as can be seen from the example from Fig. 13. In this
case, the vertex can be treated as concave.

For concave items, the same conclusions can be drawn
if observed that, by performing a convex decomposition, the
obstructed region will still be the result of a union of no-fit
polygons induced by convex fixed items to a convexmovable item.

Fig. 14. Items placed at concave vertices of the collision free region. The layout has
a very low density.

The collision free region is obtained by subtracting the
obstructed region from the inner-fit polygon. The concave vertices
of the collision free region always originate from the convex
vertices of the obstructed region. Hence, vertices of the collision
free region represent positions in which the item touches other
items at only one point. These are generally undesired placements,
as it usually leaves more unoccupied space between pieces that
may not be fulfilled (see Fig. 14). For this reason, in the proposed
algorithm, concave vertices are ignored in the placement of an
item.

It can be noticed that the final layout shown in Fig. 15 can be
obtained through several different placement sequences. Some of
the possible sequences use concave vertex placement, as shown
in Fig. 15(b), and several others use convex vertices exclusively,
i.e. the case illustrated in Fig. 15(c)–(e). Even though the solutions
are different, as distinct placement sequences represent exactly the
same layout. In the current time, a problem instance in which the
placement at a concave vertex is strictly necessary to obtain the
best solutionwas not found. This fact supports the supposition that
concave vertices can be ignored.

5.2. Exact fit and exact slide

An exact fit occurs when the item position is fully constrained
by its surroundings, and an exact slide is when the item position
is constrained in all but one direction. The idea is that layouts
in which most items are fixed are more prone to having higher
compaction.

Degenerated edges and vertices represent such positions. As
explained in Section 3.1, there are three types of degenerated
elements depending on their origin: no-fit polygon generated,
obstructed region generated and container generated.

A no-fit polygon degenerated element represents positions
where two items lock together and are desirable positions.
Some authors proposed algorithms that obtain these type of
degeneracies [10,26]. Although it is considered to be of great
importance, it is not as frequently as other types of degeneracies,
as the items must match in shape and size. Artificial data sets are
more likely to have two items locking together, as the Jakobs2
data set (see Fig. 16) [27], than real garment factory sets. Another
condition is that at least one of the items must be concave in order
to obtain a degenerated no-fit polygon.

Obstructed region degeneracies depend on the placement order
and translations applied to items. For this type of degeneracy, the
existence of a concave item is not required. However, when there
are only convex items, identical layouts may be obtained without
exact fit or exact slide by changing placement order (see Fig. 17).

Container generated degeneracies are required to obtain a
satisfactory solution. They represent positions where the item is
placed touching the container. In a fixed width container, it is
usually a good strategy to limit items vertical movement, which
is often the result of a compaction algorithm. Fig. 18 shows a
compaction example from [8] in which the result is a layout with
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a b

c d e

Fig. 15. Example that can be solved using concave placement. (a) Final solution, all four items placed. (b) Possible placement of a second item in a concave vertex of the
collision free region. The second and third items can only be placed at exactly sliding positions. (c)–(e) Same solution obtained by performing only convex vertex placement.

Fig. 16. Example of exact slides in which two items lock together. Items extracted
from Jakobs2 data set [27].

more vertically fixed items. This behavior can also be encouraged
by placing items in container-generated degeneracies. As with
obstructed region generated degeneracies, its existence is very
dependent on the placement order. Consider a set of contacting
fixed items with only horizontal movement; it is possible to note
that the last item was placed in a degenerated element, and that
element is either an obstructed region generated or container
generated (see Fig. 19). Therefore, both types of degeneracies are
important to obtain more compact layouts.

Previous works dealt with puzzle problems, in which the
container has fixed dimensions and the optimal solution is known
to have no wasted space. For these problems, exact fitting
placement was prioritized and results showed great improvement
as compared to other works with no priority placement [16].

5.3. Adopted placement heuristic

The adopted placement heuristics have the following order of
priority: degenerated vertex, degenerated edge, convex contour
vertex. If the collision free region has more than one degenerated
vertex, the algorithm chooses one randomly. If no degenerated
vertex is found, then the placement should occur in one
degenerated edge vertex, randomly chosen. If no degenerated
elements exist, one convex vertex from the boundary randomly
chosen is selected, with no priority order.

6. Computational results

Benchmark data sets found on ESICUP’s (EURO Special Interest
Group on Cutting and Packing) website1 were used to test the
proposed algorithm. The sets consist of irregular items and a

1 http://paginas.fe.up.pt/~esicup/tiki-index.php.

a b

c

Fig. 17. Example of an obstructed generated (OR) exact slide. (a) Final layout.
(b) Placement of item P4 on a degenerated edge. (c) When the placement order is
changed, no item is placed on degenerated elements.

a b

Fig. 18. Compaction example from [8]. (a) Original layout. (b) Layout after
compaction. Item P4 is now limited to horizontal movement, the same as items P1
and P2 .

container with fixed width. Possible orientations for the items
are also specified. These data sets are frequently used to evaluate
algorithms for the irregular open dimensional problem. Table 1
shows the characteristic of the data sets.

The algorithm was implemented in C++ and compiled by GCC
4.4.4. Computational tests were conducted on a PC with a core i7
860 processor and 4 GB memory.

6.1. Parameters

The proposed algorithm adopts a two-level approach. Both
levels have their own parameters. The inner level, a simulated
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a b c d

Fig. 19. Collision free region (filled with dark gray) with a degenerated edge for the final item using different placement orders. (a) Final layout. (b) and (c) Container
generated degenerated edge. (d) Obstructed region generated degenerated edge.

Table 1
Benchmark data sets information. TNP = total number of polygons, ANV = average
number of vertices per polygon, AO = admissible orientations.

Case TNP ANV AO

Albano 24 7.25 0°, 180°
Dagli 30 6.30 0°, 180°
Dighe1 16 3.87 0°
Dighe2 10 4.70 0°
Fu 12 3.58 0°, 90°, 180°, 270°
Jakobs1 25 5.60 0°, 90°, 180°, 270°
Jakobs2 25 5.36 0°, 90°, 180°, 270°
Mao 20 9.22 0°, 90°, 180°, 270°
Marques 24 7.37 0°, 90°, 180°, 270°
Shapes0 43 8.75 0°
Shapes1 43 8.75 0°, 180°
Shapes2 28 6.29 0°, 180°
Shirts 99 6.63 0°, 180°
Swim 48 21.90 0°, 180°
Trousers 64 5.06 0°, 180°

annealing algorithm, has the following parameters:

• T0: initial temperature.
• α: geometric cooling schedule factor.

In previous works that used the same simulated annealing
algorithm and aimed to solve puzzle cases, tests were performed
to investigate the influence of these parameters [18]. From these
tests, we adopted α = 0.99 and Nacc = 2000. Also based on
these tests, the value of T0 was calculated such that the number
of accepted solutions at initial temperature is approximately 90%
of the total number of solutions.

The outer level has the following parameters:

• L0: initial length of container.
• rdec: ratio by which the length of the container is decreased.

(0 < rdec < 1).
• rinc: ratio by which the length of the container is increased.

(0 < rinc < 1).

Ratios were considered fixed and attributed values of 0.01 and
0.003 for rdec and rinc, respectively. The decreasing procedure was
encouraged by giving a higher rdec value as opposed to rinc. The
initial length of the containerwas set to approximately 50% greater
than the length of the best solutions published previously in the
literature.

6.2. Results

Results found by the proposed algorithmare comparedwith the
best in the literature in Table 2. Both density and minimum length
are compared. Best results are found in [28,12,8,13,14].

The Albano, Dagli, Jakobs and Marques solutions found by the
proposed algorithm are the best results published in the literature.
As for the Jakobs1 set, it has the same density as the one published
by Egeblad et al. [12]. The algorithm was also capable of achieving
100% density for the problemsDighe1 andDighe2. Final layouts are
presented in Fig. 20 and execution times in Table 8.

Table 2
Solutions for benchmark data sets. I: Imamichi et al. [13]. B: Bennell and Song [28].
E: Egeblad et al. [12] G: Gomes and Oliveira [8]. L: Leung et al. [14].

Case Proposed algorithm Best in literature
ML Density (%) ML Density (%)

Albano 9758.70 89.21* 9838.70 (L) 88.48
Dagli 57.40 88.36* 57.56 (L) 88.11
Dighe1 100.00 100.00* 100.00 (BGL) 100.00*

Dighe2 100.00 100.00* 100.00 (BGL) 100.00*

Fu 30.99 91.96 30.97 (E) 92.03*

Jakobs1 11.00 89.09* 11.00 (EL) 89.09*

Jakobs2 22.75 84.83* 23.39 (I) 82.51
Mao 1749.88 84.23 1731.26 (E) 85.15*

Marques 76.85 90.01* 77.04 (E) 89.82
Shapes0 59.03 67.59 58.30 (I) 68.44*

Shapes1 55.02 72.52 53.00 (L) 75.29*

Shapes2 25.93 83.30 25.64 (I) 84.25*

Shirts 61.65 87.59 60.18 (B) 89.69*

Swim 6162.43 71.78 5864.24 (L) 75.43*

Trousers 241.83 90.07 241.23 (E) 90.46*

* The data sets are the best results in the literature (ML = Minimum length).

Table 3
Beam search [28] algorithm compared with the proposed method. Beam search
reached better results in 6 cases and the proposed method in 12 cases.

Case Proposed algorithm Beam search
ML Density (%) ML Density (%)

Albano 9758.70 89.21 9905.88 87.88
Dagli 57.40 88.36 57.65 87.71
Dighe1 100.00 100.00 100.00 100.00
Dighe2 100.00 100.00 100.00 100.00
Fu 30.99 91.96 31.57 90.28
Jakobs1 11.00 89.07 11.40 85.96
Jakobs2 22.75 84.83 24.01 80.40
Mao 1749.88 84.23 1753.20 84.07
Marques 76.85 90.01 77.79 88.92
Shapes0 59.03 67.59 62.00 64.35
Shapes1 55.02 72.52 55.00 72.55
Shapes2 25.93 83.30 26.57 81.29
Shirts 61.65 87.59 60.21 89.69
Swim 6162.43 71.78 5894.72 75.04
Trousers 241.83 90.07 241.00 90.38

Individual algorithm comparisons are displayed in Tables 3–7.
Results show that the proposed algorithm performed better in
most comparisons. In the most critical case, ELS produced 6 better
layoutswhereas the proposed algorithmproduced 6more efficient
solutions.

6.3. Discussion

Table 9 shows a comparison of execution times. Gomes and
Oliveira [8] measured the average time of execution of 20
instances. As Bennell and Song [28] use a deterministic approach,
the execution time for each benchmark problem is unique. Egeblad
et al. [12] and Imamichi et al. [13] use a two-level approach and,
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Fig. 20. Results for benchmark data sets: (a) Jakobs1; (b) Jakobs2; (c) Mao; (d) Marques; (e) Fu; (f) Shapes2; (g) Dighe1; (h) Dighe2; (i) Shapes0; (j) Shapes1; (k) Dagli;
(l) Albano; (m) Trousers; (n) Shirts; (o) Swim.

therefore, it can run indefinitely. In both cases, a time limit was
set. Imamichi et al. [13] ran the tests for 10 min, while Egeblad
et al. [12] adopted two limits, 10 min and 6 h.

For the proposed algorithm in thiswork, themost accepted time
measure procedurewould be to adopt a single or, atmaximum, two
different time limits, akin to other two-level approaches. However,
initial tests indicated that execution time for the internal level
greatly varied for each benchmark problem instance. It was hence
not possible to adopt one adequate global time limit, as adopting
smaller values would imply that no solution for larger problems
could be found and for greater values then smaller problemswould

run formuchmore time than needed to find a satisfactory solution.
Different from other approaches, an initial feasible layout is not
necessary; thus a smaller container was adopted, with its length
set to 5% greater than the best solution in the literature. In order
to achieve a reasonable execution time, which allows comparison
with known algorithms, the total running time was limited to
21,600 s, except for the more complex cases Shapes1, Trousers,
Shirts and Swim. This value was adopted by Egeblad et al. [12], and
is the highest found in the studied literature tests. So as to increase
the number of internal level executions, α was set to 0.90 for most
cases, again excluding Shapes1, Trousers, Shirts and Swim.
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Table 4
SAHA [8] algorithm compared with the proposed method. SAHA reached better
results in 3 cases and the proposed method in 14 cases.

Case Proposed algorithm SAHA
ML Density (%) ML Density (%)

Albano 9758.70 89.21 9957.41 87.43
Dagli 57.40 88.36 58.20 87.15
Dighe1 100.00 100.00 100.00 100.00
Dighe2 100.00 100.00 100.00 100.00
Fu 30.99 91.96 31.33 90.96
Jakobs1 11.00 89.07 12.41a 78.89a

Jakobs2 22.75 84.83 24.97 77.28
Mao 1749.88 84.23 1785.73 82.54
Marques 76.85 90.01 78.48 88.14
Shapes0 59.03 67.59 60.00 66.50
Shapes1 55.02 72.52 56.00 71.25
Shapes2 25.93 83.30 25.84 83.60
Shirts 61.65 87.59 62.22 86.79
Swim 6162.43 71.78 5948.37 74.37
Trousers 241.83 90.07 242.11 89.96
a The value has been corrected from the one reported in [8] according to [13].

Table 5
2DNest [12] algorithmcomparedwith the proposedmethod. 2DNest reached better
results in 6 cases and the proposed method in 10 cases.

Case Proposed algorithm 2DNest

ML Density (%) ML Density (%)

Albano 9758.70 89.21 9905.94 87.88
Dagli 57.40 88.36 58.24 87.05
Dighe1 100.00 100.00 99.86 99.86
Dighe2 100.00 100.00 99.95 99.95
Fu 30.99 91.96 30.97 92.02
Jakobs1 11.00 89.07 11.00 89.07
Jakobs2 22.75 84.83 23.80 81.07
Mao 1749.88 84.23 1731.26 85.15
Marques 76.85 90.01 77.04 89.82
Shapes0 59.03 67.59 59.52 67.09
Shapes1 55.02 72.52 54.04 73.84
Shapes2 25.93 83.30 26.48 81.59
Shirts 61.65 87.59 61.77 87.38
Swim 6162.43 71.78 6097.78 72.49
Trousers 241.83 90.07 241.23 90.46

Table 6
ILSQN [13] algorithm compared with proposed method. ILSQN reached better
results in 5 cases and the proposed method in 10 cases.

Case Proposed algorithm ILSQN

ML Density (%) ML Density (%)

Albano 9758.70 89.21 9874.48 88.16
Dagli 57.40 88.36 58.08 87.40
Dighe1 100.00 100.00 100.11 99.89
Dighe2 100.00 100.00 100.01 99.99
Fu 30.99 91.96 31.43 90.67
Jakobs1 11.00 89.07 11.28 86.89
Jakobs2 22.75 84.83 23.39 82.51
Mao 1749.88 84.23 1766.43 83.44
Marques 76.85 90.01 77.70 89.03
Shapes0 59.03 67.59 58.30 68.44
Shapes1 55.02 72.52 54.04 73.84
Shapes2 25.93 83.30 25.64 84.25
Shirts 61.65 87.59 60.83 88.78
Swim 6162.43 71.78 5875.17 75.29
Trousers 241.83 90.07 242.56 89.79

The literature results from Table 9 correspond to the best
in the literature listed in Table 2, not necessarily the minimum
average length found. It can be observed that Dagli, Fu, Dighe1 and
Dighe2 obtained equal or better average lengths. Albano, Jakobs1,
Jakobs2, Marques, Mao, Shapes0, Shapes2 reached competitive
results, with less than 2% length increase when compared with the
literature cases. It is difficult to perform the same type of

Table 7
ELS [14] algorithm comparedwith the proposedmethod. ELS reached better results
in 9 cases and the proposed method in 9 cases.

Case Proposed algorithm ELS

ML Density (%) ML Density (%)

Albano 9758.70 89.21 9838.70 88.48
Dagli 57.40 88.36 57.56 88.11
Dighe1 100.00 100.00 100.00 100.00
Dighe2 100.00 100.00 100.00 100.00
Fu 30.99 91.96 31.00 91.94
Jakobs1 11.00 89.07 11.00 89.10
Jakobs2 22.75 84.83 23.00 83.92
Mao 1749.88 84.23 1747.80 84.33
Marques 76.85 90.01 77.09 89.73
Shapes0 59.03 67.59 58.99 67.63
Shapes1 55.02 72.52 53.00 75.29
Shapes2 25.93 83.30 25.65 84.23
Shirts 61.65 87.59 61.09 88.40
Swim 6162.43 71.78 5864.24 75.43
Trousers 241.83 90.07 243.01 89.63

Table 8
Execution times for benchmark data sets.

Case Initial length Minimum
Length Time (s) Iterations

Albano 11000.00 9758.70 190,342 6,882,412
Dagli 60.57 57.40 629,047 24,092,833
Dighe1 200.00 100.00 1,704 1,160,013
Dighe2 200.00 100.00 1,229 1,792,371
Fu 33.00 30.99 32,497 22,939,567
Jakobs1 12.00 11.00 7,497 544,047
Jakobs2 25.80 22.75 79,496 3,902,892
Mao 1800.00 1747.12 3,195,538 48,421,265
Marques 78.40 76.85 74,614 1,623,420
Shapes0 66.00 59.03 181,204 2,886,548
Shapes1 62.00 55.02 491,459 5,191,092
Shapes2 28.00 25.93 261,004 12,844,782
Shirts 63.80 61.65 2,528,972 2,638,165
Swim 6250.00 6162.43 5,287,061 2,513,751
Trousers 247.00 241.83 1,016,331 3,843,754

comparison for the other 4 cases, due to their considerably higher
execution time.

The studied data sets can be classified into puzzles, with no
wasted area (Dighe1 and Dighe2), and conventional problems (the
rest). The puzzles are data sets where the layout associated with
the global optimum is known beforehand. The approach proposed
here was the first based on a container with fixed dimension
manipulation that solved puzzles.

In NP-complete problems, it is very hard to state whichmethod
represents the state of art. The benchmarks from the literature are
open problems in the sense that no one knows which the best
solution is, except for dighe1 and dighe2 (that are puzzles). It was
shown that it is possible to create problem instances that cannot be
solved by deterministic heuristics, such as bottom–left and larger
first. Fig. 10 shows a problem instance in which the heuristic of
placing items at collision free region vertices cannot be solved.
Thus, it is normal to think that a specific technique can find better
solutions than others, but cannot reach the best solution for all
problem instances.

Fig. 21 shows the container length at each iteration of the
external level. Seeing that the container is only reduced when a
solution is found, only points from the graph that lie on a negative
slope line represent valid solutions. Analyzing such solutions,
one can observe the different times required to reach a good
solution, equal or less than the computed average from Table 9,
and the minimum solution. A minimum solution is reached on
iteration number 44, whereas a solutionwith length equal to 58.17
was found on the 18th iteration, requiring 59.19% less external
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Table 9
Execution comparison for benchmark data sets. Time in seconds. NoE = Number of Executions. Avg Length = Average length. Avg Time = Average time (total time/NoE). I:
Imamichi et al. [13]. B: Bennell and Song [28]. E: Egeblad et al. [12] G: Gomes and Oliveira [8]. L: Leung et al. [14].

Case Proposed algorithm Best in literature
NoE Avg length Avg time NoE Avg length Avg time

Albano 7 10086.52 21,600 10 9962.56 (L) 1203
Dagli 7 58.21 21,600 10 58.79 (L) 1205
Dighe1 4 100.00 600 1 100 (B) 1.4
Dighe2 4 100.00 600 1 100 (B) 0.3
Fu 4 31.83 600 1 31.95 (E) 21,600
Jakobs1 4 11.06 1,800 20 11.02 (E) 600
Jakobs2 7 24.07 5,400 10 23.98 (I) 1200
Mao 7 1816.55 21,600 20 1783.20 (E) 600
Marques 7 78.87 5,400 1 77.99 (E) 21,600
Shapes0 7 61.09 21,600 10 60.02 (I) 1200
Shapes1 7 55.64 908,175 10 53.75 (L) 1212
Shapes2 7 26,73. 5,400 10 26.44 (I) 1200
Shirts 6 61.94 1,812,654 1 60.8 (B) 6217
Swim 6 6246.20 5,993,945 10 5969.49 (L) 1246
Trousers 7 248.26 86,400 1 244.39 (E) 21,600

Fig. 21. Container length variation during a sequence of external level iterations
for the Dagli case.

level iterations. As each iteration corresponds to a full simulated
annealing execution, this disparity is very significant.

7. Conclusions

The problem of minimizing wasted material in the irregular
open dimension problem is dealt with. Using a strategy that
constructs the solution by placing items sequentially, it is possible
to define the collision free region, which indicates permitted
placements. The collision free region may contain degenerated
edges and vertices that, respectively, represent the exact fits and
exact slides for items. These positions are investigated and a new
placement heuristic is proposed and applied to the algorithm. The
results from the benchmark data sets from the literature showed to
be very competitive, finding the best result in the literature in some
cases. The two-level proposed algorithm optimizes two variables:
wasted space and container length. As future work, it is possible to
use a multiobjective technique; and other metaheuristics can also
be tested (memetic algorithms, tabu search and others).
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