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Foreword

In 1997 a Joint Committee for Guides in Metrology (JCGM), chaired by the Director of the Bureau International
des Poids et Mesures (BIPM), was created by the seven international organizations that had originally in 1993
prepared the “Guide to the expression of uncertainty in measurement” (GUM) and the “International vocabulary
of basic and general terms in metrology” (VIM). The JCGM assumed responsibility for these two documents
from the ISO Technical Advisory Group 4 (TAG4).

The Joint Committee is formed by the BIPM| with the International Electrotechnical Commission (IEC), the
International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), the International Laboratory
Accreditation Cooperation (ILAC), the International Organization for Standardization (ISO), the International
Union of Pure and Applied Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP),
and the International Organization of Legal Metrology (OIML).

JCGM has two Working Groups. Working Group 1, “Expression of uncertainty in measurement”, has the task
to promote the use of the GUM and to prepare Supplements and other documents for its broad application.
Working Group 2, “Working Group on International vocabulary of basic and general terms in metrology (VIM)”,
has the task to revise and promote the use of the VIM.

Supplements such as this one are intended to give added value to the GUM by providing guidance on aspects of
uncertainty evaluation that are not explicitly treated in the GUM. The guidance will, however, be as consistent

as possible with the general probabilistic basis of the GUM.

The present Supplement 2 to the GUM has been prepared by Working Group 1 of the JCGM, and has benefited
from detailed reviews undertaken by member organizations of the JCGM and National Metrology Institutes.

JCGM 2011— All rights reserved A%
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Introduction

The “Guide to the expression of uncertainty in measurement” (GUM) [JCGM 100:2008] is mainly concerned
with univariate measurement models, namely models having a single scalar output quantity. However, mod-
els with more than one output quantity arise across metrology. The GUM includes examples, from electrical
metrology, with three output quantities [JCGM 100:2008 H.2], and thermal metrology, with two output quan-
tities [JCGM 100:2008 H.3]. This Supplement to the GUM treats multivariate measurement models, namely
models with any number of output quantities. Such quantities are generally mutually correlated because they
depend on common input quantities. A generalization of the GUM uncertainty framework [JCGM 100:2008 5]
is used to provide estimates of the output quantities, the standard uncertainties associated with the estimates,
and covariances associated with pairs of estimates. The input or output quantities in the measurement model
may be real or complex.

Supplement 1 to the GUM [[JCGM 101:2008]| is concerned with the propagation of probability distributions
[[JCGM 101:2008 5] through a measurement model as a basis for the evaluation of measurement uncertainty,
and its implementation by a Monte Carlo method [JCGM 101:2008 7]l Like the GUM, it is only concerned with
models having a single scalar output quantity [[JCGM 101:2008 1]} This Supplement describes a generalization of
that Monte Carlo method to obtain a discrete representation of the joint probability distribution for the output
quantities of a multivariate model. The discrete representation is then used to provide estimates of the output
quantities, and standard uncertainties and covariances associated with those estimates. Appropriate use of the
Monte Carlo method would be expected to provide valid results when the applicability of the GUM uncertainty
framework is questionable, namely when (a) linearization of the model provides an inadequate representation, or
(b) the probability distribution for the output quantity (or quantities) departs appreciably from a (multivariate)
Gaussian distribution.

Guidance is also given on the determination of a coverage region for the output quantities of a multivariate
model, the counterpart of a coverage interval for a single scalar output quantity, corresponding to a stipulated
coverage probability. The guidance includes the provision of coverage regions that take the form of hyper-
ellipsoids and hyper-rectangles. A calculation procedure that uses results provided by the Monte Carlo method
is also described for obtaining an approximation to the smallest coverage region.
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Evaluation of measurement data — Supplement 2

to the “Guide to the expression of uncertainty in
measurement” — Extension to any number of output
quantities

1 Scope

This Supplement to the “Guide to the expression of uncertainty in measurement” (GUM) is concerned with
measurement models having any number of input quantities (as in the GUM and GUM Supplement 1) and
any number of output quantities. The quantities involved might be real or complex. Two approaches are
considered for treating such models. The first approach is a generalization of the GUM uncertainty framework.
The second is a Monte Carlo method as an implementation of the propagation of distributions. Appropriate
use of the Monte Carlo method would be expected to provide valid results when the applicability of the GUM
uncertainty framework is questionable.

The approach based on the GUM uncertainty framework is applicable when the input quantities are summarized
(as in the GUM) in terms of estimates (for instance, measured values) and standard uncertainties associated
with these estimates and, when appropriate, covariances associated with pairs of these estimates. Formulee
and procedures are provided for obtaining estimates of the output quantities and for evaluating the associated
standard uncertainties and covariances. Variants of the formulae and procedures relate to models for which the
output quantities (a) can be expressed directly in terms of the input quantities as measurement functions, and
(b) are obtained through solving a measurement model, which links implicitly the input and output quantities.

The counterparts of the formulze in the GUM for the standard uncertainty associated with an estimate of
the output quantity would be algebraically cumbersome. Such formulae are provided in a more compact form
in terms of matrices and vectors, the elements of which contain variances (squared standard uncertainties),
covariances and sensitivity coefficients. An advantage of this form of presentation is that these formulse can
readily be implemented in the many computer languages and systems that support matrix algebra.

The Monte Carlo method is based on (i) the assignment of probability distributions to the input quantities in
the measurement model [[JCGM 101:2008 6], (ii) the determination of a discrete representation of the (joint)
probability distribution for the output quantities, and (iii) the determination from this discrete representation of
estimates of the output quantities and the evaluation of the associated standard uncertainties and covariances.
This approach constitutes a generalization of the Monte Carlo method in Supplement 1 to the GUM, which
applies to a single scalar output quantity.

For a prescribed coverage probability, this Supplement can be used to provide a coverage region for the output
quantities of a multivariate model, the counterpart of a coverage interval for a single scalar output quantity.
The provision of coverage regions includes those taking the form of a hyper-ellipsoid or a hyper-rectangle. These
coverage regions are produced from the results of the two approaches described here. A procedure for providing
an approximation to the smallest coverage region, obtained from results provided by the Monte Carlo method,
is also given.

This Supplement contains detailed examples to illustrate the guidance provided.

This document is a Supplement to the GUM and is to be used in conjunction with it and GUM Supplement 1.
The audience of this Supplement is that of the GUM and its Supplements. Also see JCGM 104.
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2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

JCGM 100:2008. Guide to the expression of uncertainty in measurement (GUM).

JCGM 101:2008. Evaluation of measurement data — Supplement 1 to the “Guide to the expression of uncer-
tainty in measurement” — Propagation of distributions using a Monte Carlo method.

JCGM 104:2009. Evaluation of measurement data — An introduction to the “Guide to the expression of
uncertainty in measurement” and related documents.

JCGM 200:2008. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms
(VIM).

3 Terms and definitions

For the purposes of this Supplement, the definitions of the GUM and the VIM apply unless otherwise indicated.
Some of the most relevant definitions, adapted or generalized where necessary from these documents, are
given below. Further definitions are given, including definitions taken or adapted from other sources, that are
especially important for this Supplement.

A glossary of principal symbols used is given in annex

3.1
real quantity
quantity whose numerical value is a real number

3.2
complex quantity
quantity whose numerical value is a complex number

NOTE A complex quantity Z can be represented by two real quantities in Cartesian form

Z=(Zn.2:)" =Zn+iZ,

2

where T denotes “transpose”, i = —1 and Zi and Z; are, respectively, the real and imaginary parts of Z, or in polar

form
Z = (Z,,2Zy) = Z, (cos Zyg+isin Zy) = Z,e'79,

where Z,. and Z, are, respectively, the magnitude (amplitude) and phase of Z.

3.3
vector quantity
set of quantities arranged as a matrix having a single column

3.4
real vector quantity
vector quantity with real components

EXAMPLE A real vector quantity X containing N real quantities X1, ..., Xy expressed as a matrix of dimension N X 1:

X1
X = : =(X1,...,Xn)".
XN

2 © JCGM 2011— All rights reserved
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3.5
complex vector quantity
vector quantity with complex components

EXAMPLE A complex vector quantity Z containing N complex quantities Z1,...,Zn expressed as a matrix of
dimension N x 1:
Z
Z = : =(Z1,...,ZnN)".
Zn

3.6
vector measurand
vector quantity intended to be measured

NOTE Generalized from JCGM 200:2008 definition 2.3.

3.7

measurement model

model of measurement

model

mathematical relation among all quantities known to be involved in a measurement

NOTE 1 Adapted from JCGM 200:2008 definition 2.48.

NOTE 2 A general form of a measurement model is the equation hA(Y, X1,...,Xn) = 0, where Y, the output quantity
in the measurement model, is the measurand, the quantity value of which is to be inferred from information about input
quantities X1,..., Xy in the measurement model.

NOTE 3 In cases where there are two or more output quantities in a measurement model, the measurement model
consists of more than one equation.

3.8

multivariate measurement model

multivariate model

measurement model in which there is any number of output quantities

NOTE 1 The general form of a multivariate measurement model is the equations

hi(Yi,....Ym, X1,...,X~n) =0, ..., hm(Yi,....,Ym, X1,...,Xn) =0,
where Y1, ..., Yn, the output quantities, m in number, in the multivariate measurement model, constitute the measurand,
the quantity values of which are to be inferred from information about input quantities Xi,..., Xy in the multivariate

measurement model.

NOTE 2 A vector representation of the general form of multivariate measurement model is
h(Y,X)=0,

where Y = (Y1,...,Ym)" and h = (hi1,...,hm) " are matrices of dimension m x 1.

NOTE 3 If, in note |1} m, the number of output quantities, is unity, the model is known as a univariate measurement
model.

3.9

multivariate measurement function

multivariate function

function in a multivariate measurement model for which the output quantities are expressed in terms of the
input quantities

NOTE 1 Generalized from JCGM 200:2008 definition 2.49.

© JCGM 2011— All rights reserved 3
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NOTE 2 If a measurement model (Y, X) = 0 can explicitly be written as Y = f(X), where X = (X1,..., Xn)"

are the input quantities, and Y = (Y1,...,Y;,)" are the output quantities, f = (f1,..., fm)  is the multivariate mea-
surement function. More generally, f may symbolize an algorithm, yielding for input quantity values & = (x1,...,x N)T
a corresponding unique set of output quantity values y1 = fi(@),...,ym = fm(x).

NOTE 3 If, in note[2} m, the number of output quantities, is unity, the function is known as a univariate measurement
function.

3.10

real measurement model

real model

measurement model, generally multivariate, involving real quantities

3.11

complex measurement model

complex model

measurement model, generally multivariate, involving complex quantities

3.12

multistage measurement model

multistage model

measurement model, generally multivariate, consisting of a sequence of sub-models, in which output quantities
from one sub-model become input quantities to a subsequent sub-model

NOTE Only at the final stage of a multistage measurement model might it be necessary to consider a coverage region
for the output quantities based on the joint probability density function for those quantities.

EXAMPLE A common instance in metrology is the following pair of measurement sub-models in the context of cali-
bration. The first sub-model has input quantities whose measured values are provided by measurement standards and
corresponding indication values, and as output quantities the parameters in a calibration function. This sub-model
specifies the manner in which the output quantities are obtained from the input quantities, for example by solving a
least-squares problem. The second sub-model has as input quantities the parameters in the calibration function and a
quantity realized by a further indication value and as output quantity the quantity corresponding to that input quantity.

3.13

joint distribution function

distribution function

function giving, for every value € = (&1,...,&n) ", the probability that each element X; of the random variable X
be less than or equal to &;

NOTE The joint distribution for the random variable X is denoted by G x (€), where
Gx (&) =Pr(X1 <&,..., XN <&n).

3.14

joint probability density function
probability density function
non-negative function g (&) satisfying

&1 éEN
Gx<s>=[ [ gx(2)dzy - dzy

3.15

marginal probability density function

for a random variable X;, a component of X having probability density function g (&), the probability density
function for X; alone:

gXi(fi) :/_ /_ gx (&) dén - d&iadE g - dGy

4 © JCGM 2011— All rights reserved
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NOTE When the components X; of X are independent, gx (£) = gx, (§1)9x,(§2) - - gx, (En)-
3.16

expectation
property of a random variable X;, a component of X having probability density function gy (&), given by

B(X,) = /: ' /_O; Ci0x (€) dén -6y = /_O; Eigx, (€) dé;

NOTE 1 Generalized from [JCGM 101:2008 definition 3.6.

NOTE 2 The expectation of the random variable X is E(X) = (E(X1),...,FE(Xn))", a matrix of dimension N x 1.

3.17
variance
property of a random variable X;, a component of X having probability density function gy (&), given by

(oo}

V(X;) = /_OO /_OO (& — E(X)]Pgx () dén -+ d& = / (& — BE(X))gx, (&) d&;

— 00

NOTE Generalized from JCGM 101:2008 definition 3.7.
3.18
covariance

property of a pair of random variables X; and X, components of X having probability density function g4 (§),
given by

Con(X,, ;) = Con(,. ) = | e / "l B — B ax (€) e a6y
— /_OO /_OO [fz - E(X’L)][é-j — E(Xj)]gXi7Xj (fiafj) dfidgj,

where 9x,.X, (&;,€;) is the joint PDF for the two random variables X; and X

NOTE 1 Generalized from [JCGM 101:2008 definition 3.10J]

NOTE 2 The covariance matrix of the random variable X is V' (X), a symmetric positive semi-definite matrix of
dimension N x N containing the covariances Cov(X;, X;). Certain operations involving V' (X)) require positive definite-
ness.

3.19

correlation

property of a pair of random variables X; and X, components of X having probability density function gy (§),
given by

COV(AX',L'7 XJ)

Corr(X;, X;) = Corr(X;, X;) =
orr(X;, X;) = Corr(X;, X;) XV

NOTE Corr(X;, X;) is a quantity of dimension one.

3.20

measurement covariance matrix

covariance matrix

symmetric positive semi-definite matrix of dimension N x N associated with an estimate of a real vector
quantity of dimension N x 1, containing on its diagonal the squares of the standard uncertainties associated
with the respective components of the estimate of the quantity, and, in its off-diagonal positions, the covariances
associated with pairs of components of that estimate

© JCGM 2011— All rights reserved 5
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NOTE 1 Adapted from [JCGM 101:2008 definition 3.11

NOTE 2 A covariance matrix U, of dimension N x N associated with the estimate x of a quantity X has the
representation
u(zi,21) - u(z1,zN) u?(z1) coou(z, TN)
Ue=| ¢ 1 =]
u(@n, 1) - u(@n,TN) w(zn,x1) - u(zn)

where u(x;, z;) = u?(x;) is the variance (squared standard uncertainty) associated with z; and u(z;, ;) is the covariance
associated with x; and ;. When elements X; and X; of X are uncorrelated, u(z;, z;) = 0.

NOTE 3 In GUM Supplement 1[[JCGM 101:2008] the measurement covariance matrix is termed uncertainty matrix.

NOTE 4 Some numerical difficulties can occasionally arise when working with covariance matrices. For instance, a
covariance matrix U, associated with a vector estimate & may not be positive definite. That possibility can be a
result of the way U, has been calculated. As a consequence, the Cholesky factor of U, may not exist. The Cholesky
factor is used in working numerically with U, [7]; also see annex Moreover, the variance associated with a linear
combination of the elements of @ could be negative, when otherwise it would be expected to be small and positive. In
such a situation procedures exist for “repairing” U, such that the repaired covariance matrix is positive definite. As a
result, the Cholesky factor would exist, and variances of such linear combinations would be positive as expected. Such
a procedure is given by the following variant of that in reference [27]. Form the eigendecomposition

U.=QDQ",
where Q is orthonormal and D is the diagonal matrix of eigenvalues of U,. Construct a new diagonal matrix, D’ say,
which equals D, but with elements that are smaller than dpin replaced by dmin. Here, dmin equals the product of the unit

roundoff of the computer used and the largest element of D. Subsequent calculations would use a repaired covariance
matrix U, formed from

U, =QD'Q".

NOTE 5 Certain operations involving U, require positive definiteness.

3.21

correlation matrix

symmetric positive semi-definite matrix of dimension N x N associated with an estimate of a real vector quantity
of dimension N x 1, containing the correlations associated with pairs of components of the estimate

NOTE 1 A correlation matrix R, of dimension N x N associated with the estimate x of a quantity X has the
representation

r(zi,z1) - r(z1,zN)
R, = : 5 ,

r(xn,z1) -+ r(ZN,ZN)

where r(z;,xz;) = 1 and r(x;, ;) is the correlation associated with x; and ;. When elements X; and X; of X are
uncorrelated, r(z:,z;) =0 .

NOTE 2 Correlations are also known as correlation coefficients.
NOTE 3 R, is related to U (see B:220) by
U:c = Dcc Rm Dma

where D, is a diagonal matrix of dimension N x N with diagonal elements u(z1),...,u(zn). Element (i, j) of Uy is
given by

u(xs, ;) = r(z:, zj)u(z:)u(z;).

NOTE 4 A correlation matrix R, is positive definite or singular, if and only if the corresponding covariance matrix U,
is positive definite or singular, respectively. Certain operations involving R, require positive definiteness.
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NOTE 5 When presenting numerical values of the off-diagonal elements of a correlation matrix, rounding to three
places of decimals is often sufficient. However, if the correlation matrix is close to being singular, more decimal digits
need to be retained in order to avoid numerical difficulties when using the correlation matrix as input to an uncertainty
evaluation. The number of decimal digits to be retained depends on the nature of the subsequent calculation, but as a
guide can be taken as the number of decimal digits needed to represent the smallest eigenvalue of the correlation matrix
with two significant decimal digits. For a correlation matrix of dimension 2 x 2, the eigenvalues Amax and Amin are 1|7/,
the smaller, Amin, being 1 — |r|, where r is the off-diagonal element of the matrix. If a correlation matrix is known to be
singular prior to rounding, rounding towards zero reduces the risk that the rounded matrix is not positive semi-definite.

3.22

sensitivity matrix

matrix of partial derivatives of first order for a real measurement model with respect to either the input quantities
or the output quantities evaluated at estimates of those quantities

NOTE For N input quantities and m output quantities, the sensitivity matrix with respect to X has dimension m x N
and that with respect to Y has dimension m x m.

3.23
coverage interval
interval containing the true quantity value with a stated probability, based on the information available

NOTE 1 Adapted from [JCGM 101:2008 definition 3.12.|

NOTE 2 The probabilistically symmetric coverage interval for a scalar quantity is the interval such that the probability
that the true quantity value is less than the smallest value in the interval is equal to the probability that the true quantity
value is greater than the largest value in the interval [adapted from [JCGM 101:2008 3.15].

NOTE 3 The shortest coverage interval for a quantity is the interval of shortest length among all coverage intervals for
that quantity having the same coverage probability [adapted from [JCGM 101:2008 3.16].

3.24
coverage region
region containing the true vector quantity value with a stated probability, based on the information available

3.25
coverage probability
probability that the true quantity value is contained within a specified coverage interval or coverage region

NOTE 1 Adapted from [JCGM 101:2008 definition 3.13.|

NOTE 2 The coverage probability is sometimes termed “level of confidence” [JCGM 100:2008 6.2.2].

3.26

smallest coverage region

coverage region for a vector quantity with minimum (hyper-)volume among all coverage regions for that quantity
having the same coverage probability

NOTE For a single scalar quantity, the smallest coverage region is the shortest coverage interval for the quantity. For
a bivariate quantity, it is the coverage region with the smallest area among all coverage regions for that quantity having
the same coverage probability.

3.27
multivariate Gaussian distribution
probability distribution of a random variable X of dimension /N x 1 having the joint probability density function

_ 1 o (Lt v -
o (€) = (%Wm[det(v)]lpep( e w TV e m)

NOTE p is the expectation and V' is the covariance matrix of X, which must be positive definite.
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3.28
multivariate ¢-distribution
probability distribution of a random variable X of dimension N x 1 having the joint probability density function

F(VJEN) 1 1 —(v+N)/2

_ - o Tyr—1 o
gx(é)—F(%)(m/)N/2 X v I+ —(€—p) V (€-n) ,

with parameters p, V' and v, where V is symmetric positive definite and
(o)
I'(z)= / t*~te~tdt, z >0,
0

is the gamma function

NOTE 1 The multivariate t-distribution is based on the observation that if a vector random variable Q of
dimension N X 1 and a scalar random variable W are independent and have respectively a Gaussian distribution with
zero expectation and positive definite covariance matrix V' of dimension N x N, and a chi-squared distribution with v

degrees of freedom, and (v/W)Y2Q = X — p, then X has the given probability distribution.

NOTE 2 gx (&) does not factorize into the product of N probability density functions even when V is a diagonal
matrix. Generally, the components of X are statistically dependent random variables.

EXAMPLE When N = 2, v = 5, and V is the identity matrix of dimension 2 x 2, the probability that X; > 1
is 18 %, while the conditional probability that X; > 1 given that X2 > 2 is 26 %.

4 Conventions and notation
For the purposes of this Supplement the following conventions and notation are adopted.

4.1 In the GUM [JCGM 100:2008 4.1.1 note 1], for economy of notation the same (upper case) symbol is
used for

(i) the (physical) quantity, which is assumed to have an essentially unique true value, and

(ii) the corresponding random variable.

NOTE The random variable has different roles in Type A and Type B uncertainty evaluations. In a Type A uncertainty
evaluation, the random variable represents “...the possible outcome of an observation of the quantity”. In a Type B
uncertainty evaluation, the probability distribution for the random variable describes the state of knowledge about the
quantity.

This ambiguity in the symbol is harmless in most circumstances.

In this Supplement, as well as in Supplement 1, for the input quantities subjected to a Type A uncertainty
evaluation, the same (uppercase) symbol is used for three concepts, namely

a) the quantity,
b) the random variable representing the possible outcome of an observation of the quantity, and
¢) the random variable whose probability distribution describes the state of knowledge about the quantity.

This further ambiguity between two distinct random variables is not present in the GUM and is a potential
source of misunderstanding. In particular, it might be believed that the Monte Carlo procedure adopted in this
Supplement, as well as in Supplement 1, complies with the procedure suggested in GUM 4.1.4 note. Although
the two procedures are analogous in principle, in that both are based on repeatedly evaluating the model
for individual input quantity values drawn from a probability distribution, they are different in practice, in
that draws are made from different distributions. In GUM 4.1.4 note, draws are made from the frequency
distribution for the random variable b). In the Supplements, draws are made from the probability distribution
for the random variable ¢). The former approach is not recommended in most experimental situations [2].
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4.2  The input quantities in a measurement model are generically denoted by X, ..., Xy, and collectively
by X = (X1,...,Xn)", a matrix of dimension N x 1, T denoting “transpose”.

4.3 Likewise the output quantities in a measurement model are generically denoted by Yi,...,Y,,, and
collectively by Y = (Y7,...,Y,,) ", a matrix of dimension m x 1.

4.4  When the Y; are expressed directly as formulz in X, the measurement model can be written as

Y = f(X), (1)

where f is the multivariate measurement function. Equivalently (see B3], the measurement model can be
expressed as

Yi:fl(X)7 DI Ym:fm(X)a
where f1(X),..., fm(X) are components of f(X).

4.5  When the Y; are not expressed directly as formulee in X, the measurement model is represented by the
equation

h(Y,X) =0, (2)
or, equivalently (see B)), by

h(Y,X)=0, ..., hn(Y,X)=0.

4.6 An estimate of X is denoted by « = (1, ... ,xN)T, a matrix of dimension N x 1. The covariance matrix
associated with « is denoted by Uy, a matrix of dimension N x N (see B.20).

4.7  An estimate of Y is denoted by y = (y1,...,¥m) ', a matrix of dimension m x 1. The covariance matrix
associated with y is denoted by Uy, a matrix of dimension m x m.

NOTE Uy is the counterpart, for m output quantities, of the variance u2(y) associated with y in the context of the
univariate measurement models of the GUM and GUM Supplement 1. In the GUM, u(y) is denoted by uc(y), the

subscript “c” denoting combined. As in Supplement 1, the use of “c¢” in this context is considered superfluous for the
[1P%})

reasons stated in 4.10 of that Supplement. Accordingly, “c” is similarly not used in this Supplement.

4.8  When estimates of the output quantities in a measurement model are to be used individually, each of
these quantities may be considered as the output quantity in the corresponding univariate (scalar) measurement
model. When the output quantities are to be considered together, for instance used in a subsequent calculation,
any correlations associated with pairs of estimates of the output quantities need to be taken into account.

4.9  The symbol adopted for the standard uncertainty associated with a quantity value z is u(x). When the
context is such that there is no possibility of misunderstanding, the alternative notation u, can be adopted.
The alternative notation is not recommended when a quantity value is indexed or otherwise adorned, for
example x; or 7.

4.10  x may be described as either “estimates of the input quantities”, or “an estimate of the (vector) input
quantity”. The latter description is mainly used in this Supplement (and similarly for the output quantities).

4.11  As in subclauses to [0, a quantity is generally denoted by an upper case letter and an estimate
or some fixed value of the quantity (such as the expectation) by the corresponding lower case letter. Although
valuable for generic considerations, such a notation is largely inappropriate for physical quantities, because of the
established use of specific symbols, for example T for thermodynamic temperature and ¢ for time. Therefore, in
some of the examples, a different notation is used, in which a quantity is denoted by its conventional symbol and
its expectation or an estimate of it by that symbol hatted. For instance, the quantity representing the amplitude
of an alternating current (example [ of 6:22) is denoted by I and an estimate of I by I [JCGM 101:2008 4.8]|
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4.12 A departure is made from the symbols often used for a probability density function (PDF) and distri-
bution function. The GUM uses the generic symbol f to refer to a model and a PDF. Little confusion arises
in the GUM as a consequence of this usage. The situation in this Supplement is different. The concepts of
measurement function, PDF, and distribution function are central to following and implementing the guidance
provided. Therefore, in place of the symbols f and F' to denote a PDF and a distribution function, respectively,
the symbols g and G are used. These symbols are indexed appropriately to denote the quantity concerned. The
symbol f is reserved for a measurement function. Vector counterparts of these symbols are also used.

4.13 A PDF is assigned to a quantity, which might be a single scalar quantity X or a vector quantity X. In
the scalar case, the PDF for X is denoted by g (&), where £ is a variable describing the possible values of X.
This X is considered as a random variable with expectation E(X) and variance V (X).

4.14  In the vector case, the PDF for X is denoted by gy (&), where & = (£1,...,&n) T is a variable describing
the possible values of the quantity X. This X is considered as a random variable with expectation E(X) and
covariance matrix V(X).

4.15  Analogously, in the scalar case, the PDF for Y is denoted by gy (1) and, in the vector case, the PDF
for Y is denoted by gy-(n).

4.16  According to Resolution 10 of the 22nd CGPM (2003) “...the symbol for the decimal marker shall be
either the point on the line or the comma on the line ...”. The JCGM has decided to adopt, in its documents
in English, the point on the line.

5 Basic principles
5.1 General

5.1.1 In the GUM [JCGM 100:2008 4.1], a measuring system is modelled in terms of a function involving
real input quantities X1,..., Xy and a real output quantity Y in the form of expression , namely Y = f(X),
where X = (X1,...,Xy)" is referred to as the real vector input quantity. This function is known as a real
univariate measurement function (see B9 note 3).

5.1.2  In practice, not all measuring systems encountered can be modelled as a measurement function in a
single scalar output quantity. Such systems might instead involve either

a) a number of output quantities Y7,...,Y,, (denoted collectively by the real vector output
quantity Y = (Y1,...,Y,,) "), taking the form , namely Y = f(X), or

b) the more general form of measurement model, taking the form , namely h(Y, X) = 0.

5.1.3  Further, some or all of the components of X and Y might correspond to components (real part and
imaginary part, or magnitude and phase) of complex input quantities. Therefore, all measurement models can
be considered (without loss of generality) as real. However, a treatment that is simpler than the corresponding
treatment involving real and imaginary parts applies for the complex case [I4]. The treatment gives succinct
matrix expressions for the law of propagation of uncertainty when applied to measurement models with complex

quantities (complex models). See and annex [Al

5.1.4  This GUM Supplement considers the more general measurement models in 1.2l and B3]

5.2 Main stages of uncertainty evaluation

5.2.1  The main stages of uncertainty evaluation constitute formulation, propagation, and summarizing:
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a) Formulation:
1) define the output quantity Y, the quantity intended to be measured (the vector measurand);
2) determine the input quantity X upon which Y depends;
3) develop a measurement function [f in ] or measurement model relating X and Y

4) on the basis of available knowledge assign PDFs — Gaussian (normal), rectangular (uniform), etc. —
to the components of X. Assign instead a joint PDF to the components of X that are not pairwise
independent;

b) Propagation:

propagate the PDFs for the components of X through the model to obtain the (joint) PDF for Y;
c) Summarizing:

use the PDF for Y to obtain

1) the expectation of Y, taken as an estimate y of Y,

2) the covariance matrix of Y, taken as the covariance matrix U,, associated with y, and

3) a coverage region containing Y with a specified probability p (the coverage probability).

5.2.2  The steps in the formulation stage are carried out by the metrologist. Guidance on the assignment
of PDF's (step 4 of stage a) in [5.2.0]) is given in GUM Supplement 1 for some common cases and in [5.3] The
propagation and summarizing stages, b) and ¢), for which detailed guidance is provided here, require no further
metrological information, and in principle can be carried out to any required numerical tolerance for the problem
specified in the formulation stage.

NOTE Once the formulation stage a) in[5.Z I has been carried out, the PDF for Y is completely specified mathematically,
but generally the calculation of the expectation, covariance matrix and coverage regions require numerical methods that
involve a degree of approximation.

5.3 Probability density functions for the input quantities
5.3.1 General

GUM Supplement 1 gives guidance on the assignment, in some common cirumstances, of PDF's to the input
quantities X; in the formulation stage of uncertainty evaluation [JCGM 101:2008 6]. The only multivariate
distribution considered in GUM Supplement 1 is the multivariate Gaussian [JCGM 101:2008 6.4.8]. This
distribution is assigned to the input quantity X when the estimate & and associated covariance matrix Uy
constitute the only information available about X. A further multivariate distribution, the multivariate t-
distribution, is described in This distribution arises when a series of indication values, regarded as being
obtained independently from a vector quantity with unknown expectation and unknown covariance matrix
having a multivariate Gaussian distribution, is the only information available about X. Also see

5.3.2 Multivariate ¢-distribution

5.3.2.1 Suppose that a series of n indication values «i,...,®,, each of dimension N x 1, is available,
with n > N, regarded as being obtained independently from a quantity with unknown expectation p and
covariance matrix X of dimension N x N having the multivariate Gaussian distribution N(g, 7). The de-
sired input quantity X of dimension N x 1 is taken to be equal to pu. Then, assigning a non-informative
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joint prior distribution to g and X, and using Bayes’ theorem, the marginal (joint) PDF for X is a
multivariate ¢-distribution ¢, (&, S/n) with v =n — N degrees of freedom [I1], where

B=_(@mtote),  S= @ -@)@-2) + ot (@ 2)@n - )

NOTE The prior can be assigned in other ways, which would influence the degrees of freedom or even the distribution.

5.3.2.2 The PDF for X is

I'(n)2)

9x(8) = T a7 X [Aet(S/m) 2

1.+ (S\ "', _
tepe-a (3) G —a:)] ,
where I'(z) is the gamma function with argument z.

5.3.2.3 X has expectation and covariance matrix

v S

v—2n’

E(X)=ug, V(X)=
where E(X) is defined only for v > 1 (that is for n > N 4 1) and V(X)) only for v > 2 (that is for n > N + 2).

5.3.2.4  To make a random draw from ¢, (&, S/n), make N random draws z;, i = 1,..., N, from the standard
Gaussian distribution N(0, 1) and a single random draw w from 2, the chi-squared distribution with v degrees
of freedom, and form

/;’::E—l-Lz,/%, z:(zl,...,zN)T,

where L is the lower triangular matrix of dimension N x N given by the Cholesky
decomposition S/n = LL" [13].

NOTE The matrix L can be determined as in reference [I3], for example.

5.3.3 Construction of multivariate probability density functions

When the input quantities X1,..., Xy are correlated, the information that typically is available about them
are the forms of their PDFs (say, that one is Gaussian, another is rectangular, etc.), estimates x1,...,xx, used
as their expectations, associated standard uncertainties w(z1),...,u(xn), used as their standard deviations,
and covariances associated with pairs of the x;. A mathematical device known as a copula [20] can be used to
produce a PDF for X consistent with such information. Such a PDF is not unique.

5.4 Propagation of distributions

5.4.1  Figure [1| (left) shows an instance of a measurement model in which there are N = 3 mutually inde-
pendent input quantities X = (X;, X5, X3)T and m = 2 output quantities Y = (Y;,Y3)". The measurement
function is f = (f1,f2)". Fori=1,2,3, X; is assigned the PDF gy (&), and Y is characterized by the
joint PDF gy (n) = gy, v, (m1,7m2). Figure [1] (right) adapts this instance to where X; and X are mutually
dependent and characterized by the joint PDF gy . (&1,62).

5.4.2  There might be an additional output quantity, Q say, depending on Y. Y would be regarded as an
input quantity to a further measurement model represented in terms of a measurement function ¢, say:

Q=t(Y).

For example, Y might be the vector of masses in a set of mass standards, and @ the sums of some of them.
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Ix, (1) —
Y1 = fi(X1, X2, X3) Ix, x, (€1, &) — Y1 = f1(X1, X2, X3)

9x, (§2) — — 9vi.,v, (111, m2) > 9v..v, (71, m2)
Ya = f2(X1, X2, X3) Ix,(&3) — Yo = fo( X1, Xo, X3)

9x, (&3) —

Figure 1 — Propagation of distributions for N = 3 input quantities and m = 2 output quantities when

the input quantities X;, X2 and X3 are mutually independent and (right) when X; and X, are mutually

dependent (5.4.1))

5.4.3  Composition of the measurement functions f and ¢, which are regarded as sub-models, gives Q as a
function of X. It can, however, be desirable to retain the individual sub-models when they relate to functionally
distinct stages. These two sub-models constitute an instance of a multistage model (see [B12)).

5.4.4  The case when the final stage of a multistage model has an output quantity that is a single scalar
quantity, and that quantity is the only output quantity of interest, can be handled using GUM Supplement 1.

5.5 Obtaining summary information

5.5.1  An estimate y of the output quantity Y is the expectation E(Y"). The covariance matrix U, associated
with y is the covariance matrix V (Y").

5.5.2  For a coverage probability p, a coverage region Ry for Y satisfies
/ gy (n)dn = p.
Ry

NOTE 1 Although random variables corresponding to some quantities might be characterized by distributions having
no expectation or covariance matrix (see, for example, [5.3.2), a coverage region for Y always exists.

NOTE 2 Generally there is more than one coverage region for a stated coverage probability p.

5.5.3  There is no direct multivariate counterpart of the probabilistically symmetric 100p % coverage interval
considered in GUM Supplement 1. There is, however, a counterpart of the shortest 100p % coverage interval.
It is the 100p % coverage region for Y of smallest hyper-volume.

5.6 Implementations of the propagation of distributions

5.6.1  The propagation of distributions can be implemented in several ways:
a) analytical methods, that is methods that provide a mathematical representation of the PDF for Y;

b) uncertainty propagation based on replacing the model by a first-order Taylor series approximation (a
generalization of the treatment in the GUM [JCGM 100:2008 5.1.2]) — the (generalized) law of propagation
of uncertainty;

¢) numerical methods [JCGM 100:2008 G.1.5] that implement the propagation of distributions, specifically
using a Monte Carlo method (MCM).

NOTE 1 Solutions expressible analytically are ideal in that they do not introduce any approximation. They are
applicable in simple cases only, however. These methods are not considered further in this Supplement, apart from in
the examples for comparison purposes.

NOTE 2 MCM as considered here is regarded as a means for providing a numerical representation of the distribution for

the vector output quantity, rather than a simulation method per se. In the context of the propagation stage of uncertainty
evaluation, the problem to be solved is deterministic, there being no random physical process to be simulated.
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5.6.2 In uncertainty propagation, the estimate & = FE(X) of X and the associated covariance
matrix U, = V(X)) are propagated through (a linearization of) the measurement model. This Supplement
provides procedures for doing so for the various types of model considered.

5.6.3  Figure [2| (left) illustrates the (generalized) law of propagation of uncertainty for a measure-
ment model with N = 3 mutually independent input quantities X = (X1, X5, X3)" and m =2
output quantities Y = (Y1, Ys)". X is estimated by = (21,72,23)" with associated standard
uncertainties u(x1), u(z2) and u(z3). Y is estimated by y = (y1,v2) " with associated covariance matrix Uy,.
Figure |2| (right) applies when X3 and X» are mutually dependent with covariance u(z1,x2) associated with the
estimates x1 and zs.

z1,u(z1) —— Ty, T
Y1 = fi(Xy, X2, X3) u(z1), u(x2) —= Y1 = f1(X1, X2, X3)
T2, u(Tg) — — y, Uy u(zy,r2) — y, Uy
Y2 = fo( X1, X2, X3) Yz = fa(Xy, X2, X3)
z3,u(r3) — z3, u(T3) —>
Figure 2 — Generalized law of propagation of uncertainty for N = 3 mutually independent input

quantities X, X and X3, and m = 2 (almost invariably) mutually dependent output quantities, and
(right) as left, but for mutually dependent X; and X, (5.6.3)

5.6.4 In MCM, a discrete representation of the (joint) probability distribution for X is propagated through
the measurement model to obtain a discrete representation of the (joint) probability distribution for Y from
which the required summary information is determined.

6 GUM uncertainty framework
6.1 General

6.1.1  The propagation of uncertainty for measurement models that are more general than the form Y = f(X)
in the GUM is described (see and [6.3). Although such measurement models are not directly considered in
the GUM, the same underlying principles may be used to propagate estimates of the input quantities and
the uncertainties associated with the estimates through the measurement model to obtain estimates of the
output quantities and the associated uncertainties. Mathematical expressions for the evaluation of uncertainty
are stated using matrix-vector notation, rather than the subscripted summations given in the GUM, because
generally such expressions are more compact and more naturally implemented within modern software packages
and computer languages.

6.1.2  For the application of the law of propagation of uncertainty, the same information concerning the input
quantities as for the univariate measurement model treated in the GUM is used:

a) an estimate € = (x1,...,2y) " of the input quantity X;

b) the covariance matrix U, associated with & containing the covariances u(x;,x;),i=1,...,N,j=1,..., N,
associated with z; and x;.

6.1.3  The description of the propagation of uncertainty given in and is for real measurement models,
including complex measurement models that are expressed in terms of real quantities. A treatment for complex
measurement models is given in Also see 5.3

6.1.4  Obtaining a coverage region for a vector output quantity is described in
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6.2 Propagation of uncertainty for explicit multivariate measurement models
6.2.1 General

6.2.1.1 An explicit multivariate measurement model specifies a relationship between an output
quantity Y = (Y1,...,Y;,) " and an input quantity X = (X1,...,Xn)", and takes the form

Y=f(X), f=0fn),
where f denotes the multivariate measurement function.

NOTE Any particular function f;(X) may depend only on a subset of X, with each X; appearing in at least one
function.

6.2.1.2  Given an estimate  of X, an estimate of Y is

y = f(z).

6.2.1.3  The covariance matrix of dimension m x m associated with y is

u(y,y1) o u(yr, Ym)
WYm,y1) o W Yms Ym)

where cov(y;,y;) = u?(y;), and is given by

U, =-C,U,.C,, (3)
where C,, is the sensitivity matrix of dimension m x N given by evaluating
on o
0X1 0Xn
Cx=| i .
9 fm Afm
0X1 0Xn

at X =« [I9, page 29].

6.2.2 Examples
EXAMPLE 1 Resistance and reactance of a circuit element [JCGM 100:2008 H.2]

The resistance R and reactance X of a circuit element are determined by measuring the amplitude V of a sinusoidal
alternating potential difference applied to it, the amplitude I of the alternating current passed through it, and the phase
angle ¢ between the two. The bivariate measurement model for R and X in terms of V', I and ¢ is

% V.
R=fi(V,1,¢)= 7 cosp, X =fo(V,1,6) = —sing, (4)
In terms of the general notation, N =3, m=2, X = (V,I,¢)" and Y = (R, X)".

An estimate = (R,)? )T of resistance and reactance is obtained by evaluating expressions |D at an

Yy
estimate @ = (V,1,4)" of the input quantity X.

The covariance matrix U, of dimension 2 x 2 associated with y is given by formula 7 where Cj, is the sensitivity
matrix of dimension 2 x 3 given by evaluating

ofi Ofi O cos ¢ V cos¢ V sin ¢
ov. oI 0¢ Ji T2 T
df2 Of2 0Of2 a sing ~ Vsing  Vcos¢
av ol 0é 7 2 T
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at X = «, and Uy, is the covariance matrix of dimension 3 x 3 associated with a.

NOTE In the GUM, reactance is denoted by X, which is the notation used here. The reactance X, a component of the
vector output quantity Y, is not to be confused with X, the vector input quantity.

EXAMPLE 2  Reflection coefficient measured by a microwave reflectometer (approach 1)

The (complex) reflection coefficient I' measured by a calibrated microwave reflectometer, such as an automatic network
analyser, is given by the complex measurement model
aW +b
=5 ()
cW +1

where W is the (complex) uncorrected reflection coefficient and a, b and ¢ are (complex) calibration coefficients char-
acterizing the reflectometer [10 [16] [26].

In terms of the general notation, and working with real and imaginary parts of the quantities involved, N = 8, m = 2,
X = (ag,ar, by, by, cr, ¢, Wy, Wi )T and Y = (I'g, I7 )T-

An estimate y = (IA“R,IA} )T of the (complex) reflection coefficient is given by the real and imaginary parts of the
right-hand side of expression evaluated at the estimate @ of the input quantity X.

The covariance matrix U, of dimension 2 x 2 associated with y is given by formula , where C,, is the sensitivity
matrix of dimension 2 x 8 given by evaluating

Oag  Oa; 0Obg Oby Ocyg Ocg OWgp OW,;

on on or on on 9L oh Ol
day, Oa;, b, Ob, Ocy O¢ OWy OW,

at X = «, and Uy, is the covariance matrix of dimension 8 x 8 associated with a.
EXAMPLE 3  Calibration of mass standards

This example constitutes an instance of a multistage model (see B12 542 and (E43).

A set of ¢ mass standards of unknown mass values m = (mu,... ,mq)T is calibrated by comparison with a reference
kilogram, using a mass comparator, a sensitivity weight for determining the comparator sensitivity, and a number of
ancillary instruments such as a thermometer, a barometer and a hygrometer for determining the correction due to air
buoyancy. The reference kilogram and the sensitivity weight have masses mr and mg, respectively. The calibration
is carried out by performing, according to a suitable measurement procedure, a sufficient number k£ of comparisons
between groups of standards, yielding apparent, namely, in-air differences § = (41, ..., 5k)T. Corresponding buoyancy
corrections b = (b1,...,b)" are calculated. In-vacuo mass differences X are obtained from the sub-model X = f (W),

where W = (mR7 ms, 6-'—7 bT)T.

An estimate y = (ma, ..., ﬁlq)T of the masses m is typically given by the least-squares solution of the over-determined
system of equations Am = X, where A is a matrix of dimension k£ X ¢ with elements equal to +1, —1 or zero, according
to the mass standards involved in each comparison, and respecting the uncertainties associated with the estimate x
of X. With this choice, the estimate y is given by

y=U,A'U, ‘=, (6)
where the covariance matrix U, of dimension ¢ x ¢ associated with y is given by U, = (AT UmflA)fl. U, is the
covariance matrix of dimension k x k associated with . A more detailed description of the sub-model, as well as a
procedure for obtaining U, in terms of U,,, the covariance matrix associated with the estimate w of W, is available
131

The multivariate measurement model for this example can be expressed as
Y =U,A"U, "X,
where the measurement function is UyATUmle. In terms of the general notation, N =k, m=qand Y = m.

NOTE It is preferable computationally to obtain the estimate given by formula @ by an algorithm based on orthogonal
factorization [13], rather than use this explicit formula.
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6.3 Propagation of uncertainty for implicit multivariate measurement models
6.3.1 General

6.3.1.1 An implicit multivariate measurement model specifies a relationship between an output
quantity Y = (Y3,...,Y,,) " and an input quantity X = (Xi,...,Xy)", and takes the form

h(Y,X) =0, h=(hi,....hm)".

6.3.1.2  Given an estimate x of X, an estimate y of Y is given by the solution of the system of equations

h(y,xz) =0. (7)

NOTE The system of equations @ has generally to be solved numerically for y, using, for example, Newton’s method [12]
or a variant of that method, starting from an approximation y(0> to the solution.

6.3.1.3  The covariance matrix U, of dimension m x m associated with y is evaluated from the system of
equations

c,U,C, - C,U,Cy, (8)
where C), is the sensitivity matrix of dimension m x m containing the partial derivatives Ohy/0Y;, L =1,...,m,
j=1,...,m, and Cy is the sensitivity matrix of dimension m x N containing the partial derivatives dh,/0X;,

£=1,...,m,i=1,..., N, all derivatives being evaluated at X = x and Y = y.
NOTE 1 The covariance matrix U, in expression is not defined if C, is singular.
NOTE 2 Expression is obtained in a similar way as expression , with the use of the implicit function theorem.
6.3.1.4  Formally, the covariance matrices U, and U, are related by

U, = CU,C", (9)
where

C=C,'C,, (10)
a matrix of sensitivity coefficients of dimension m x N.

6.3.1.5  Annex [Bl contains a procedure for forming U,,. It is not recommended that U,, is obtained directly
by evaluating expression and then expression @; such a procedure is less stable numerically.

6.3.2 Examples

EXAMPLE 1 Set of pressures generated by a pressure balance

The pressure p generated by a pressure balance is defined implicitly by the equation

__mw (1 —pa/pw) ge
P= AT+ 2p) (1 + adb)’ (11)

where m., is the total applied mass, p, and py are, respectively, the densities of air and the applied masses, g, is the
local acceleration due to gravity, Ao is the effective cross-sectional area of the balance at zero pressure, ) is the distortion
coefficient of the piston-cylinder assembly, « is the coefficient of thermal expansion, and &6 is the deviation from a 20 °C
reference Celsius temperature [I7].

Let pi1,...,pq denote the generated pressures for, respectively, applied masses Mmw,1,...,Mw,q and temperature
deviations 8601, ..., 00,.
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In terms of the general notation, N = 6 + 2¢g, m = ¢q, X = (Ao, A\ q, 501,mw71,...,69(1,mw,q,pa,pw,gg)T
and Y = (p1,...,pq) -

X and Y are related by the measurement model
hi (Y, X) = Aop; (14 Ap;) (1 4+ adl;) —mw ; (1 = pa/pw) ge =0,  j=1,....q. (12)

An estimate p; of p; is obtained by solving an equation of the form (12) given estimates of Ao, A, a, 805, Mw. j, pa, Pw
and g,. However, the resulting estimates have associated covariances because they all depend on the measured
quantities Ao, A\, @, pa, pw and gq.

The covariance matrix U, of dimension ¢x g associated with y = (p1, ..., Pq) " is evaluated from expression , where C
is the sensitivity matrix of dimension ¢ X ¢ containing the partial derivatives Oh¢/9Y;, £ =1,...,q,7=1,...,q, and C,
is the matrix of dimension ¢ x (6 4+ 2¢) containing the partial derivatives Ohe/0X;, £ =1,...,q, i =1,...,6 4+ 2¢, both
evaluated at X =« and Y = y, and U,, is the covariance matrix of dimension (6 + 2¢) x (6 + 2¢q) associated with .

NOTE 1 A measurement function [giving Y; (= p;) explicitly as a function of X] can be determined in this case as
the solution of a quadratic equation. Such a form is not necessarily numerically stable. Moreover, measurement models
involving additional, higher-order powers of p are sometimes used [J]. Determination of an explicit expression is not
generally possible in such a case.

NOTE 2 There is more than one way to express the measurement model ((12). For instance, in place of the form ,
the model based on equating to zero the difference between the left- and right-hand sides of model could be used.

The efficiency and stability of the numerical solution of the measurement model depends on the choice made.

NOTE 3 More complete models of the pressure generated by a pressure balance can also be considered [I7], which
include, for example, a correction to account for surface tension effects.

NOTE 4 Not all the input quantities appear in each equation, with the jth equation involving
only Ao, A, o, 80, my j, pa, pw and ge.

EXAMPLE 2  Reflection coefficient measured by a microwave reflectometer (approach 2)

Another approach to example [2 given in [6.2.2] is to relate the input quantity X = (ag, ar, bg, b1, cr, c1, Wg, Wi )T and
the output quantity Y = (I'g, I} )—r using the bivariate measurement model

h(Y,X) =0, ho (Y, X) =0, (13)
where h1 (Y, X) and h2 (Y, X)) are, respectively, the real and imaginary parts of
(cW+1)I'— (aW +b).

An advantage of this approach is that the calculation of derivatives and thence sensitivity coefficients is more straight-
forward.

An estimate y = (fR, fl )T of the (complex) reflection coefficient is given by setting X = @ in equations and solving
them numerically.

The covariance matrix U, of dimension 2 x 2 associated with ¥y is evaluated from expression , where Cy is the
sensitivity matrix of dimension 2 X 2 containing the partial derivatives Oh¢/0Y;, £ = 1,2, 7 = 1,2, and Cy is the
sensitivity matrix of dimension 2 x 8 containing the partial derivatives dh,/0X;, £ = 1,2, i = 1,...,8, both evaluated
at X =« and Y =y, and U,, is the covariance matrix of dimension 8 x 8 associated with a.

EXAMPLE 3 Reflectometer calibration

The calibration of a reflectometer (example 2] of [(.2.2)) is typically undertaken by measuring values W of the uncorrected
reflection coefficient corresponding to a number of standards with reflection coefficients I'. Often, three standards are
used, giving the three (complex) simultaneous equations

(cW; +1)T; — (aW; +b) =0, (14)

for j = 1,2,3. Separation of these equations into real and imaginary parts gives rise to six simultaneous linear equations
that are solved for estimates of the real and imaginary parts of the calibration coefficients a, b and ¢ given estimates
of the real and imaginary parts of the uncorrected reflection coefficients W'; and of the reflection coefficients I'; for the
standards.

In terms of the general notation, N = 12, m = 6, X = (W g, Wi 1, I'1 g, 111, Wo g, Wa 1, Tory Io1, War, Wa 1, I3 R, F3,I)T
and Y = (aRa ary, bR7 bI: CR; CI)T
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The input and output quantities are related by a multivariate measurement model, where, for 7 = 1,2,3, hoj—1 (Y, X)
and h2;(Y, X)) are, respectively, the real and imaginary parts of the left-hand side of expression .

An estimate y = (aR,aI,ER,EI,ER,a)T of the (complex) calibration coefficients is given by using the estimates of W ;
and I'; in equations (|14)) and solving these equations numerically.

The covariance matrix U, of dimension 6 X 6 associated with vy is evaluated from expression , where Cy is the
sensitivity matrix of dimension 6 X 6 containing the partial derivatives Oh¢/0Y;, £ =1,...,6, 5 = 1,...,6, and Cy is
the sensitivity matrix of dimension 6 X 12 containing the partial derivatives Oh¢/0X;, £ =1,...,6, i =1,...,12, both
evaluated at X =« and Y = vy, and U, is the covariance matrix of dimension 12 x 12 associated with .

NOTE 1 If a computer system capable of operating with complex quantities is available, separation of these equations
into real and imaginary parts is unnecessary. The equations can be solved “directly” for @, b and c .

NOTE 2 The jth equation involves only the four input quantities W; g, W,

g Ijr and Iy

6.4 Propagation of uncertainty for models involving complex quantities

Annex [A] covers the algebraically efficient determination of the partial derivatives of first order of complex mul-
tivariate measurement functions. These derivatives are needed in a particularization of the law of propagation
of uncertainty to such models. The treatment can be extended to complex multivariate measurement models
in general.

EXAMPLE Reflection coefficient measured by a microwave reflectometer (approach 3)
Consider again example [2 given in [§.2.2]

The complex output quantity Y = I' is related to the complex input quantity X = (X1,...,X4)" = (a,b,c, W) by
the measurement model ‘ Using annex [Al Cy, a sensitivity matrix of dimension 2 x 8, is given by evaluating

CX = [ Ca, Cb Cc C'W }7
with

or

Ct:M(a

), t=a,b,c,W,

at the estimate & of X . For 