SIMPLIFICAÇÃO DE CIRCUITOS SEQUENCIAIS

Sel 414 - Sistemas Digitais
Prof. Homero Schiabel

Equivalência de estados

Dois Estados são equivalentes se não podemos distinguir um do outro, ou seja, não podemos determinar em qual dos dois estados equivalentes o Circuito Sequencial começa, aplicando-se entradas e observando suas saídas. Se essa condição ocorrer, para qualquer sequência de entrada, um dos Estados é redundante e pode ser removido sem alterar o comportamento do circuito.

Remover
estados
redundantes é
importante
para

- 1) Reduzir Custos
- 2) Reduzir a Complexidade do Circuito
- 3) Facilitar a Análise de Falhas

Equivalência de estados

- Os Estados S1, S2,, Sj de um Circuito Sequencial são ditos *equivalentes* se e somente se, para toda sequência de entrada possível, a mesma sequência de saída será produzida independentemente de qual S1, S2,, Sj seja o Estado Inicial.
- Sejam S_k e S_I os Próximos Estados de um Circuito Sequencial quando a entrada I_D é aplicada, estando o circuito nos estados S_i e S_i respectivamente. S_i e S_i são *equivalentes* se e somente se, para toda
 - entrada possível l_p:
 - 1 A saída produzida pelo estado S_i é igual à saída produzida pelo estado Si
 - 2 Os Próximos Estados S_k e S_l são *equivalentes*.

1. Por Inspeção

Estado	Est. Futuro / Saída	
Presente	X = 0	X = 1
Α	B / 0	C / 1
В	C/0	A / 1
С	D/1	B / 0
	C/0	A/1
Е	D/0	C / 1

Estado Presente		ro / Saída X = 1
А	B/0	C / 1
В	C/0	A / 1
С	B / 1	B/0
<u> </u>	B /0	C/1

1. Por Inspeção

Estado	Est. Futuro / Saída	
Presente	X = 0	X = 1
Α	B / 0	C / 1
В	C/0	A / 1
С	B / 1	B/0

2. Por Partição

Estado Presente		ro / Saída X = 1
А	B / 0	C/0
В	D/0	E/0
С	G/0	E/0
D	H / 0	F/0
Е	G/0	A / 0
F	G / 1	A / 0
G	D/0	C/0
Н	H / 0	A / 0

- 1. Só est. F tem comportamento diferente dos outros quanto à saída;
- 2. Vamos assumir que, inicialmente, todos os demais correspondem ao mesmo estado.
- 3. Dividir os estados, então, em duas classes (PARTIÇÕES)

2. Por Partição

Estado Presente	Est. Futu X = 0	ro / Saída X = 1
A ₁	B ₁ / 0	C ₁ / 0
B ₁ C ₁	D ₁ / 0 G ₁ / 0	E ₁ / 0 E ₁ / 0
D_1	H ₁ / 0	F ₂ / 0
E ₁	G ₁ / 0	A ₁ / 0
F ₂	G ₁ / 1	A ₁ / 0
G_1	D ₁ / 0	C ₁ / 0
H ₁	H ₁ / 0	A ₁ / 0

Estado	Est. Futu	ro / Saída
Presente	X = 0	X = 1
_ A ₁	B ₁ / 0	C ₁ / 0
→ B ₁	$D_3 / 0$	E ₁ / 0
C_1	G ₁ / 0	E ₁ / 0
D_3	H ₁ / 0	$F_2/0$
E ₁	G ₁ / 0	A ₁ / 0
F_2	G ₁ / 1	$A_1 / 0$
> G₁	$D_3 / 0$	C ₁ / 0
H ₁	H ₁ / 0	A ₁ / 0

Dois estados cujos Est. Futuros em cada coluna (x=0 e x=1) não estão nas mesmas Partições devem ser estados diferentes

2. Por Partição

	Estado	Est. Futuro / Saída	
Р	resente	X = 0	X = 1
	A ₁	B ₄ / 0	C ₁ / 0
	B ₄	D ₃ / 0	E ₁ / 0
	C ₁	G ₄ / 0	E ₁ / 0
	D_3	H ₁ / 0	$F_2/0$
	E₁	G ₄ / 0	A ₁ / 0
	F ₂	G ₄ / 1	A ₁ / 0
	G ₄	$D_3/0$	$C_{1} / 0$
	H ₁	H ₁ / 0	A ₁ / 0

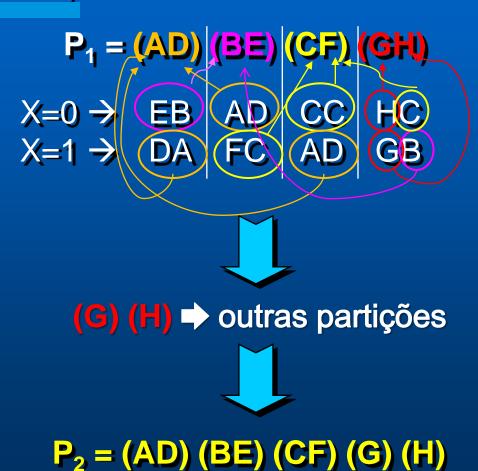
Estado	Est. Futu	ro / Saída
Presente	X = 0	X = 1
Presente A_{5} B_{4} C_{5} D_{3} E_{5} F_{2}	$X = 0$ $B_4 / 0$ $D_3 / 0$ $G_4 / 0$ $G_4 / 0$ $G_4 / 1$	$X = 1$ $C_5 / 0$ $E_5 / 0$ $E_5 / 0$ $F_2 / 0$ $A_5 / 0$
G ₄	D ₃ / 0	C ₅ / 0
H ₁	H ₁ / 0	A ₅ / 0

2. Por Partição

Estado Presente	Est. Futuro / Saída X = 0 X = 1	
а	b/0	a/0
b	c/0	a/0
С	e/0	d/0
d	b / 1	a/0
е	e/0	a/0

2. Por Partição (outro modelo)

Estado	Est. Futuro / Saída	
Presente	X = 0	X = 1
Α	E/0	D/0
В	A / 1	F/0
С	C / 0	A / 1
D	B/0	A / 0
Е	D / 1	C/0
F	C/0	D / 1
G	H / 1	G / 1
Н	C / 1	B / 1


$$P_0 = (A \mid B \mid C \mid D \mid E \mid F \mid G \mid H))$$
 $X=0 \Rightarrow 0 \mid 1 \mid 0 \mid 0 \mid 1 \mid 0 \mid 1 \mid 1$
 $X=1 \Rightarrow 0 \mid 0 \mid 1 \mid 0 \mid 0 \mid 1 \mid 1$

 $P_1 = (AD) (BE) (CF) (GH)$

2. Por Partição (outro modelo)

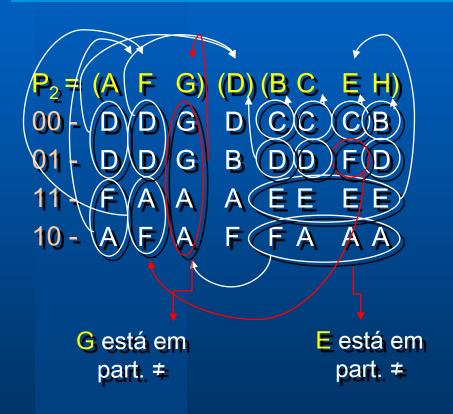
Estado Presente		ro / Saída X = 1
А	E/0	D / 0
В	A / 1	F/0
С	C / 0	A / 1
D	B/0	A / 0
E	D / 1	C/0
F	C / 0	D / 1
G	H / 1	G / 1
Н	C / 1	B / 1

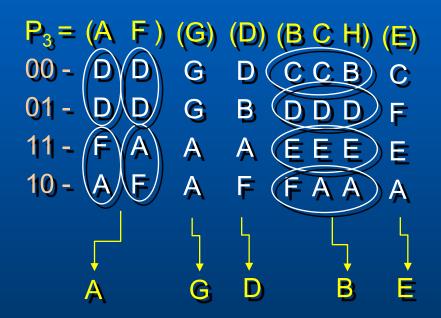
2. Por Partição (outro modelo)

 $P_2 = (AD) (BE) (CF) (G) (H)$

Estado Presente		ro / Saída X = 1
Α	B / 0	A / 0
В	A / 1	C/0
С	C/0	A / 1
G	H / 1	G / 1
Н	C / 1	B / 1

2. Por Partição - múltiplas entradas


Estado	Est. Futuro / Saída			
Presente	00	01	11	10
Α	D/0	D/0	F/0	A / 0
В	C / 1	D/0	E / 1	F/0
С	C / 1	D/0	E / 1	A / 0
D	D/0	B / 0	A / 0	F/0
Е	C / 1	F/0	E / 1	A / 0
F	D/0	D/0	A / 0	F/0
G	G/0	G/0	A / 0	A / 0
Н	B / 1	D/0	E/1	A / 0


$P_0 =$	A	В	C	D	E	F	G	H	
	0	1	1	0	1	0	0	1	
	0	0	0	0	0	0	0	0	
	0	1	1	0	1	0	0	1	
	0	0	0	0	0	0	0	0	
			<u> </u>		<u> </u>				
P ₁ = (A	D/		G)	(<u>B</u>	3 C) E	ŀ	1)
00 -		D	D	G	C	C	C	E	3
01 -	D(\widehat{B}	D	G	D	D	F	C	
11 - 1	F,	A A	A	A	Ε	E	Ε	E	
10 -	Δ	E	F	Δ	E	Δ	Δ	Δ	\

D está em outra partição

2. Por Partição - múltiplas entradas

2. Por Partição - múltiplas entradas

Estado	Est. Futuro / Saída			
Presente	00	01	11	10
Α	D/0	D/0	A / 0	A / 0
В	B / 1	D/0	E / 1	A / 0
D	D/0	B/0	A / 0	A / 0
Е	B / 1	A / 0	E / 1	A / 0
G	G/0	G/0	A / 0	A / 0

2. Por Partição - Exemplo completo

Detector de sequência (mod. Mealy) (entrada X, saída Z)

- Para $X = 0 \Rightarrow Z = 1$ SE anteriormente X = 1001
- \Rightarrow sequência bem sucedida para Z = 1 é X = 10010
- Vamos supor a sequência:

```
Ck = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
X = 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0
```

Z = 000001001001000000000010

2. Por Partição - Exemplo completo

(a) Diagrama de Estados

• Consideraremos o primeiro estado como aquele atingido após a sucessão de dois ou mais 1 consecutivos (no ex., é o estado do sistema no terceiro pulso de Ck) ⇒ primeiro bit de uma sequência que pode ser bem sucedida foi recebido (qualquer coisa anterior é irrelevante)

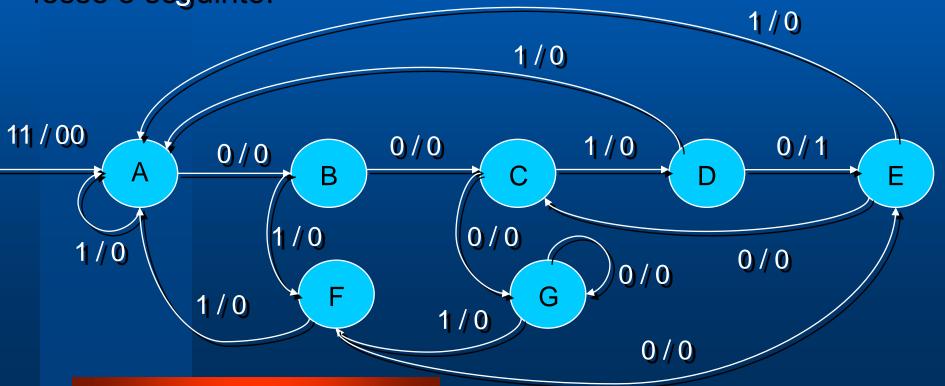
```
Ck = 123456789101112131415161718192021
X = 110010010000010000000000000000
```

2. Por Partição - Exemplo completo

(b) Tabela de Estados

Estado	Est. Futuro / Saída		
Presente	X = 0	X = 1	
A	B / 0	A / 0	
В	C/0	F/0	
С	G/0	D/0	
D	E / 1	A / 0	
\ E	C/0	A / 0	
F	B / 0	A/0	
G	G/0	F/0	

	Est. Futuro / Saída		
Presente	X = 0	X = 1	
Α	B / 0	A / 0	
В	C/0	A / 0	
С	G/0	D/0	
D	E / 1	A / 0	
E	C/0	A/0	
G	G/0	A / 0	


2. Por Partição - Exemplo completo

(b) Tabela de Estados

Estado	Est. Futuro / Saída		
Presente	X = 0	X = 1	
Α	B/0	A / 0	
В	C/0	A / 0	
С	G/0	D/0	
D	B / 1	A / 0	
G	G/0	A / 0	

2. Por Partição - Exemplo completo

Exercício: Determine a Tabela de Estados final para o mesmo detector de sequência se o diagrama de estados fosse o seguinte:

2. Por Partição - Exemplo completo

(b) Tabela de Estados

Estado	Est. Futuro / Saída		
Presente	X = 0	X = 1	
Α	B / 0	A / 0	
В	C/0	F/0	
С	G/0	D/0	
D	E / 1	A / 0	
Е	C/0	A / 0	
F	E/0	A / 0	
G	G / 0	F/0	

Estado	Est. Futuro / Saída		
Presente	X = 0	X = 1	
A_1	B ₁	A_1	
B_1	C_1	F ₁	
\sim C ₁	G_1	D_2	
D_2	E_1	A_1	
E_1	C_1	A_1	
F ₁	E_1	A_1	
G ₁	G_1	F ₁	

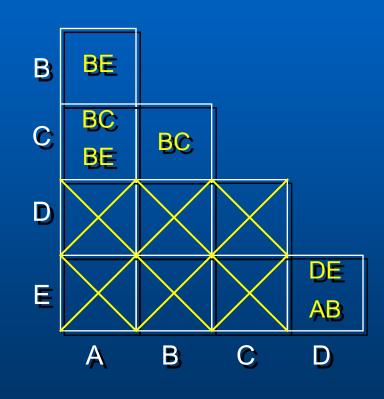
2. Por Partição - Exemplo completo

(b) Tabela de Estados

Estado	Est. Futuro / Saída		
Presente	X = 0	X = 1	
A_1	B ₁	A ₁	
\Rightarrow B ₁	C_3	F ₁	
C_3	G_1	D_2	
D_2	E ₁	A_1	
ightharpoonsE ₁	C_3	A_1	
F ₁	E ₁	A_1	
G ₁	G_1	F ₁	

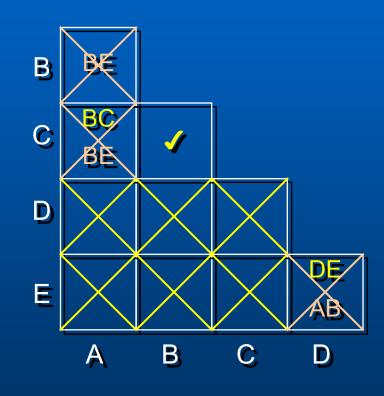
Estado Presente		ro / Saída X = 1
\rightarrow A_1	B_4	A_1
B_4	C_3	F ₁
C ₃	G_1	D_2
D_2	E_4	A_1
E_4	C ₃	A_1
$ ightharpoonup$ F_1	E_4	A_1
G ₁	G_1	F ₁

2. Por Partição - Exemplo completo

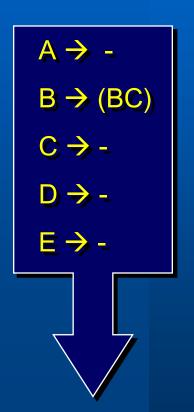

(b) Tabela de Estados

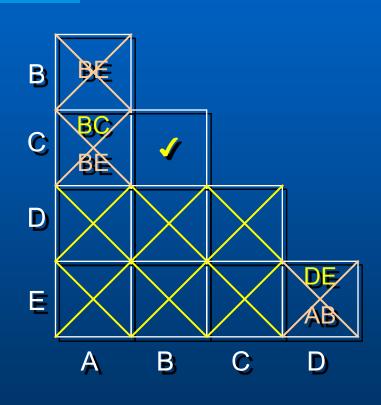
Estado Presente	Est. Futuro / Saíd X = 0 X = 1	
\rightarrow A ₅	B ₄	A_5
B_4	C_3	F_5
C_3	G_1	D_2
D_2	E_4	A_5
E_4	C_3	A_5
F_5	E_4	A_5
G_1	G_1	F ₅

Estado Presente	Est. Futu X = 0	ro / Saída X = 1
а	b/0	a / 0
b	c/0	a / 0
С	g / 0	d / 0
d	b / 1	a / 0
g	g / 0	a/0

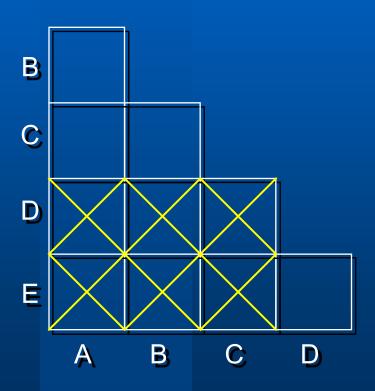

3. Pela Tabela de Implicação

Estado Presente	Est. Futuro / Saída X = 0		
Α	C / 1	B / 0	
В	C / 1	E/0	
С	B / 1	E/0	
D	D/0	B / 1	
E	E/0	A / 1	

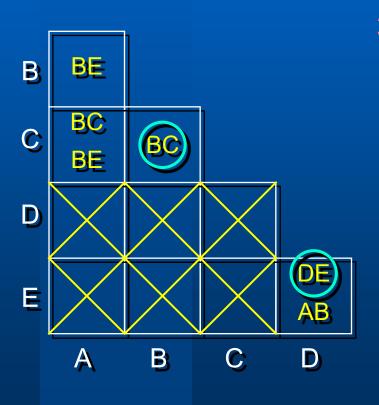



3. Pela Tabela de Implicação

Estado Presente	Est. Futuro / Saída X = 0		
Α	C / 1	B / 0	
В	C / 1	E/0	
С	B / 1	E/0	
D	D/0	B / 1	
E	E/0	A / 1	

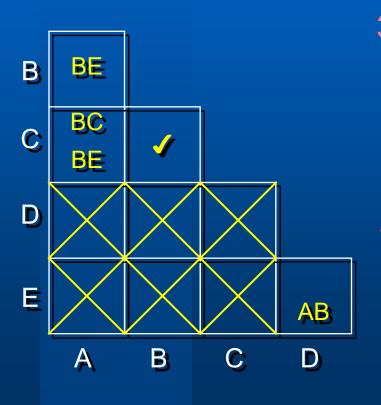

3. Pela Tabela de Implicação

Partições de Equivalência → P_K = (A) (BC) (D) (E)


3. Pela Tabela de Implicação MÉTODO

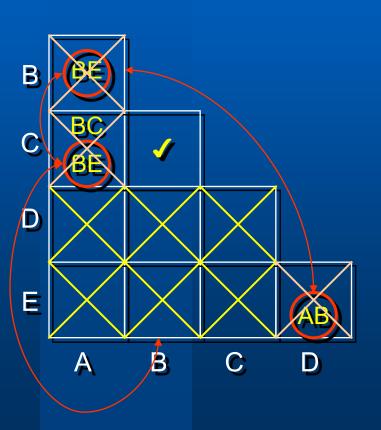
1. Formar a tabela:

- Vertical ⇒ estados exceto o 1₂
- Horizontal ⇒estados exceto o último
- (*) *Cruzamento linha-coluna* → teste de equivalência dos estados
- 2. Colocar X nas células em que as saídas não são = para qualquer entrada


3. Pela Tabela de Implicação MÉTODO

- 3. Completar células vazias com pares de *Estados Futuros* cuja equivalência está implicada pelos dois estados da intersecção
- 4. Se os pares implicados numa célula são os que a definem, ou se os Estados Futuros da célula são os mesmos → marcar ✓ (esses estados são equivalentes)

3. Pela Tabela de Implicação


MÉTODO

- 3. Completar células vazias com pares de *Estados Futuros* cuja equivalência está implicada pelos dois estados da intersecção
- 4. Se os pares implicados numa célula são os que a definem, ou se os Estados Futuros da célula são os mesmos → marcar ✓ (esses estados são equivalentes)

3. Pela Tabela de Implicação

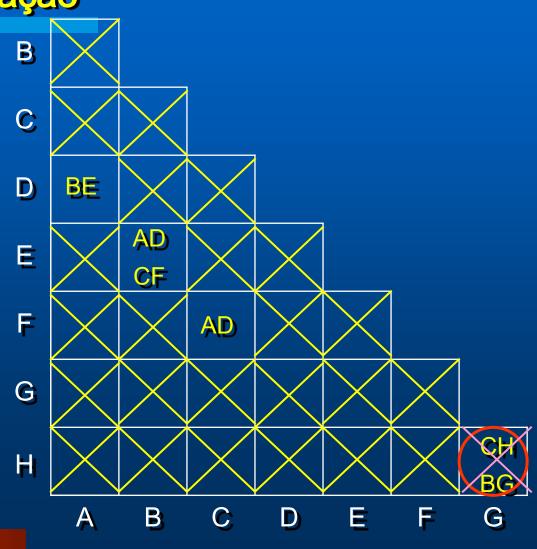
MÉTODO

- Verificar se devem ser cruzadas outras células, além das já marcadas
- 6. Montar a tabela final, listando os estados que definem a linha horizontal na Tab. Implicação (examiná-la coluna a coluna procurando células não cruzadas
 - Estados **EQUIVALENTES**).

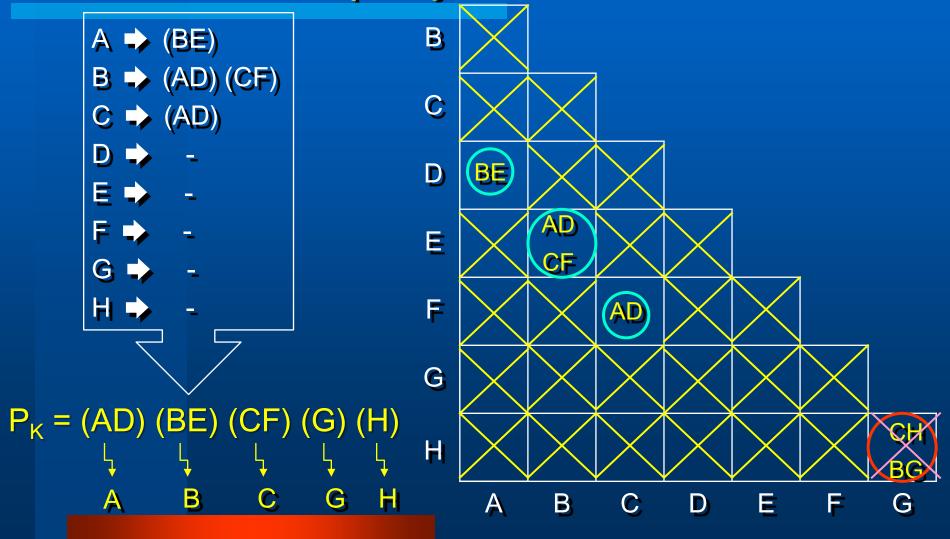
3. Pela Tabela de Implicação

EXERCÍCIOS – Simplificar as tab. de estados abaixo

3.1 3.2


Estado	Est. Futuro / Saída		
Presente	X = 0	X = 1	
Α	E/0	D/0	
В	A / 1	F/0	
С	C/0	A / 1	
D	B/0	A / 0	
Е	D/1	C/0	
F	C/0	D / 1	
G	H / 1	G / 1	
Н	C /1	B / 1	

Estado	Est. Futuro / Saída			
Presente	00	01	11	10
А	D/0	D/0	F/0	A / 0
В	C / 1	D/0	E / 1	F/0
С	C / 1	D/0	E / 1	A / 0
D	D/0	B/0	A / 0	F/0
Е	C / 1	F/0	E / 1	A / 0
F	D/0	D/0	A / 0	F/0
G	G/0	G/0	A / 0	A / 0
Н	B / 1	D/0	E/1	A / 0


3. Pela Tabela de Implicação

3.1

Estado	Est. Futuro / Saída		
Presente	X = 0	X = 1	
Α	E/0	D / 0	
В	A / 1	F/0	
С	C/0	A / 1	
D	B/0	A / 0	
Е	D/1	C/0	
F	C/0	D / 1	
G	H / 1	G / 1	
Η	C /1	B / 1	

3. Pela Tabela de Implicação

3. Pela Tabela de Implicação

3.1

Estado Presente	Est. Futuro / Saída X = 0		
Α	B / 0	A / 0	
В	A / 1	C / 0	
С	C/0	A / 1	
G	H / 1	G / 1	
Н	C / 1	B / 1	

В

D

Ε

F

G

Eliminação de Estados redundantes

3. Pela Tabela de Implicação

3. Pela Tabela de Implicação B (BCH) **(**BC) (BH) (CH) **<** → (BC) (BH) (CH) C D E F BZ **QG** G $P_K = (AF) (BCH) (D) (E) (G)$ BØ Н B G

3. Pela Tabela de Implicação

3.2

Estado	Est. Futuro / Saída			
Presente	00	01	11	10
Α	D/0	D/0	A / 0	A / 0
В	B / 1	D/0	E / 1	A / 0
D	D/0	B / 0	A / 0	A / 0
Е	B / 1	A / 0	E / 1	A / 0
G	G/0	G/0	A / 0	A / 0