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In this work, some phenomenological growth models based only on the population information
(macroscopic level) are deduced in an intuitive way. These models, for instance Verhulst, Gompertz
and Bertalanffy-Richards models, are introduced in such a way that all the parameters involved have a
physical interpretation. A model based on the interaction (distance dependent) between the individuals
(microscopic level) is also presented. This microscopic model have some phenomenological models as
particular cases. In this approach, the Verhulst model represents the situation in which all the individuals
interact in the same way, regardless of the distance between them (mean field approach). Other
phenomenological models are retrieved from the microscopic model according to two quantities: i) the
way that the interaction decays as a function the distance between two individuals and ii) the dimension
of the spatial structure formed by the individuals of the population. This microscopic model allows
understanding population growth by first principles, because it predicts that some phenomenological
models can be seen as a consequence of interaction at individual level. The microscopic model discussed
here paves the way to finding universal patterns that are common to all types of growth, even in systems
of very different nature.
Keywords: Population growth, Complex Systems, Mathematical Modelling

Neste trabalho, alguns modelos fenomenológicos de crescimento populacional são deduzidos de uma
forma intuitiva. Estes modelos, por exemplo os modelos de Verhulst, Gompertz e Bertalanffy-Richards,
são introduzidos de maneira que todos os parâmetros envolvidos tenham uma interpretação f́ısica. Um
modelo baseado na interação (dependente da distância) entre os indiv́ıduos (ńıvel microscópico) também
é apresentado. É mostrado que alguns modelos fenomenológicos são casos particulares deste modelo
microscópico, de acordo com: i) a forma com que a interação competitiva entre indiv́ıduos decai com a
distância que os separam; e ii) a dimensão euclidiana da estrutura espacial formada pelos indiv́ıduos da
população. Nestas circunstâncias, o modelo de Verhulst, por exemplo, decorre quando todos os indiv́ıduos
interagem de forma independente da distância que os separam: uma situação tipo campo-médio. Este
modelo microscópico permite compreender o crescimento populacional por primeiros prinćıpios, uma
vez que mostra que alguns modelos fenomenológicos são explicados a partir de interações no ńıvel do
indiv́ıduo. Dessa forma, o modelo microscópico discutido aqui abre caminho para encontrar padrões
universais que sejam comuns a todos os tipos de crescimento.
Palavras-chave: Crescimento Populacional, Sistemas Complexos, Modelagem Matemática

1. Introduction

The use of mathematical modeling to describe popu-
lation growth behaviors has been of great success in
the last decades. These models find application not
∗Endereço de correspondência: fribeiro@dfi.ufla.br.

only in Ecology [1–3] (immediate application) but
also in Sociology and Economy [4–6], among other
disciplines. This wide spectrum of applicability of
these models has motivated a quest for universal
patterns that are present in different types of sys-
tems [6–13]. Here, the inductive process necessary to

Copyright by Sociedade Brasileira de F́ısica. Printed in Brazil.

www.scielo.br/rbef
fribeiro@dfi.ufla.br


e1311-2 An attempt to unify some population growth models from first principles

build population growth models is presented. Next,
an attempt to unify such models by means of a
generalized model is also discussed. The general-
ized model is built based on the interaction between
the individuals of a population. This work aims to
explain population growth from first principles.

An efficient mathematical model must predict
the number of individuals of a population, as the
time evolves, according to some ecological properties.
This should also provide some explanation about
the properties of the individuals which constitute
the population, as the way they interact and how
this affects the population as a whole.

A starting point to build a population growth
model is to look at the empirical data. The data
must give not only the first information about the
behavior of the population, but also the test of the
quality of the model. The model is classified as
“good” if it agrees with the empirical evidences -,
then it can be used to formulate hypotheses and to
give some explanation about the system.

In this work, experimental data of a yeast popula-
tion growth is used, dots in Fig. (1). The data were
taken directly from the graph of the ref. [2]. Note
that the data indicate that the yeast population
grows quickly at the beginning (first 20 hours) and

Figure 1: Empirical data (dots) of the growth of a yeast
population. The data were taken directly from the graph
of the ref. [2]. The solid lines represent the predictions of
theoretical models: Malthus, Verhulst, Gompertz, and gen-
eralized models. The used fit parameter values are presented
in table (1). The Malthus model is good to describe the
population in the initial stage of growth, but fails for longer
time. Other models are very similar to describe the empirical
data, but the generalized model presents the best fit, with
larger r2.

then saturates. The objective is to explain theoreti-
cally this behavior, having access only to these data.
Also, one wants to answer the question: is it possible,
only with this population information (macroscopic
level), to predict what is happening with the in-
dividuals (microscopic level)? In other words, is it
possible to infer the way a yeast cell is interacting
with the others and with the environment?

Mathematical models are addressed throughout
this paper, from the simplest model to the more
complete ones, always in an attempt to explain
the population growth and using these yeast data
as a validity test. The efficiency of these models,
measured by the coefficient of determination r2,
are shown in table (1). This table also shows the
parameters that the models use. These quantities
will be better understood as the models are being
presented through the text.

To organize the ideas from the theoretical point of
view, consider N(t) as the population of yeast cells
(the number or density of individuals) as a function
of time t. The update of the population size, in a
time interval ∆t, can be written as

N(t+ ∆t) = N(t) + ∆N(t). (1)

Here, ∆N(t) is a number representing the balance
between the added (births) and removed (deaths)
individuals in this time interval. Of course, if such
numbers are known, one can predict exactly the pop-
ulation size in the next time interval. The problem
is that, in general, those numbers are not known. A
possible way to solve this problem is to extract in-
formation from theoretical models. In the following
sections, two kinds of models to describe the popu-
lation dynamics are presented. The first type, the
phenomenological models, or macroscopic models,
are those that take into account only information
of the population as a whole, as Malthus, Verhulst,
Gompertz and Bertalanffy-Richards models [14, 15].

Table 1: Table of the fit parameter values used that best fit
the model for the empirical data. The curves generated by
these values are presented in Fig. (1). The generalized model,
as expected, is the best model to describe the empirical
data, characterized by the larger r2.

Model q N0 k0 K r2

Malthus 1 20 0.227 ∞ -
Verhulst 1 15 0.302 1241 0.9865
Gompertz → 0 1 0.1824 1268 0.9715
Generalized 0.394 14 0.1820 1269 0.9874
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The second type, the microscopic models, are those
that take into account the properties of the system
at the individual level [16]. This kind of model is
built to achieve macroscopic phenomena as a con-
sequence, or better, an emergent property, of the
interactions between individuals. In this way, micro-
scopic models allow describing population growth
from first principles.

An alternative way to treat the problem is to
use agent-based models (ABM) to simulate compu-
tationally the interactions between individuals, and
then to verify the emergent properties of the sys-
tem [17–19]. Studies going in this direction are the
ones of Ref. [16, 20–22]. However, despite the ABM
allows a better flexibility of forms at microscopic
level, and allows predicting the macroscopic behav-
ior from simulations, this methodology does not
allow a complete understanding of the underlying
mechanisms of the system. Although considering
simple assumptions, the modeling here, first by ordi-
nary differential equations and then deducing such
equations from first principles, can be solved analyt-
ically, allowing a full understanding of the process.

The paper is organized in the following way. In
section (2), the easiest way to represent mathemat-
ically the process of growth is presented by the
Malthus model. In section (3), a small corruption of
the Malthus model is done to obtain the Verhulst
model. Besides being simple, it describes fairly well
the yeast population growth data. In section (4),
an alternative model, known as Gompertz model, is
proposed. This model also describe fairly well the
yeast population. In section (5), a model that has
the Malthus, Verhulst and Gompertz models as a
particular case is proposed, and because of this, it
is called a generalized model. In section (6), the
generalized model is deduced from first principles,
i.e., from the interaction between the individuals.
This deduction allows to explain population growth
(macroscopic level) from the way cells interact (mi-
croscopic level).

2. Malthus Model

In this section, the simplest way to describe the
population growth is considered. By sheer simplic-
ity, consider that the number of deaths and the
number of births within the population of yeast
are proportionate to: i) the number of individuals
of the population and ii) the time interval. This

consideration means that

Number of Births in ∆t = b∆tN(t) , (2)

and that

Number of deaths in∆t = d∆tN(t) , (3)

where the parameters b and d are constants. This
idea is reasonable because the larger the time inter-
val is, the greater the numbers of births and deaths
are. Likewise, the larger the population, greater is
the number of births and deaths. This assumption
of linearity is quite simplistic, but facilitates the
analytic development. Moreover, for simplicity only,
migration of cells is not considered.

The parameter b, the birth rate, can be interpreted
as the average number of daughter cells generated by
each cell of the population per time interval. This
parameter is considered constant throughout the
generations. The parameter d, the mortality rate,
can be interpreted as the proportion of deaths in
the time interval. Returning to the equation (1), one
has

N(t+ ∆t) = N(t) + (b− d)∆tN(t), (4)

which is a discrete model to describe the dynamics
of the population. Given an initial population and
the parameters b and d, the population size at time
t can be iteratively calculated. When b > d, i.e.
the birth rate is higher than the mortality rate,
then the population grows, otherwise the population
decreases. The values of these parameters can be
estimated from the empirical data which one wants
to describe.

The discrete model (4) can be converted into a
continuous equation. It is convenient because it al-
lows analysis which are impossible in the discrete
version. Taking the limit of infinitesimal time inter-
val, one writes

lim
∆t→0

N(t+ ∆t)−N(t)
∆t = k0N(t) , (5)

where k0 ≡ b − d is the population growth rate.
Identifying the left part of the above equation as a
derivative, one has an ordinary differential equation
(ODE)

dN

dt
= k0N . (6)

The solution of this ODE is (see appendix (A) for
details)

N(t) = N0e
k0t , (7)
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where N0 is the initial population.
The simple model of Eq. (6), concerns an expo-

nential growth of the population given by Eq. (7).
This is the Malthus model, referring to the English
economist, famous for his studies of populations
and the phrase “The human population grows geo-
metrically while the amount of food increases arith-
metically” [23]. The Malthus (exponential) model
is also used to describe radioactive decay, among
other multidisciplinary applications [2].

The problem is that the Malthus model, for been
too simple, leads to an indefinite growth, with the
population blowing up at a sufficiently long time. In
fact, this result is inconsistent with what is observed
by the data presented in Fig. (1), where the yeast
population size presents a saturation value. The
model fails to describe the population as a whole,
however. Although the model fails for long times,
it is very good to describe the population in the
early stages of growth. In Fig. (1) one can see that
the model fits the empirical data very well if one
considers the growth in the first 20 hours. This result
is quite commendable, given the simplicity of this
model. This fact allows introducing an extremely
important concept in modeling, which is the idea of
validity region of a model. The comparison between
the prediction of Malthus model and empirical data
presented in Fig. (1) clearly shows that the model
is good, provided it is applied to describe the initial
dynamics of the population. Outside this range, the
model no longer makes sense.

3. The Verhulst Model

The Malthus model was not good enough to describe
the yeast population for a longer time because it
does not consider the scarcity of resources. It is too
simple and therefore one needs to add to it little
more information to obtain better results.

As the Malthus model behaves well in the early
stage of growth, one still relies on this model, but
making a small change in it. Rewriting it with the
introduction of a correction term in the ODE (6)
yields to

dN

dt
= k0N − term . (8)

This “term” should be zero (or near zero) when N
is sufficiently small (reaching the Malthus model
in this regime) and should be maximum when the
population reaches a certain level. Verhulst [24,25]

considered this corrective term to be proportional
to N2/K, where K is the carrying capacity of the
population, which is the maximum size of the pop-
ulation that can be supported by the environment.
Thus, with corrective term the Malthus ODE takes
the form of the Verhulst model

dN

dt
= k0N

[
1−

(
N

K

)]
. (9)

When the population size approaches the carrying
capacity (N → K), then dN/dt = 0, i.e. the pop-
ulation stops growing. This model predicts, when
t → ∞, that the population saturates instead of
blowing up, as in the Malthus model.

The solution of this model is obtained by inte-
grating both sides of Eq. (9) (see appendix (A) for
details), resulting in

N(t) = K

1−
(
1− K

N0

)
e−k0t

. (10)

Note in the fit of Fig. (1) that the Verhulst model
is appropriate to describe the yeast population growth.
The solution (10) describes the population dynam-
ics of yeast fairly well, both for early and late time
growth. One can say that the Verhulst model (al-
though its simplicity, using only two parameters:
the growth rate and carrying capacity) captures
the essence of the yeast population growth. This
good description occurs even disregarding most of
the details involved in the dynamics. Nevertheless
supplying more details, more parameters are need
to describe the situation and perhaps impedes the
theoretical treatment, hardening the understand-
ing of the phenomenon. With this simple version,
considering only phenomenological parameters, it is
possible to describe this population quantitatively,
with an analytic solution. In fact, the model explains
quantitatively that the yeast population is growing
rapidly in the beginning and then saturates due to
the scarcity of resources.

4. The Gompertz Model

In section (2), it was seen that the Malthus model
fails because it leads to an unlimited growth of the
population. In section (3), a way (Verhulst model)
was proposed to induce a saturation in the popula-
tion dynamics in an attempt to address the problem
of the Malthus model. An alternative idea is to in-
duce the saturation of the population still using the
Malthus model as the starting point.
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The indeterminate growth of the Malthus model
is due to the per capita growth rate k0 remaining
constant for all individuals of the population and
along the generations. Consider that this growth rate
is time dependent. This allows writing the model (6)
as

dN

dt
= k(t)N . (11)

To have a situation in which the population stops
growing along time is interesting to consider k(t)
decreases with t. For example, an exponential decay
of this growth rate, i.e. k(t) = c−k0t, where c is a
constant and k0 plays here the role of a “half-life”
growth rate, justifying the initial choice in Eq.(6).
Thus one has the Gompertz model

dN

dt
= ce−k0tN, (12)

in honor of the English economist who, in the XIX
century, used it to describe human mortality [26]1.
Integrating both sides of Eq. (12) (see appendix (A)),
it is possible to find the solution

N(t) = N0e
−c
(

1
k0

+ 1
k
e−k0t

)
. (13)

Note that for t → ∞ and k0 > 0 the population
converges to

K = N0e
− c
k0 , (14)

carrying capacity. This implies that c/k0 = − ln(K/N0)
and the above solution can be written in terms of
the parameters K, N0 and k0, not c. That is, the
Gompertz model solution may also be written as

N(t) = Keln
(
N0
K

)
e−k0t

. (15)

A more convenient way to write the Gompertz
model (12) is by the ODE

dN

dt
= −k0N ln

(
N

K

)
, (16)

which is more usually found in the literature [27–30].
Note that integrating the Eq. (16) leads to Eq. (15),
which shows that the Eq. (12) and Eq. (16) describe
exactly the same model.

Applying the Gompertz model to describe the
yeast population growth, one gets a result as good as
the Verhulst model, as shown in Fig. (1). Therefore
this model is also interesting to model the population
dynamics of these microorganisms.
1The life insurance started to become possible because of the
Gompertz ideas in 1825. He realized that the probability of
an adult to die in the next year increases exponentially with
age. This model is still used by insurance agencies.

5. The Generalized Model and the
Bertalanffy-Richards Model

Both the Verhulst model (which considers a satu-
ration term) and the Gompertz model (which con-
siders a growth rate that decreases exponentially as
a function of time) lead to satisfactory results to
describe the yeast population growth. But if these
two essentially different models lead to quite similar
results, which of them is true? Or are both false?
To answer these questions, it is interesting to work
out a more complete model, which has at least the
Verhulst and Gompertz models as special cases.

Consider that the logarithm function of the Gom-
pertz model (16) can be interpreted as a special case
of a more general function. One option is to look
at the generalized logarithm function of statistical
mechanics (which considers q + 1). This function is
defined by (see appendix (B) for details)

lnq(x) ≡ xq − 1
q

, (17)

where q is the generalization parameter. This func-
tion is called this way because it recovers the usual
logarithm function when one takes the limit q → 0
(see appendix (B)) 2. Replacing the usual logarithm
function of the Gompertz model Eq. (16) by the gen-
eralized logarithm function of Eq. (17), one writes

dN

dt
= −k0N lnq

(
N

K

)
, (18)

where q plays the role of a generalization parameter.
This model will be called generalized model because
it retrieves not only the Gompertz model in the
limit q → 0, but also the Verhulst model when
q = 1. Moreover, if q = 1 (Verhulst) and K → ∞,
the generalized model also recovers the Malthus
model. For more details, see Ref. [14, 16,31–34].

The solution of the generalized model can be
obtained integrating both sides of (18) (see ap-
pendix (A)), which leads to

N(t) = K[
1−

[
1−

(
K
N0

)q]
e−k0t

] 1
q

. (19)

Note that for q = 1 and q → 0, this solution leads
to Eqs. (10) and (15), respectively.

This model was originally proposed in Ref. [35]
and represents an important step in building unified
2Note that lnq(x) in Eq. (17) does not means “logarithm of x
in the base q ”; in this case, the notation logq(x) is employed.
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population growth models. It has been applied to the
yeast experimental data, as can be seen in Fig. (1).
The best fit has been obtained with q = 0.394,
which means an intermediate situation between the
Gompertz (q → 0) and the Verhulst (q = 1) models,
is better to adjust these data.

The parameter q was introduced here as a theo-
retical argument of generalization, without present-
ing any physical interpretation. With a microscopic
approach that takes into account the interactions
between individuals,see Section (6), it is possible to
give a physical interpretation to the generalization
parameter.

Besides Eq. (18) to be based on the macroscopic
properties of the system, a phenomenological ap-
proach, it can give some hints about the average
behavior of individuals. For instance, one can com-
pute the per capita growth rate G, from Eq. (18),
by

G(N) = 1
N

dN

dt
= −k0 lnq

(
N

K

)
. (20)

If Eq. (19) is putted in the equation above, the
time evolution of the per capita growth rate G(t)
is obtained. The plot of Fig. (2) presents the time
evolution of this quantity. With the exception of
Malthus model, all the models covered by the gen-
eralized model present a per capita growth rate
which decreases as a function of time. The Verhulst,
Gompertz and other particular cases differ from one
another just with respect to the way that the indi-
viduals of the population decrease the capability to
reproduce as time evolves.

The per capita growth rate G is an individual
property which has been inferred from macroscopic
information. This procedure to infer system charac-
teristics is known as the top down approach. This
quantity is not obtained by “first principles” (bottom
up approach). In the next section, one introduces a
microscopic model for the interaction between the
cells of the population.

The generalized model, when written in a more
explicit form, i.e. using Eq. (17), becomes

dN

dt
= −

(
k0
qKq

)
N q+1 + k0

q
N , (21)

or, in a more compact form
dN

dt
= aNβ − bN, (22)

where the parameters a ≡ −k0/(qKq), b ≡ −k0/q,
and β ≡ q+1 is introduced. Eq. (22) is known in the

Figure 2: Plot of the per capita growth rate as a function
of time. Except the Malthus model, in which the per capita
growth rate is constant throughout the generations, the
other particular cases of the generalized models (as Verhulst
and Gompertz models) differ only in the way that this
average individual growth rate decreases as a function of
time.

literature as the Bertalanffy-Richards model [15,35–
37]. This model is often used to describe ontogenetic
growth [12] and has recently been applied to describe
human population growth [6]. Interestingly in this
identification is that it provides interpretation of
the parameters of the Bertalanffy-Richards model,
i.e.,

• growth rate: k0 = −b(β − 1);
• carrying capacity: K =

(
b
a

)1/(β−1)
;

• generalization constant: q = β − 1.

As Eq. (18) retrieves some phenomenological pop-
ulation growth models as particular cases, the Berta-
lanffy-Richards model also does that. For instance:
β = 2 (q = 1) leads to Verhulst Model if the carrying
capacity is finite, or to the Malthus model otherwise;
and β → 1 (q → 0) leads to the Gompertz model.

However, as there is no physical interpretation of
the parameter q or β yet. This interpretation are
achieved in the next section with the consideration
of a microscopic model based on the interactions of
the individuals.

6. Microscopic Model

So far, the presented models have been built consid-
ering only information in the macroscopic level, i.e.
population information. However, to address popu-
lation dynamics from a deeper point of view, it is
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imperative to model the interactions between indi-
viduals. This microscopic (or bottom up) modeling
leads to a description of population dynamics from
first principles.

The first step towards this microscope modeling
was presented by Mombach et al in Ref. [38] and
reworked in [10,16,39]. The result of this model is the
fact that some observed macroscopic properties are
consequences of the inhibitory interactions between
the microcomponents of the system. Yet, a physical
interpretation of the generalization parameter q is
given in Ref. [14]. In this section, this model is
discussed in detail.

To begin with, consider that the replication rate
of a cell is regulated by two factors: one is intrinsic
to the cell and the other is related to the interactions
of the cell with the other cells of the population.
This means that the following scheme for a certain
cell must be valid:

[Replication rate] = [self-replicate stimulus] +
+ [stimulus from interaction with other cells].

Following this scheme and naming Ri the replication
rate of the i-th cell, the number of daughter cells
generated by i in a time interval ∆t, is

∆tRi = Gi + JIi. (23)

Here, Gi is the intrinsic ability of the cell to self-
replicate; Ii is the interaction field felt by this cell
and caused by the other cells of the population and
J is the intensity of this interaction field. If J > 0,
there is cooperation among cells and if J < 0, there
is competition among them. In this paper, only the
competition is explored. For readers interested in
cooperation between cells, see Ref. [16, 33].

The total number of daughter cells added to the
population in a certain generation t is ∆N(t) =
∆t∑N

i=1Ri, which leads to

N(t+ ∆t) = N(t) + ∆t
N∑
i=1

Ri . (24)

Considering infinitesimal time intervals ∆t→ 0, the
recurrence equation above, together with Eq. (23),
becomes

dN

dt
= N〈G〉+ J

N∑
i=1

Ii , (25)

where 〈G〉 ≡ (1/N)∑N
i=1Gi is the average value of

the intrinsic replication capacity of a single cell.

The interaction field Ii is the result of the in-
teraction of a cell with all the others. This allows
writing the summation Ii = ∑

j 6=i Iij , where Iij is
the interaction field between cells i and j. Consider,
by hypothesis, that the interaction Iij decays as
function of the distance rij between them according
to

Iij(rij) = 1
rγij

, (26)

where γ is the decay exponent of the interaction
field. For γ = 0, the interaction field does not de-
pend on the distance, i.e. the region of interaction
between two cells is infinite. This case is called mean
field situation. For γ →∞, the region of interaction
vanishes, which means that cells do not interact at
all. To preserve the internal structure of cells, con-
sider rij ≥ 2r0, where 2r0 is the diameter of the cell.
The drawing of Fig. (3) illustrates the interaction
field decay as a function of the distance, for different
values of the exponent decay. For a more generic
approach about the interaction function of Eq. (26),
see Ref. [33].

With respect to the cell spatial distribution, con-
sider that they form a structure with hypervolume
VD in D dimensions. For D = 3, the hypervolume is
the usual Euclidean volume; for D = 2 the popula-

Figure 3: Graph representing the interaction field between
two individuals (i and j) depending on the distance rij

between them, according to some decay exponent values.
The quantity r0 = 1/2 is fixed. The larger γ is, the faster
the decay of the field with the distance is. For γ = 0,
the interaction region is infinite, i.e. the intensity of the
interaction does not depend on the cell separation (mean
field situation). For γ →∞, the interaction region vanishes,
which means that cells do not interact.
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tion is distributed forming a surface and the hyper-
volume is the area of this surface and for D = 1 the
population is distributed forming a straight segment
and, in this case, the hypervolume is the length of
this segment. Consider also ρ(r) as the density of
cells in the hypervolume element dDr, positioned
in r. This position vector has its origin in cell i, as
depicted in Fig. (4). The number of cells in this
hypervolume element is dN = ρ(r)dDr and if the
population is continuously distributed in the space,
the field Ii = ∑

j 6=i Iij can be written as the integral
Ii =

∫
VD
r−γdN , which becomes

Ii =
∫
VD

ρ(r)
rγ

dDr . (27)

Assuming, for simplicity only, that the population
is homogeneously distributed in space, i.e. ρ(r) =
ρ0 = cte and using hyperspherical coordinates (see
appendix (C) for details), the total field felt by this
cell is

Ii = I(N) = ρ̃D
D

ln1−γ/D

[
N

(ρ̃D/D)

]
. (28)

where ρ̃D is a parameter related to the density of
cells and which depends only on the dimension D.
Eq. (28) concerns the interaction field of the specific
cell i, however the result is identical to all the other
cells, regardless of their position. This is because
the right side of the Eq. (28) does not depend on
the “index” i. The interaction field in a single cell
depends only on the size of the population N , which
justifies to write Ii = I(N) in Eq. (28).

Figure 4: Hypervolume VD in D dimensions, formed by the
spatial cell (dots) distribution. Here a small group of cells
is in a hypervolume element dDr, localized by the position
vector r, originated in the i-th cell.

From Eq. (25), one obtains

dN

dt
=

[
J

(1− γ
D )

(
ρ̃D
D

) γ
D

]
N2− γ

D

+
[
〈G〉 − Jρ̃D

D − γ

]
N (29)

which is nothing more than the Bertalanffy-Richards
growth model given by Eq. (22) (and consequently
the generalized model (18)) with

a = J

(1− γ
D )

(
ρ̃D
D

) γ
D

, (30)

b = Jρ̃D
D − γ

− 〈G〉, (31)

and
β = 2− γ

D
. (32)

Thus, one has an interpretation for the growth rate
k0, the carrying capacity K, and the generalization
parameter q (or β) from this microscopic model.
Actually, from the above relations, one gets, from
a microscopic point of view, the following inter-
pretation for these quantities (given that there is
competition between cells, that is J < 0):

• generalization constant:

q = 1− γ

D
; (33)

• growth rate:

k0 = 〈G〉q − Jρ̃D
D

; (34)

• carrying capacity:

K =

 ρ̃DJ
D − (1− γ

D )〈G〉(
ρ̃D
D

) γ
D J


1

1− γ
D

. (35)

The microscopic model allows stating that the
generalization parameter q is a relation between the
repulsive potential range among the cells and the
dimension of the structure formed by the population.
This result proves to be important in the sense that
it has only macroscopic quantities, although it has
been obtained from microscopic premises. In other
words, the global behavior emerges from local inter-
actions between the cells which compose the pop-
ulation. Most importantly, this microscopic model
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explains, from first principles, all the phenomenolog-
ical models discussed previously and gives a physical
interpretation for all quantities considered.

As presented, the generalized model (18) has as
particular cases the Gompertz and the Verhulst mod-
els. In the microscopic model, when the dynamic
interaction takes place within a range γ = 0, which
means that the intensity of interaction among the
cells does not depend on the distance, one has Ver-
hulst dynamics. According to Eq. (33), one has, in
this case, q = 1. Thus, the Verhulst model can be
interpreted as a mean field approach to the popu-
lation dynamics. In this limit case, from Eqs. (34)
and (35) one has the growth rate k0 = 〈G〉−Jρ̃D/D
and carrying capacity K = −ρ̃D〈G〉/(JD), respec-
tively.

The Gompertz model emerges for γ → D (q → 0).
This phenomenological model takes place when the
interaction among individuals decays with a range
equal to the dimension of the system. Taking the
limit γ → D in Eqs. (34) and (35), the popula-
tion must grow with a rate k0 = −Jρ̃D/D, until it
reaches the carrying capacity K = (ρ̃D/D)e−

D〈G〉
Jρ̃D .

The fact that the microscopic model leads to the
generalized model shows that it is possible to find
universal patterns in population growth - universal
here in the sense that properties that are present in
all kinds of growth should exist, even in essentially
different systems. According to the model presented,
a subtle difference in the way that the individuals
interact leads to a huge difference in the ecological
properties. This fact can be seen as a motivation to
interpret all diversity of growth in nature as a result
of a single and universal rule which describes the
way of interaction of the components of the system.

7. Conclusion

Here, some important phenomenological population
growth models have been discussed, with physical
interpretation of all the parameters considered. The
models were compared to empirical data (yeast pop-
ulation growth) to test their validity. It was also
shown that these models can be retrieved as partic-
ular cases of a microscopic model, which takes into
account the interaction (depending on the distance)
between the individuals of the population. From this
approach, it was verified that the Verhulst model
represents a situation in which each individual of
the population interacts with all the others in the

same way, regardless the distance that separates
them. That means the Verhulst model is a mean
field interaction model. Other models, as Gompertz
and the generalized one, are retrieved according to
the relation between the interaction decay exponent
and the dimension of the structure formed by the
population.

The phenomenological models presented here can
be seen as a consequence of the common individ-
ual level interaction. In this sense, this microscopic
model takes an important step towards a more pro-
found understanding of the population growth and
also connects many types of growth in a single ap-
proach. Thus, it paves the way to find universal
patterns, common in all types of growth, even in
systems of very different nature.

Appendix

A. Complete Solution of the Generalized
Model

The generalized model is
dN

dt
= −k0N lnq

(
N

K

)
. (A-1)

This model is called so because it retrives the Malthus
(q = 1, K → ∞), Verhulst (q = 1) and Gompertz
(q → 0) models as particular cases. The solution
of this model is obtained integrating both sides of
above equation, that is∫ N

N0

dN ′

− k0
qKqN q+1 + k0

KN
′

=
∫ t

0
dt′, (A-2)

where the explicit form of the generalized logarithm
(Eq. (17)) is used. Solving the integral above leads
to

− (1 + q) ln(N0) + ln
[
e(1+q) ln(N0) −KqN0

]
= k0t,

(A-3)
and

ln
[

N1+q

e(1+q) lnN −KqN

]

− ln
[

N1+q
0

e(1+q) lnN0 −KqN0

]
= k0t. (A-4)

Identifying e(1+q) ln(N) = elnN(1+q) = N1+q, one ob-
tains

N1+q

N1+q −KqN
= N1+q

0
N1+q

0 −KqN0
ek0t. (A-5)
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Then, after some algebraic manipulation, the solu-
tion of the generalized model is

N(t) = K[
1−

[
1−

(
K
N0

)q]
e−k0t

] 1
q

. (A-6)

For q = 1 and K →∞ (Malthus), the solution above
leads to Eq. (7). For q = 1 (Verhulst), this solution
leads to Eq. (10). Finally, for q → 0 (Gompertz), and
using the property that ln(x) = limq→0(xq − 1)/q,
the solution leads to Eq. (15).

B. Generalized Logarithm and
Exponential Functions

The logarithm function ln(x) can be seen, among
other interpretations, as the area below the hyper-
bole function f(t) = 1/t, given by the integration

ln(x) =
∫ x

1

1
t
dt . (B-1)

We can use this idea to build a generalized logarithm
function, so that the usual logarithm function is
only a particular case [40]. Defining such generalized
logarithm function as the area below the asymmetric
hyperbole fq(t) = 1/t1−q in the interval t ∈ [1, x],
shows that

lnq(x) =
∫ x

1

dt

t1−q
=


xq−1
q for q 6= 0

ln(x) for q → 0.
.

Thus, this function is a generalization, by introduc-
ing the parameter q, of the natural logarithm func-
tion. After all, it retrieves the logarithm function in
the limit q → 0, that is

lim
q→0

lnq(x) = ln(x). (B-2)

The inverse function of the generalized logarithm
function is the generalized exponential function, de-
fined by

eq(x) =


limq′→q(1 + q

′
x)1/q′ if qx > −1;

0 otherwise.
(B-3)

For q = 0, one recovers the exponential function:
e0(x) = ex.

These generalized functions have shown to be
important because they allow an easy handling of
algebraic expressions, besides recovering particular
cases [8, 16].

C. Calculation of Ii

Here, the calculation of the field felt by a single indi-
vidual is performed. Consider that (hyperspherical
coordinates)

dDr = rD−1drdΩD, (C-1)

which yields Eq. (27) to

Ii = ρ̃D

∫ Rmax

2r0
r−γ+D−1dr, (C-2)

where ρ̃D ≡ ρ0
∫
dΩD is a parameter related to the

cell density which depends on the dimension D, and∫
dΩD is the solid angle. For D = 1,

∫
dΩ1 = 2; for

D = 2,
∫
dΩ2 = 2π; and for D = 3,

∫
dΩ3 = 4π. The

quantity Rmax is the maximum distance between
two cells. To solve the integral (C-2) leads to

Ii = ρ̃D
D − γ

[
RD−γmax − (2r0)D−γ

]
. (C-3)

Considering for sheer convenience, and without loss
of generality, that r0 = 1/2, the equation above is
simplified to

Ii = ρ̃D
D − γ

[
RD−γmax − 1

]
. (C-4)

The distance Rmax can be written in terms of the
number of cells N . Note that N =

∫
VD
ρ(r)dDr,

which, given the above considerations, leads to

N = ρ̃D

∫ Rmax

0
rD−1dr (C-5)

and consequently

Rmax =
(
DN

ρ̃D

) 1
D

. (C-6)

Introducing such results into (C-4), one calculates

Ii = I(N) = ρ̃D
D(1− γ

D )

[(
N

(ρ̃D/D)

)1− γ
D

− 1
]

(C-7)
or, in a more compact form, using the generalized
logarithm of Eq. (17),

Ii = I(N) = ρ̃D
D

ln1− γ
D

[
N

(ρ̃D/D)

]
. (C-8)

This is the interaction field of the specific cell i,
however the result proves to be identical to all the
other cells, regardless of their position. It is because
the right side of the above equation does not depend
on the “index” i. In fact, the interaction field in a
single individual depends only on the size N of the
population.
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G.B. West, Proceedings of the National Academy of
Sciences of the United States of America 104, 7301
(2007).

[7] S. Solomon, https://arxiv.org/abs/cond-mat/
9901250 (1999).

[8] B.C.T. Cabella, A.S. Martinez and F. Ribeiro, Phys-
ical Review E 83, 061902 (2011).

[9] M. Chester, Open Journal of Ecology 1, 77 (2011).
[10] F.L. Ribeiro and K.N. Ribeiro, Physica A: Statistical

Mechanics and its Applications 434, 201 (2015).
[11] C. Guiot, P.G. Degiorgis, P.P. Delsanto, P. Gabriele

and T.S. Deisboeck, Journal of Theoretical Biology
225, 147 (2003).

[12] G.B. West, J.H. Brown and B.J. Enquist, Nature
413, 628 (2001).

[13] D. Strzalka and F. Grabowski, Physica A: Statistical
Mechanics and its Applications 387, 2511 (2008).

[14] A.S. Martinez, R.S. González and C.A.S. Terçariol,
Physica A: Statistical Mechanics and Its Applica-
tions, 387, 5679 (2008).

[15] L. Yuancai, C. Marques and F. Macedo, Forest Ecol-
ogy and Management 96, 283 (1997).

[16] F.L. Ribeiro, Bulletin of Mathematical Biology 77,
409 (2015).

[17] N. Boccara, Modeling Complex Systems (Springer-
Verlag, New York, 2004).

[18] S.F. Railsback and V. Grimm, Agent-Based and
Individual-Based Modeling: A Practical Introduction
(Princeton University Press, Princeton, 2011).

[19] M. Mitchell, Complexity: A Guided Tour (Oxford
University Press, Oxford, 2009).

[20] M.A. Tsyganov, I.B. Kresteva, G.V. Aslanidi, K.B.
Aslanidi, A.A. Deev and G.R. Ivanitsky, Journal of
Biological Physics 25, 165 (1999).

[21] D. Drasdo and S. Hohme, Mathematical And Com-
puter Modelling, 7177, 1163 (2003).

[22] A.H.O. Wada, T. Tome and M.J. Oliveira, J. Stat.
Mech. 2015, P04014 (2015).

[23] T. Malthus, An Essay on the Principle of Pop-
ulation as it Affects the Future Improvement
of Society (J. Johnson, London, 1798), avail-
able in http://www.esp.org/books/malthus/
population/malthus.pdf.

[24] P. Verhulst, Nouveaux Memoires de l’Academie
Royale des Sciences et Belles Lettres de Bruxelles
18, 1 (1845).

[25] P. Verhulst, Nouveaux memoires de l’Academie
Royale des Sciences et Belles Lettres de Bruxelles,
20, 1 (1847).

[26] R. Gompertz, Philos Trans R Soc Lond 115, 513
(1825).

[27] M. Sinai, Cancer Research 48, 7067 (1988).
[28] C. Song and O. Kuznetsova, in: SAS Conference

Proceedings: PharmaSUG, Boston, p. 20-23, 2001.
[29] J.L. Haybittle, International journal of epidemiology

27, 885 (1998).
[30] M. Molski and J. Konarski, Bio Systems 92, 245

(2008).
[31] B.C.T. Cabella, F. Ribeiro and A.S. Martinez, Phys-

ica A: Statistical Mechanics and its Applications
391, 1281 (2012).

[32] F. Ribeiro, B. Caetano and A.S. Martinez, Theory
in Biosciences 133, 135 (2014).

[33] R.V. Dos Santos, F.L. Ribeiro and A.S. Martinez,
Journal of theoretical Biology 385, 143 (2015).

[34] L.S. Dos Santos, B.C.T. Cabella and A.S. Martinez,
Theory Biosci. 133, 117 (2014).

[35] F.J. Richards, J Exp Bot 10, 290 (1959).
[36] L. von Bertalanffy, Q. Rev. Biol. 32, 217 (1949).
[37] F. Kozusko and M. Bourdeau, Cell Prolif. 40, 824

(2007).
[38] J.C.M. Mombach, N. Lemke, B.E.J. Bodmann and

M.A.P. Idiart, Europhysics Letters 59, 923 (2002).
[39] A. D’Onofrio, Chaos, Solitons & Fractals 41, 875

(2009).
[40] T.J. Arruda, R.S. González, C.A.S. Terçariol and
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