

BMM 0122 Microbiologia Básica Engenharia Ambiental

2019

Professores

Bacteriologia

Virologia

Dr. Welington Luiz Araújo (WLA) Responsável wlaraujo@usp.br

Dr. José Gregório C. Gomez (JG)

Dr. Mario H. de Barros (MHB)

Dr. Paolo Zanotto (PZ)

Biotecnologia

Dra. Elizabete J. Vicente (EV)

Dr. Leandro Garrido Apoio Técnico

M.Sc. Aline Lemos Apoio Técnico

Luana Moraes luanamoraes@usp.br Monitor

2019 - PROGRAMA BMM 0122 Microbiologia Básica para Engenharia Ambiental

Dia		Assunto	Docentes
20/02	T1	Introdução ao curso -Programa da disciplina	WLA
	P1	Isolamento de microrganismos da água e solo	WLA
27/02	T2	Métodos de isolamento e detecção de micro-organismos	WLA
	PT1.1	Contagem de micro-organismos em placas	WLA
	PT1.2	Purificação de micro-organismos	
06/03		Quarta-Feira de Cinzas	
13/03	T4	Nutrição e metabolismo bacteriano	JG
	PT2	Nutrição - Semeadura em diferentes meios de cultura	JG
	PT1.3	Preparo de estoque em tubos	JG
20/03	T5	Metabolismo e crescimento microbiano	JG
	PT2.1	Leitura das placas de nutrição	JG
27/03	Т3	Morfologia e estrutura bacteriana	WLA
	PT2	Coloração de Gram	WLA
03/04	T6	Morfologia e Fisiologia de Fungos	MHB
		Genética de fungos	MHB
10/04	T7	Vírus Propriedades Gerais	PZ
	PT4	ECP	PZ
17/04		Semana Santa	
24/04	T8	Ecologia Microbiana – ciclos biogeoquímicos e biodegradação	WLA
	PT5	Bactérias envolvidas em ciclos (CMC, Amido, N ₂ , Fosfato)	WLA
	PT6	Antibiose - Bactéria – estrias 1	
		Antibiose – Fungos - cultivo em meio líquido	
01/05		Feriado - Dia do Trabalho	

08/05	T9	Ecologia Microbiana – Antibiose	WLA
	PT5.1	Leitura da aula de ciclos biogeoquímicos	WLA
	PT6.1	Antibiose – Bactéria – estrias 2	WLA
		Antibiose -Fungo e antibióticos	
15/05	Pr	Prova 01	WLA
22/05	T10	Resistência e Controle microbiano	JG
	PT6.2	Leitura das análises de antibiose e antibióticos	JG
29/05	T12	Genética e Biologia molecular – <i>Quorun sensing</i>	WLA
	E1	Exercícios	WLA
05/05	T11	Biodegradação e Biorremediação	EV
		Entrega de relatório de aulas práticas de bactérias	
12/06	T13	Vírus de interesse ambiental	PZ
	PT7	Isolamento de fagos	PZ
19/06	T14	Doenças de veiculação hídrica/indicadores (bactérias e	JG
	PT7.1	vírus)	JG
		Leitura das placas de lise	
26/06	Pr	Prova 2	WLA
03/07	E2	Recuperação	WLA

Início: 20 de fevereiro de 2019

Término: 03 de julho de 2019

Métodos de Avaliação

Nota Final=Prova 01 (35%) + Prova 02 (35%) + Relatório das práticas de bactérias e fungos (15%) + Relatório de Virologia (10%) + Exercícios (5%)

Atenção

Não será aplicada prova para faltantes, salvo com apresentação de atestado médico emitido pelo HU.

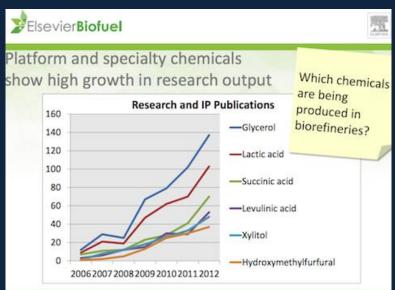
Uso obrigatório de jaleco nas aulas práticas

Porque estudar microbiologia?

Bactérias

Por que estudar bactérias?

- Muitas bactérias são patogênicas, podendo causar doenças no homem, animais e plantas.
- Outras colonizam diferentes ambientes causando problemas como biocorrosão e biodeterioração. Embora a biodeterioração/biodegradação sejam eventos importantes na natureza, podem resultar em danos econômicos importantes.
- Diferentes moléculas foram desenvolvidas e apresentam sucesso no controle
 microbiano, mas genótipos resistentes são selecionados
- ❖ Bactérias são importantes para a **produção de moléculas** de interesse industrial e ambiental
- ❖ Potencial Biotecnológico processos (tratamento de efluentes e biocombustíveis)


BMM0124 Microbiologia de Básica - Química Ambiental

Origem dos Micro-organismos

- Origem: em ambientes extremos da terra primitiva
- ➤ Evolução: ≅3,5 bilhões de anos (BA)
- Diversidade: ocupam todos os nichos disponíveis
- Interagem com diferentes espécies

Estromatólito (3,5 bilhões de anos)

- 2.7 BA atrás: metano de origem biológica
- > **3.4 BA atrás:** evidências de sulfato reduzido
- Consórcio anaeróbio: arqueias metanogênicas e metanotróficas, juntamente com bactérias sulfato redutoras

Os três domínios da vida

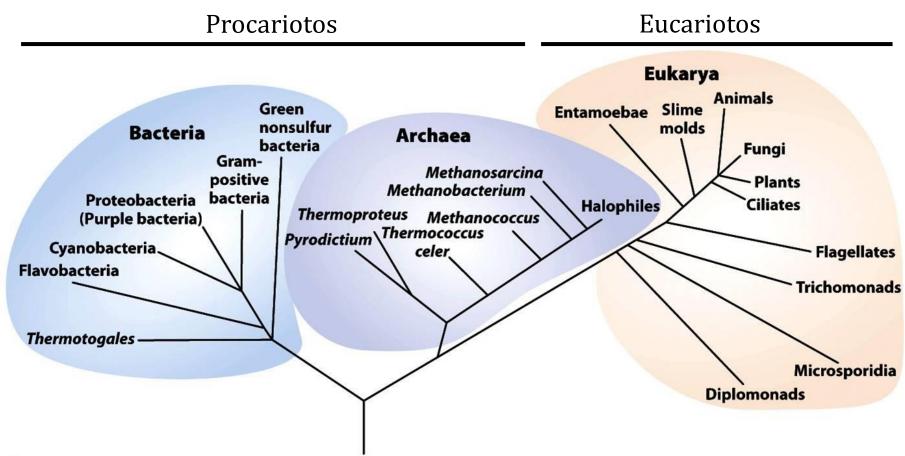
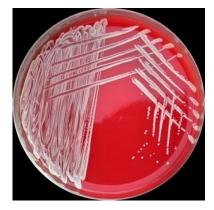


Figure 1-4
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

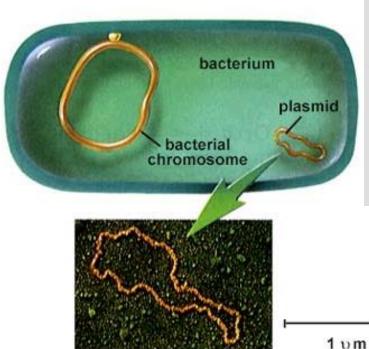
Procariotos: diferem dos eucariotos por não apresentarem funções metabólicas compartimentalizadas (sistemas de membranas)

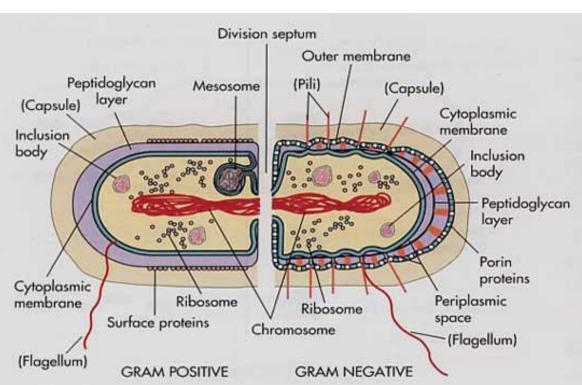
Bactérias


- ✓ São organismos unicelulares procarióticos e que podem viver na forma isolada ou compondo comunidades nos diferentes ambientes.
- √ Grande diversidade no domínio Bactéria: grande diversidade genética e morfológica
- ✓ Características genéticas de bactérias:
- → Tamanho do genoma: entre 0,5 e 10,0 Mb.
- → **Cromossomos:** normalmente 1, mas ocorrem exceções (*Burkholderia* complexo *cepacia* pode apresentar 3 cromossomos), presença de plasmídios
- → Tamanho médio de genes: 1 kb, íntrons são raros (quase sempre ausente)
- → **Recombinação em bactérias**: conjugação, transformação e transdução
- → Apresentam parede celular

Coloração de colônias bacterianas

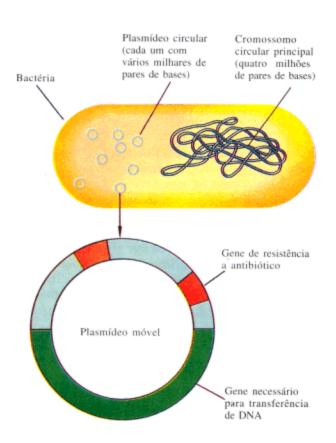
Variação determinada por fatores ambientais e genéticos





Célula bacteriana

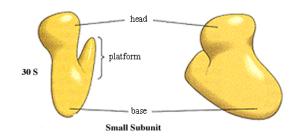
- Citoplasma
- Membrana citoplasmática
- Parede celular
- Dipopolissacarideos (LPS)
- Glicocálice (cápsula)

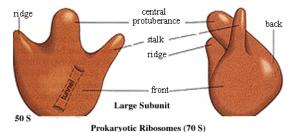

Célula bacteriana

Cromossomo circular

- Informações essenciais

Plasmídio

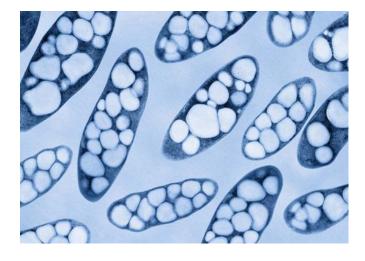

- DNA circular
- não carregam informações essenciais
- número variável
- resistência a antibióticos, fixação de N₂, etc
- -Degradação de compostos persistentes
- engenharia genética



Célula bacteriana

Ribossomos

-70S



Grânulos

- reserva
- PHAs (poli-hidroxialcanoatos)

Vacúolos Gasosos

- flutuação
- membrana protéica

Distinções estruturais

Parede celular

Bactéria: peptidioglicanos (mureína)

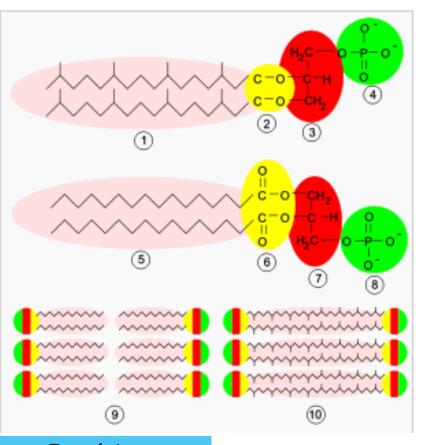
Mycoplasma spp. não tem parede

Archaea: pseudopeptidioglicanos ou somente proteínas

Eucariotos: Fungos: quitina

Oomicetos: polissacarídeos

Animais: ausente


Plantas: polissacarídeos

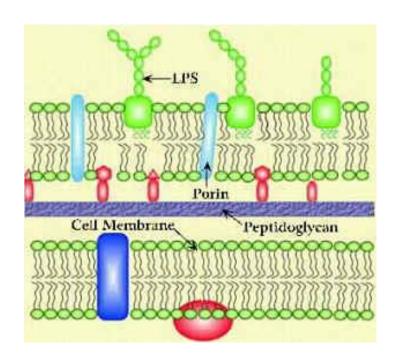
Membrana plasmática

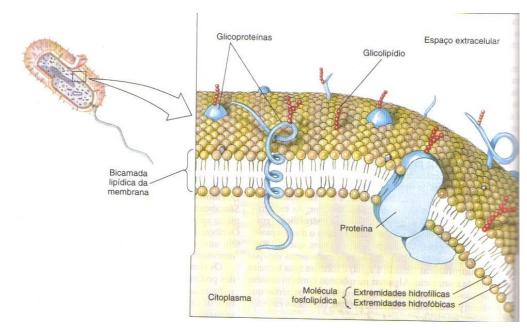
- Bactérias e eucariotos: cadeias de ácidos graxos ligados a moléculas de glicerol por ligações de éster.
- Archaea: ramos de cadeias de hidrocarbonetos ligados a moléculas de glicerol por ligações de éter. Ácidos graxos não são encontrados.

Membrana celular

- 1 Cadeia de isoprenos
- 2 Ligação Éter
- 3 L-Glicerol
- 3, 4 Glicerol-1-fosfato
- 5 Ácidos graxos
- 6 Ligação Éster
- 3 D-Glicerol
- 3, 4 Glicerol-3-fosfato

Bactérias e Eucariotos: Bi-camada lipídica


Arquéias: monocamada


Arquéias

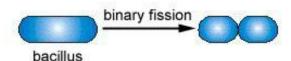
Bactérias e Eucariotos

Membrana Plasmática - Bactérias

- 8 nm de espessura
- bicamada fosfolipídica (≅ 60% proteínas)
- interações hidrofóbicas de ácidos graxos, pontes de H, e Mg²⁺
 e Ca²⁺: integridade
- não contém esteróis pode conter hopanóides
- duplicação do DNA

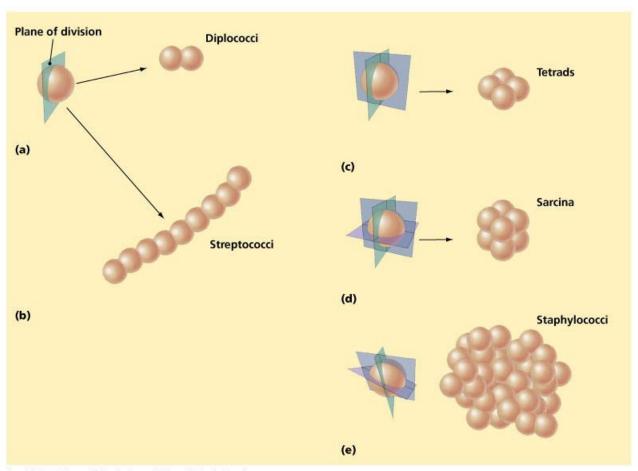
Morfologia da célula bacteriana

Arranjos de cocos



Arranjos de bacilos

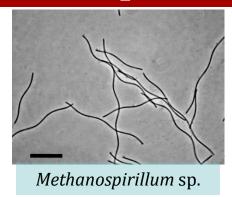
Formas espiraladas



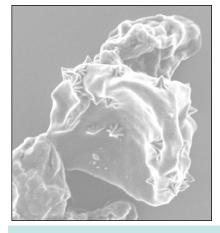
Morfologia da célula está associada à parede

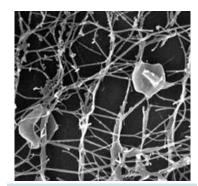
Formação dos diferentes arranjos celulares - cocos

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.


Relação com o plano de divisão celular

Curiosidade – Tipos celulares de Arquéias

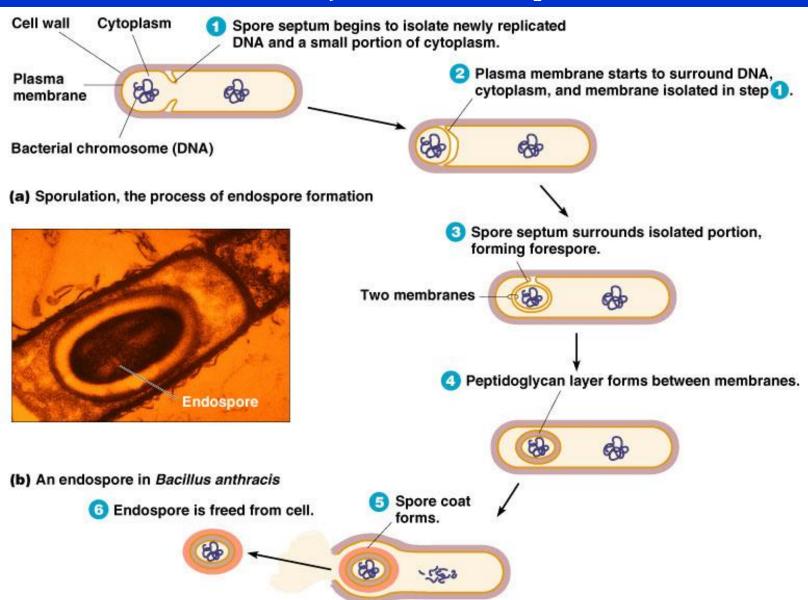

- Bastonetes
- o Espirilo
- Cocos


Halobacterium sp.

- Células na forma de discos conectados por túbulos (cânulas)
- Irregulares

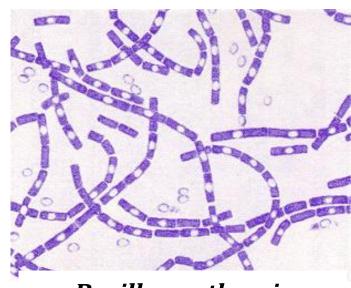
Sulfolobus sp.

Pyrodictium abyssi

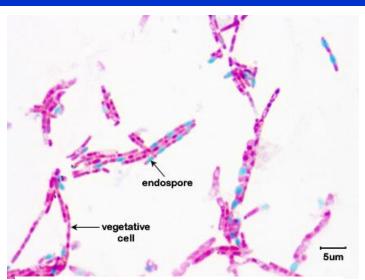


Halococcus thailandensis

Endósporos


- Estrutura produzida por bactérias como o objetivo de sobreviver em condições adversas.
- Gêneros mais importantes: Bacillus e Clostridium.
- A esporulação inicia quando a célula vegetativa utiliza todos os nutrientes disponíveis ou o meio apresenta-se adverso.
- Os esporos conferem resistência à bactéria, a qual pode voltar a se desenvolver quando as condições ambientais são novamente favoráveis.

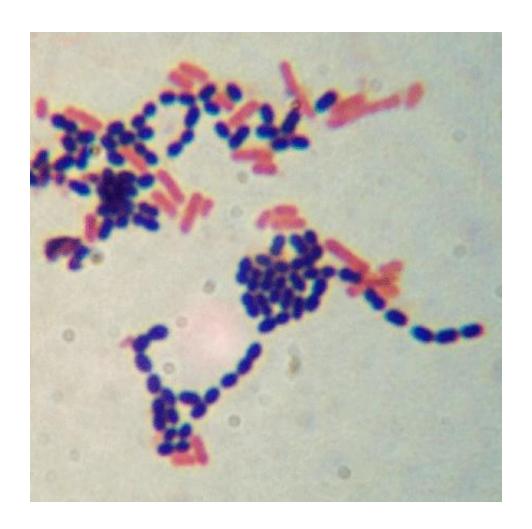
Formação do endósporo



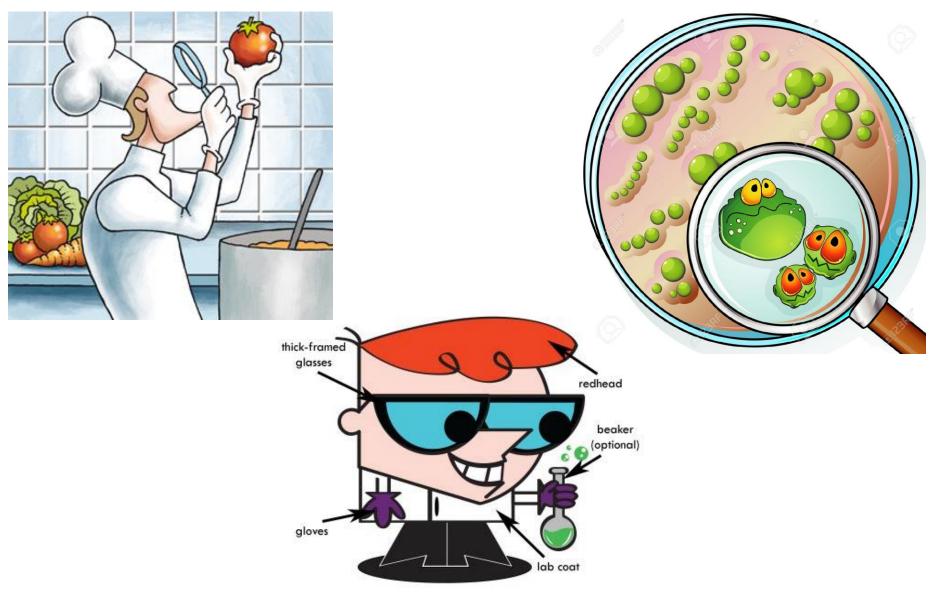
Endósporos


- Gram positivas
- Resistência à condições ambientais adversas

Bacillus anthracis



Bacillus megaterium


Clostridium botulinum

Coloração de Gram de cultura mista

Streptococcus (Gram positiva) e Escherichia coli (Gram negativa)

Hora da aula prática

