Conceitos e definições básicas

Hidráulica II

Maria M. Gamboa

1° Semestre de 2019. 19/02/2019

Forçado	Livre
Qualquer**	Atmosférica
	<u> </u>

	Forçado	Livre
Pressão	Qualquer**	Atmosférica
Conduto	Fechado	Aberto / fechado

	Forçado	Livre
Pressão	Qualquer**	Atmosférica
Conduto	Fechado	Aberto / fechado
Seção	Plena (independe)	Aberta (depende)

	Forçado	Livre
Pressão	Qualquer**	Atmosférica
Conduto	Fechado	Aberto / fechado
Seção	Plena (independe)	Aberta (depende)
Escomento por	Gravidade/bombeamento	Gravidade

	Forçado	Livre
Pressão	Qualquer**	Atmosférica
Conduto	Fechado	Aberto / fechado
Seção	Plena (independe)	Aberta (depende)
Escomento por	Gravidade/bombeamento	Gravidade
Material (rug.)	Industrial, algumas opções	Inúmeras opções

	Forçado	Livre
Pressão	Qualquer**	Atmosférica
Conduto	Fechado	Aberto / fechado
Seção	Plena (independe)	Aberta (depende)
Escomento por	Gravidade/bombeamento	Gravidade
Material (rug.)	Industrial, algumas opções	Inúmeras opções
Geometria	Circular (ppal)	Múltiplas opções

	Forçado	Livre
Pressão	Qualquer**	Atmosférica
Conduto	Fechado	Aberto / fechado
Seção	Plena (independe)	Aberta (depende)
Escomento por	Gravidade/bombeamento	Gravidade
Material (rug.)	Industrial, algumas opções	Inúmeras opções
Geometria	Circular (ppal)	Múltiplas opções
Responsabilidade	Menor sensibilidade	Alta sensibilidade

Artificial

Conceitos basicos

Prismatico

Não prismatico

Prismatico

Não prismatico

Leito móvel

Leito fixo

Para qualquer formato de canal, são definidos:

• Área molhada, $A = [m^2]$

- Área molhada, $A = [m^2]$
- $\bullet \ \ {\sf Perímetro\ molhado}, \ P = [m] \\$

- Área molhada, $A = [m^2]$
- Perímetro molhado, P = [m]
- Raio hidráulico, $R_h = [m]$

- Área molhada, $A = [m^2]$
- Perímetro molhado, P = [m]
- Raio hidráulico, $R_h = [m]$
- Altura d'água ou Tirante d'água, y = [m]

- Área molhada, $A = [m^2]$
- Perímetro molhado, P = [m]
- Raio hidráulico, $R_h = [m]$
- Altura d'água ou Tirante d'água, $y=\left[m\right]$
- Altura do escoamento, h = [m]

- Área molhada, $A = [m^2]$
- Perímetro molhado, P = [m]
- Raio hidráulico, $R_h = [m]$
- Altura d'água ou Tirante d'água, $y=\left[m\right]$
- Altura do escoamento, h = [m]
- Largura de topo, B = [m]

- Área molhada, $A = [m^2]$
- $\bullet \ \ {\sf Perímetro\ molhado}, \ P = [m]$
- Raio hidráulico, $R_h = [m]$
- Altura d'água ou Tirante d'água, y=[m]
- Altura do escoamento, h = [m]
- Largura de topo, B = [m]
- Altura hidráulica ou Altura média, $H_m = \frac{A}{B} = [m]$

- Área molhada, $A = [m^2]$
- $\bullet \ \ {\sf Perímetro\ molhado}, \ P = [m]$
- Raio hidráulico, $R_h = [m]$
- Altura d'água ou Tirante d'água, y=[m]
- Altura do escoamento, h = [m]
- Largura de topo, B = [m]
- Altura hidráulica ou Altura média, $H_m = \frac{A}{B} = [m]$
- Declividade de fundo, $I_o = [m/m]$

- Área molhada, $A = [m^2]$
- $\bullet \ \ {\sf Perímetro\ molhado}, \ P = [m] \\$
- Raio hidráulico, $R_h = [m]$
- Altura d'água ou Tirante d'água, y=[m]
- Altura do escoamento, h = [m]
- Largura de topo, B = [m]
- Altura hidráulica ou Altura média, $H_m = \frac{A}{B} = [m]$
- Declividade de fundo, $I_o = [m/m]$
- Declividade da linha piezomêtrica, $I_a = [m/m]$

- Área molhada, $A = [m^2]$
- Perímetro molhado, P = [m]
- Raio hidráulico, $R_h = [m]$
- Altura d'água ou Tirante d'água, y=[m]
- Altura do escoamento, h = [m]
- Largura de topo, B = [m]
- Altura hidráulica ou Altura média, $H_m = \frac{A}{B} = [m]$
- Declividade de fundo, $I_o = [m/m]$
- Declividade da linha piezomêtrica, $I_a = [m/m]$
- Declividade da linha de energia, $I_f = [m/m]$