PESQUISA OPERACIONAL I – EXERCÍCIOS

1. Problema do Transporte

Uma empresa transporta bananas de Brodowski, Cravinhos e Guatapará para Ribeirão Preto e Sertãozinho. O custo por tonelada será estimado pela distância entre as cidades em trajeto sem pedágio. O que fazer?

	Ribeirão Preto	Sertãozinho	Oferta
Brodowski	36.5	61.3	40 toneladas
Cravinhos	23.7	56.8	50 toneladas
Guatapará	61.7	56.1	60 toneladas
Demanda	65 toneladas	35 toneladas	

Variáveis Reais

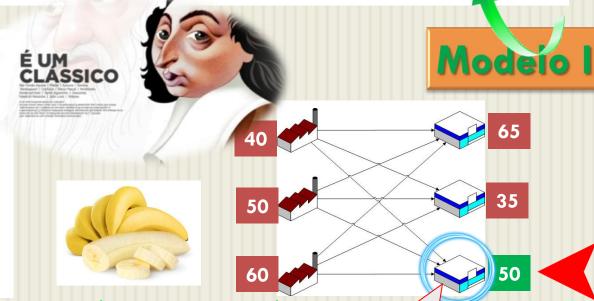
Problema do Transporte

36.5	61.3	40 t
23.7	56.8	50 t
61.7	56.1	60 t
65 t	35 t	

7-3

Variáveis

xij = quantidade de bananas transportadas da cidade i para a cidade j


Função-objetivo

min f = 36.5 *x11 + 61.3*x12 + 0*x13 + 23.7*x21 + 56.8*x22 + 0*x23 + 61.7*x21 + 56.1*x22 + 0*x23

61.7*x31 + 56.1*x32 + 0*x33

Restrições

x11 + x12 + x13 = 40 x21 + x22 + x23 = 50 x31 + x32 + x33 = 60 x11 + x21 + x31 = 65 x12 + x22 + x32 = 35 x13 + x23 + x33 = 50

xij >= 0

Capítulo 7

150

100

Cidade Fantasma (ou Dummy)

Problema do Transporte

36.5	61.3	40 t
23.7	56.8	50 t
61.7	56.1	60 t
65 t	35 t	

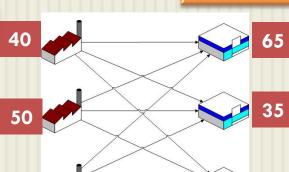
Modelo II

7-4

Variáveis

xij = quantidade de bananas transportadas da cidade i para a cidade j

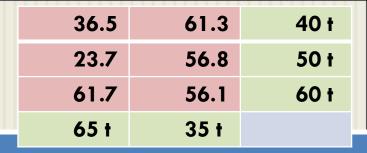
Função-objetivo


min f = 36.5 *x11 + 61.3*x12 + 23.7*x21 + 56.8*x22 + 61.7*x31 + 56.1*x32

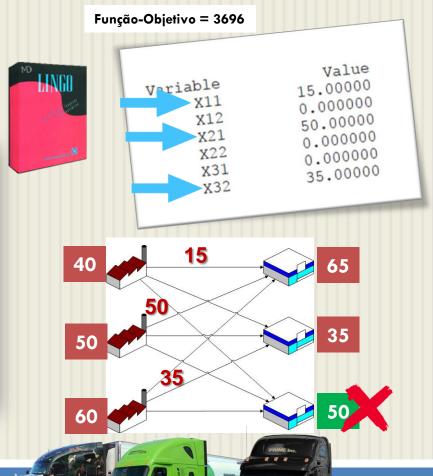
Restrições

x11 + x12 <= 40 x21 + x22 <= 50 x31 + x32 <= 60 x11 + x21 + x31 >= 65 x12 + x22 + x32 >= 35 xij >= 0

150



Capítulo 7


100

Problema do Transporte

2. Transporte Custo Total

Há carga para transportar de Ribeirão Preto para São Paulo (30 toneladas) e Rio de Janeiro (20 toneladas). Dispõe-se de 8 aviões B-727, 15 aviões Electra e 12 aviões Bandeirante. O custo total da viagem (R\$) e a capacidade dos aviões são fornecidos abaixo. O que fazer?

	B-727	Electra	Bandeirante	Carga
São Paulo	23	5	1.4	30 ton
Rio de Janeiro	58	10	3.8	20 ton
Quantidade de aviões	8 aviões	15 aviões	12 aviões	
Capacidade dos aviões	45 ton	7 ton	4 ton	

2. Transporte

Custo Total

	23	5	1.4	30 t
	58	10	3.8	20 t
	8	15	12	
1	45 t	7 t	4 t	

Variáveis

xij = quantidade de aviões do tipo i enviados para a cidade j

Função-objetivo

min f = 23*x11 + 58*x12 + 5*x21 + 10*x22 + 1.4*x31 + 3.8*x32

$$x11 + x12 \le 8$$

$$x21 + x22 \le 15$$

$$x31 + x32 \le 12$$

$$45*x11 + 7*x21 + 4*x31 >= 30$$

$$45*x12 + 7*x22 + 4*x32 >= 20$$

2. Transporte Custo Total

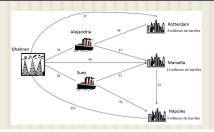
	23	5	1.4	30 t
	58	10	3.8	20 t
	8	15	12	
1	45 t	7 t	4 t	

riable Value

Função-Objetivo = 32400

Variable Value
X11 0.000000
X12 0.000000
X21 1.000000
X22 0.000000
X31 6.000000
X32 5.000000

l avião Electra para SP 6 aviões Bandeirante para SP 5 aviões Bandeirante para o RJ



7-9

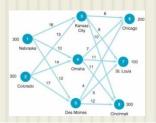
Uma empresa responsável pelo abastecimento semanal de um produto às cidades de SP e RJ pretende criar um plano de distribuição a partir de Campinas, Sorocaba e SJ Campos. As quantidades semanalmente disponíveis são 70, 130 e 120 toneladas, respectivamente.

O consumo semanal previsto é de 180 toneladas em SP e 140 toneladas no RJ. Há também a possibilidade de abastecimento através de entrepostos. Os entrepostos localizam-se nos centros produtores e consumidores, e ainda em Volta Redonda e Ribeirão Preto.

Os custos unitários de transporte por tonelada encontram-se na Tabela a seguir. Qual o plano?

3. Problema do Transbordo

7-10


								Custo
	С	S	SJ	VR	RP	SP	RJ	
C	0	20	20	15	10	13	25	
S	20	0	30	15	18	25	16	
SJ	20	30	0	35	20	15	40	
VR	15	15	35	0	15	20	7	
RP	10	18	20	15	0	12	20	
SP	13	25	15	20	12	0	27	
RJ	25	16	40	7	20	27	0	

Transhipment Problem

3. Problema do Transbordo

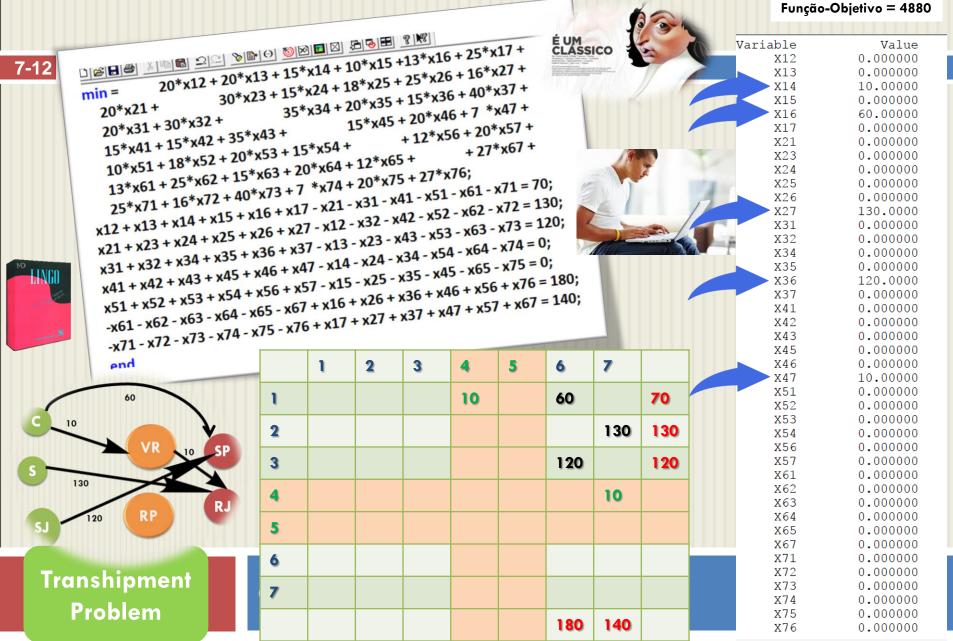
7-11

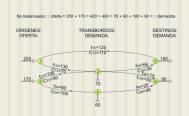
Função-objetivo

Min f = 20*x12 + 20*x13 + 15*x14 + 10*x15 + + 27*x76

Variáveis

xij = quantidade a transportar da cidade i para a cidade j


Restrições


x12 + x13 + x14 + x15 + x16 + x17 - x21 - x31 - x41 - x51 - x61 - x71 = 70 C x21 + x23 + x24 + x25 + x26 + x27 - x12 - x32 - x42 - x52 - x62 - x72 = 130 S x31 + x32 + x34 + x35 + x36 + x37 - x13 - x23 - x43 - x53 - x63 - x73 = 120 SJ x41 + x42 + x43 + x45 + x46 + x47 - x14 - x24 - x34 - x54 - x64 - x74 = 0 VR x51 + x52 + x53 + x54 + x56 + x57 - x15 - x25 - x35 - x45 - x65 - x75 = 0 RP -x61 - x62 - x63 - x64 - x65 - x67 + x16 + x26 + x36 + x46 + x56 + x76 = 180 SP -x71 - x72 - x73 - x74 - x75 - x76 + x17 + x27 + x37 + x47 + x57 + x67 = 140 RJ xii >= 0

Transhipment Problem

3. Problema do Transbordo

4. Problema do Transbordo Obrigatório

7-13

Uma empresa responsável pelo abastecimento semanal de um produto às cidades de SP e RJ pretende criar um plano de distribuição a partir de Campinas, Sorocaba e SJ Campos. As quantidades semanalmente disponíveis são 70, 130 e 120 toneladas, respectivamente.

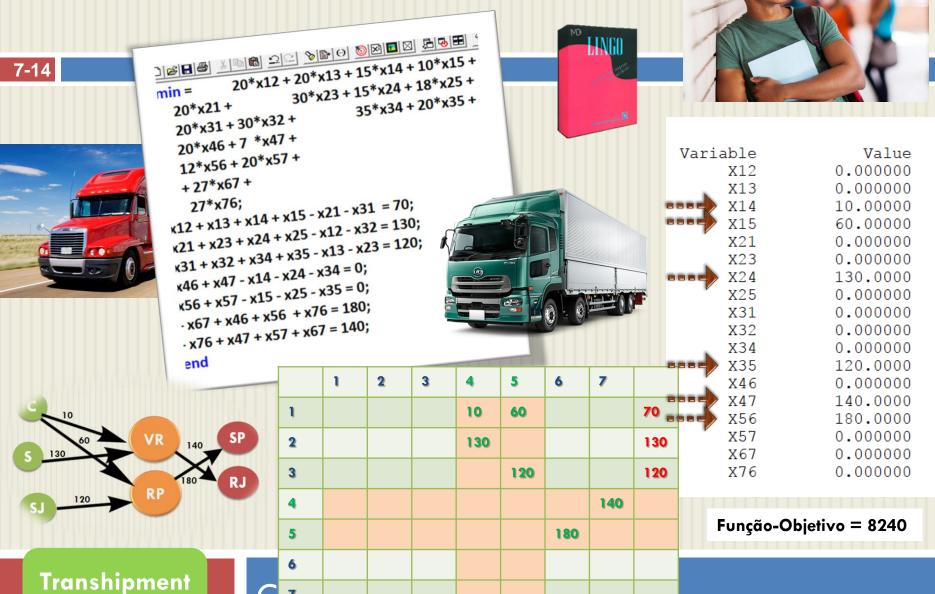
O consumo semanal previsto é de 180 toneladas em SP e 140 toneladas no RJ.

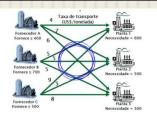
O abastecimento é feito através de entrepostos. Os entrepostos localizam-se em Volta Redonda e Ribeirão Preto.

	С	S	SJ	VR	RP	SP	RJ
С	0	20	20	15	10	13	25
S	20	0	30	15	18	25	16
SJ	20	30	0	35	20	15	40
VR	15	15	35	0	15	20	7
RP	10	18	20	15	0	12	20
SP	13	25	15	20	12	0	27
RJ	25	16	40	7	20	27	0

Os custos unitários de transporte por tonelada encontram-se na Tabela ao lado.

Qual o plano?


Transhipment
Problem


4. Problema do Transbordo Obrigatório

Problem

180

140

5. Problema do Centro de Transbordo de Carga

7-15

Uma empresa tem cargas de 5 cidades (1, 2, 3, 4, 5) para transportar para 4 outras cidades (6, 7, 8 e 9). As cargas devem obrigatoriamente passar pelas Filiais de Emissão (E1 ou E2), pelos Centros de Transbordo de Cargas (C1 ou C2) e pelas Filiais de Destino (D1 ou D2). As cargas e os custos são fornecidos nas Tabelas abaixo.

	Carga	E 1	E2
1	10	5	
2	10	3	
3	10	2	2
4	10	6	5
5	10		8

	C1	C2	
E1	12	15	-
E2	16	10	
	D1	D2	100
C1	19	21	

20

Carga 10 15 15

7

8

8

9

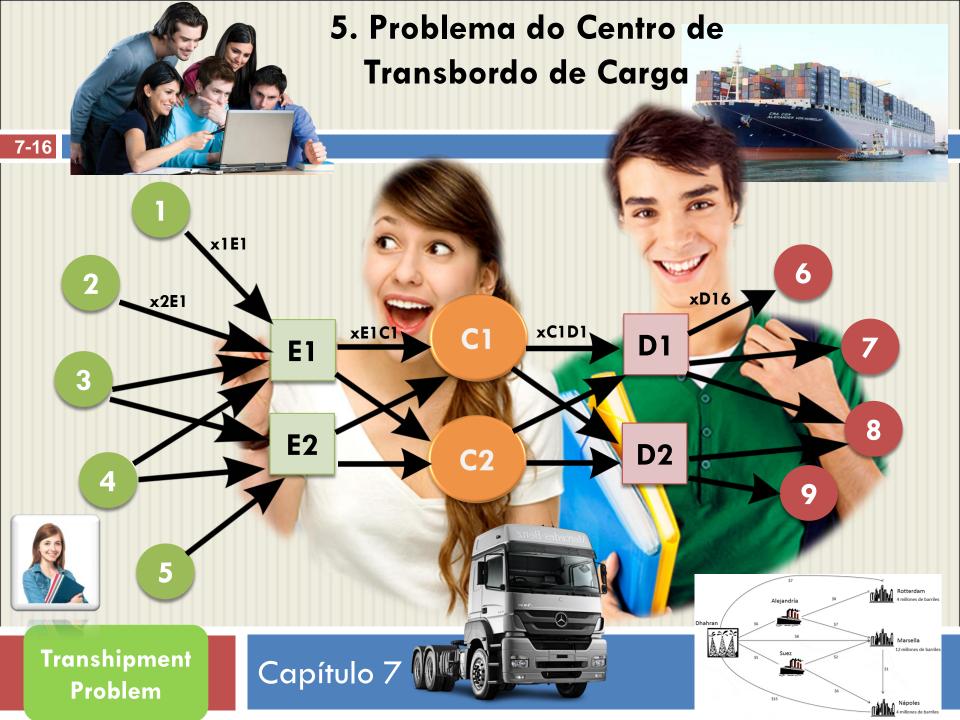
4

5

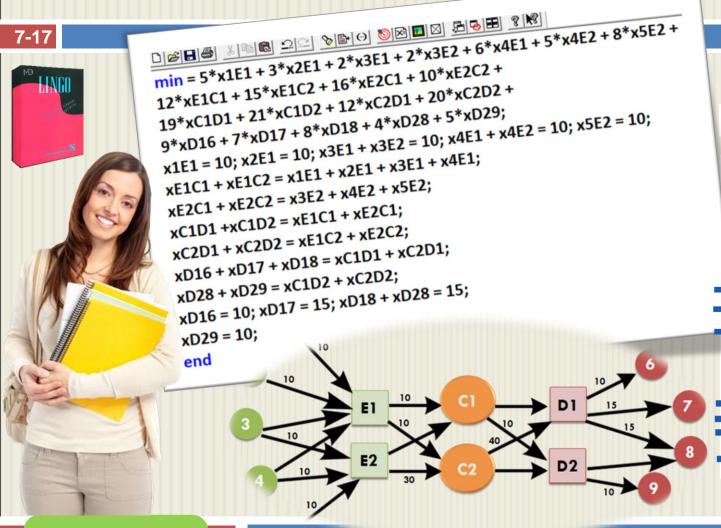
10

6

9


Transhipment Problem

Capítulo 7


Custo

D1

D2

5. Problema do Centro de Transbordo de Carga

Função-Objetivo = 1855

Variable	Value /
X1E1	10.00000
X2E1	10.00000
X3E1	0.000000
X3E2	10.00000
X4E1	0.000000
X4E2	10.00000
X5E2	10.00000
XE1C1	10.00000
XE1C2	10.00000
XE2C1	0.000000
XE2C2	30.00000
XC1D1	0.000000 /
XC1D2	10.00006
XC2D1	40.00000
XC2D2	0.000000
XD16	10.00000
XD17	15.00000
XD18	15.00000
XD28	0.000000
XD29	10.00000
H	

6. Localização de Armazéns RS

7-18

A CEARS quer construir três novos armazéns agrícolas. Dados os custos abaixo, localizar os armazéns.

Opções	Custo Construção	Capacidade	Uruguaiana	Pelotas	Caxias do Sul	Passo Fundo	Porto Alegre
Alegrete	7 milhões	600 kton	2,10	6,30	7,80	6,30	7,50
Caçapava do Sul	5 milhões	750 kton	5,70	2,70	4,50	4,50	3,78
Tupanciretá	9 milhões	350 kton	5,40	5,58	4,38	2,88	4,80
Vacaria	6 milhões	450 kton	10,20	6,54	1,14	2,40	3,00
Santa Rosa	4 milhões	400 kton	5,58	7,86	6,00	3,48	6,84
Demanda			150 kton	450 kton	300 kton	250 kton	500 kton

Custo de transporte

6. Localização de Armazéns RS

yi = 1 se localizar na cidade i 0 caso contrário

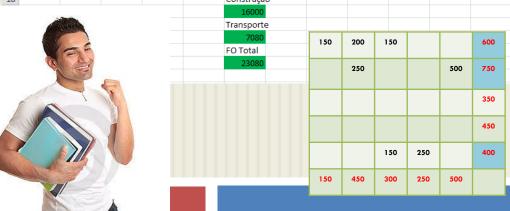
xij = quantidade enviada de i para j

7-19

Modelo Matemático

Minimizar = 7000y1 + 5000y2 + 9000y3 + 6000y4 + 4000y5 + 2,1 x11 + 6,3 x12 + 7,8 x13 + ... + 6,84x55

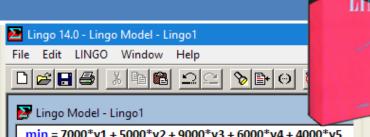
Sujeito a

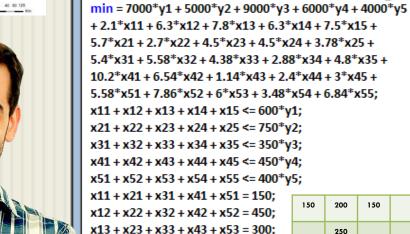

$$x11 + x12 + x13 + x14 + x15 \le 600 \text{ y1}$$

 $x21 + x22 + x23 + x24 + x25 \le 750 \text{ y2}$
 $x31 + x32 + x33 + x34 + x35 \le 350 \text{ y3}$
 $x41 + x42 + x43 + x44 + x45 \le 450 \text{ y4}$
 $x51 + x52 + x53 + x54 + x55 \le 400 \text{ y5}$
 $x11 + x21 + x31 + x41 + x51 = 150$
 $x12 + x22 + x32 + x42 + x52 = 450$
 $x13 + x23 + x33 + x43 + x53 = 300$
 $x14 + x24 + x34 + x44 + x54 = 250$
 $x15 + x25 + x35 + x45 + x55 = 500$
 $y1 + y2 + y3 + y4 + y5 = 3$

6. Localização de Armazéns RS EXCEL

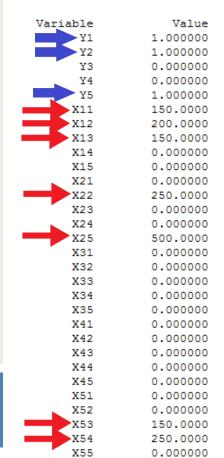
7-20


4	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	
1	Variáveis												
2	1	1	0	0	1								
3	150	200	150	0	0			150		150			
4	0	250	0	0	500			450		450			
5	0	0	0	0	0			300		300			
6	0	0	1,24E-13	0	0			250		250			
7	0	0	150	250	0			500		500			
8													
9	Dados												
10	7000	5000	9000	6000	4000			500		600		600	
11								750		750		750	
12	2,1	6,3	7,8	6,3	7,5			0		350		0	
13	5,7	2,7	4,5	4,5	3,78			1,24E-13		450		0	
14	5,4	5,58	4,38	2,88	4,8			400		400		400	
15	10,2	6,54	1,14	2,4	3								
16	5,58	7,86	6	3,48	6,84								
17								3		3			
18						Construçã							
	-					16000							
		Contra				Transporte	9						



Parâmetros do Solver Definir Objetivo: Para: O Máx. O Valor de: Alterando Células Variáveis: \$A\$2:\$E\$7 Sujeito às Restrições: \$A\$2:\$E\$2 = binário <u>A</u>dicionar \$H\$10 <= \$L\$10 \$H\$11 <= \$L\$11 \$H\$12 <= \$L\$12 Alterar \$H\$13 <= \$L\$13 \$H\$14 <= \$L\$14 Excluir \$H\$17 = \$J\$17 \$H\$3 = \$3\$3 \$H\$4 = \$3\$4 \$H\$5 = \$3\$5 Redefinir Tudo \$H\$6 = \$J\$6 \$H\$7 = \$3\$7 Carregar/Salvar ✓ Tornar Variáveis Irrestritas Não Negativas Selecionar um Método de Solução: LP Simplex Opções Método de Solução Selecione o mecanismo GRG Não Linear para Problemas do Solver suaves e não lineares. Selecione o mecanismo LP Simplex para Problemas do Solver lineares. Selecione o mecanismo Evolutionary para problemas do Solver não suaves. Ajuda Resolver Fechar

6. Localização de Armazéns RS LINGO



X11 + X21 + X31 + X41 + X51 = 150;	150	200	150			
x12 + x22 + x32 + x42 + x52 = 450;	150	200	150			600
x13 + x23 + x33 + x43 + x53 = 300;		250			500	750
x14 + x24 + x34 + x44 + x54 = 250;						
x15 + x25 + x35 + x45 + x55 = 500;						350
y1 + y2 + y3 + y4 + y5 = 3;						450
@bin(y1); @bin(y2); @bin(y3); @b						430
end			150	250		400
	150	450	300	250	500	

7. Problema das Reuniões

7-22

Uma empresa com filiais em 4 cidades da região sudeste (Ribeirão Preto, São José do Rio Preto, Uberlândia, Londrina e Presidente Prudente) quer marcar 1 ou 2 reuniões entre seus colaboradores em uma destas cidades, a que for mais conveniente para Distâncias seus colaboradores.

Resolver o problema da p-mediana e localizar:

DO JEITO

a) Uma cidade

VENDA

MAIS

APAREÇA

_	4/1
PP	446

	RP	SJRP	U	L	PP
RP	0	186	281	471	446
SJRP	186	0	289	390	275
U	281	289	0	743	562
L	471	390	743	0	162
PP	446	275	562	162	0

Modelo da P-Mediana

7-23

Modelo Matemático

Localização: Modelo da p-Mediana

Nº de Locais

Nº de Locais

Distância entre i e j

Um local i é atribuído a uma única mediana i

Nº mínimo e máximo de locais atribuídos a uma

mediana j

Existência da

mediana j

Minimizar f =

E

 Σ d[i,j] × x[i,j]

Nº de

medianas

i=1

i=1

Sujeito a:

Nº de Locais

Σ

x[i, j] = 1 (i=1 a Nº de Locais)

j=1

Nº de Locais

 Σ

x[j, j] = p

j=1

Nº Mínimo × x[j, j] ≤

Nº de Locais

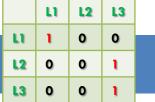
 Σ x[i, i]

≤ Nº Máximo

(j=1 a Nº de Locais)

i=1

Local i é ou não atribuído à x[mediana j

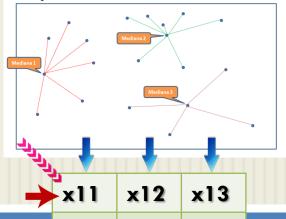

 $x[i,j] \leq x[j,j]$

x[i, j] = 0/1

(i, j=1 a Nº de Locais)

(i, j=1 a Nº de Locais)

Capítulo 7


Localização: Modelo da p-Mediana

Problema: Dados n pontos, localizar p medianas.

Localização: Modelo da p-Mediana

N = 20 e p = 3 medianas para prestação de serviços:

x22

x32

x21

x31

x23

x33

7. Problema das Reuniões

xij = 1 se o agente da cidade i é designado para reunião na cidade j O caso contrário

7-24

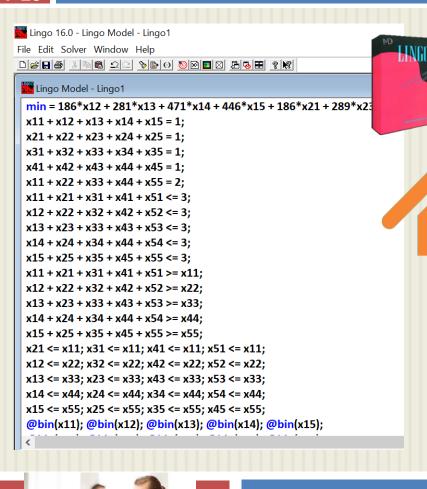
Modelo Matemático

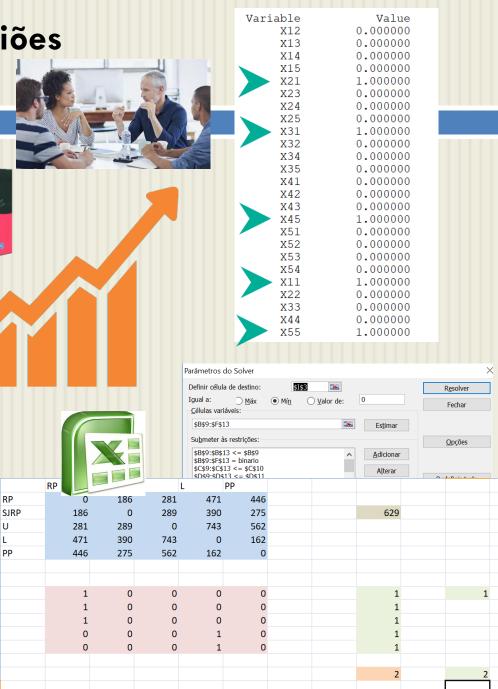
Minimizar = 186*x12 + 281*x13 + 471*x14 + 446*x15 + 186*x21 + 289*x23 + 390*x24 + 275*x25 + 281*x31 + 289*x32 + 281*x31 + 28743*x34 + 562*x35 + 471*x41 + 390*x42 + 743*x43 + 162*x45 + 446*x51 + 275*x52 + 562*x53 + 162*x54;

Sujeito a

	x11 + x12 + x13 + x14 + x15 = 1;	x21 + x22 + x23 + x24 + x25 = 1;	x31 + x32 + x33 + x	34 + x3	s5 = 1	;
	x41 + x42 + x43 + x44 + x45 = 1;	x51 + x52 + x53 + x54 + x55 = 1;	x11 + x22 + x33 + x6	44 + ×5	5 = 2	4
	$x11 + x21 + x31 + x41 + x51 \le 3;$	$x12 + x22 + x32 + x42 + x52 \le 3;$	x13 + x23 + x33 + x6	43 + ×5	3 <=	رر 3;
	$x14 + x24 + x34 + x44 + x54 \le 3;$	$x15 + x25 + x35 + x45 + x55 \le 3$;				
	x11 + x21 + x31 + x41 + x51 >= x11;	x12 + x22 + x32 + x42 + x52 >= x22;	x13 + x23 + x33 + x6	43 + ×5	3 >=	x33;
J 1	x14 + x24 + x34 + x44 + x54 >= x44;	x15 + x25 + x35 + x45 + x55 >= x55;				
	x21 <= x11; x31 <= x11; x41 <= x11; x	51 <= x11;	٠. •			
	x12 <= x22; x32 <= x22; x42 <= x22; x	52 <= x22;	3			
	x13 <= x33; x23 <= x33; x43 <= x33; x	53 <= x33;	x11	x12	x13	x14
	x14 <= x44; x24 <= x44; x34 <= x44; x	54 <= x44;	x21	x22	×23	x24
1				-		

4333			1	-	1
	k11	x12	x13	x14	x15
→	x21	x22	×23	×24	x25
→	x31	x32	×33	x34	x35
	x41	x42	x43	x44	x45
-	x51	x52	×53	x54	x55


x15 <= x55; x25 <= x55; x35 <= x55; x45 <= x55;


7. Problema das Reuniões

Capítulo 7

7-25

8. Problema dos Incineradores

 $v(PMC) = Min \sum_{j=1}^{n} \sum_{j=1}^{n} dijx_{i}$ $ujeito a \sum_{j=1}^{n} x_{i}ij = 1 \text{ para todo } i \in N$ $\sum_{j=1}^{n} x_{i}jj = p$ $\sum_{j=1}^{n} q_{i}x_{i}j \leq Q_{j}x_{i}j \text{ para todo } j \in N$ $x_{i}i \in \{0,1\}; i, i \in N$

7-26

A Plus quer construir 1 ou 2 incineradores para destruir produtos tóxicos transportados de 5 cidades (A, B, C, D, E) para incineração em qualquer uma destas cidades. A capacidade de cada incinerador instalado será de 1000 toneladas.

Distâncias

Resolver o problema da p-mediana e localizar:

- u) Um incinerador
- Dois incineradores

	A	В	С	D	E	Tonela das
A	0	9	6	4	2	100
В	9	0	7	1	5	200
С	6	7	0	3	8	150
D	4	1	3	0	3	150
E	2	5	8	3	0	300

8. Problema dos Incineradores

7-27

Modelo Matemático

Minimizar = 9*x12 + 6*x13 + 4*x14 + 2*x15 + 9*x21 + 7*x23 + 1*x24 + 5*x25 + 6*x31 + 7*x32 + 3*x34 + 8*x35 + 4*x41 + 5*x45 +

xij = 1 se o produto tóxico da
cidade i é designado
para o incinerador
da cidade j
0 caso contrário

x31

x32

x42

x52

x53

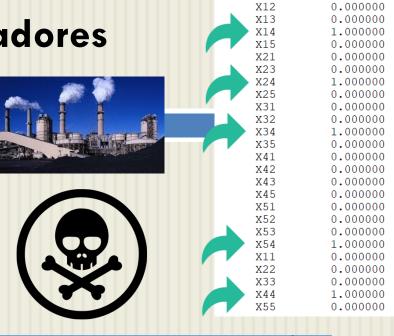
x34

x54

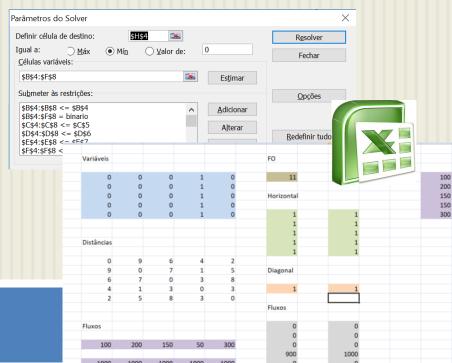
x35

1*x42 + 3*x43 + 3*x45 + 2*x51 + 5*x52 + 8*x53 + 3*x54; s/a x11 + x12 + x13 + x14 + x15 = 1; x21 + x22 + x23 + x24 + x25 = 1; x31 + x32 + x33 + x34 + x35 = 1; x11 + x22 + x33 + x44 + x55 = 1; x41 + x42 + x43 + x44 + x45 = 1; x11 + x12 + x13 + x14 + x15 = 1 $x11 + x21 + x31 + x41 + x51 \le 5$; $x13 + x23 + x33 + x43 + x53 \le 5$ $x12 + x22 + x32 + x42 + x52 \le 5$ $x14 + x24 + x34 + x44 + x54 \le 5$: $x15 + x25 + x35 + x45 + x55 \le 5$; x11 + x21 + x31 + x41 + x51 >= 2*x11;x12 + x22 + x32 + x42 + x52 >= 2*x22; x13 + x23 + x33 + x43 + x53 >= 2*x33; x14 + x24 + x34 + x44 + x54 >= 2*x44; x15 + x25 + x35 + x45 + x55 >= 2*x55: $100*x11 + 200*x21 + 150*x31 + 150*x41 + 300*x51 \le 1000*x11;$ $100*x12 + 200*x22 + 150*x32 + 150*x42 + 300*x52 \le 1000*x22;$ $100*x13 + 200*x23 + 150*x33 + 150*x43 + 300*x53 \le 1000*x33$ $100*x14 + 200*x24 + 150*x34 + 150*x44 + 300*x54 \le 1000*x44$ $100*x15 + 200*x25 + 150*x35 + 150*x45 + 300*x55 \le 1000*x55$; $x21 \le x11$; $x31 \le x11$; $x41 \le x11$; $x51 \le x11$; $x12 \le x22$; $x32 \le x22$; $x42 \le x22$; $x52 \le x22$ x21 x22

 $x15 \le x55$; $x25 \le x55$; $x35 \le x55$; $x45 \le x55$;


 $x13 \le x33$; $x23 \le x33$; $x43 \le x33$; $x53 \le x33$; $x14 \le x44$; $x24 \le x44$; $x34 \le x44$; $x54 \le x44$.

8. Problema dos Incineradores


7-28

```
Kingo 16.0 - Lingo Model - Lingo Lingo Elingo Eling
 File Edit Solver Window Help
 Lingo Model - Lingo1
     min = 9*x12 + 6*x13 + 4*x14 + 2*x15
     +9*x21+7*x23+1*x24+5*x25
     +6*x31+7*x32+3*x34+8*x35
     +4*x41+1*x42+3*x43+3*x45
     +2*x51+5*x52+8*x53+3*x54:
     x11 + x12 + x13 + x14 + x15 = 1;
     x21 + x22 + x23 + x24 + x25 = 1;
     x31 + x32 + x33 + x34 + x35 = 1:
     x41 + x42 + x43 + x44 + x45 = 1:
     x51 + x52 + x53 + x54 + x55 = 1;
     100*x11 + 200*x21 + 150*x31 + 150*x41 + 300*x51 \le 1000*x11;
     100*x12 + 200*x22 + 150*x32 + 150*x42 + 300*x52 \le 1000*x22
     100*x13 + 200*x23 + 150*x33 + 150*x43 + 300*x53 \le 1000*x33:
     100*x14 + 200*x24 + 150*x34 + 150*x44 + 300*x54 \le 1000*x44;
     100*x15 + 200*x25 + 150*x35 + 150*x45 + 300*x55 \le 1000*x55;
     x11 + x22 + x33 + x44 + x55 = 1:
     x21 \le x11; x31 \le x11; x41 \le x11; x51 \le x11;
     x12 <= x22; x32 <= x22; x42 <= x22; x52 <= x22;
     x13 \le x33; x23 \le x33; x43 \le x33; x53 \le x33;
     x14 \le x44; x24 \le x44; x34 \le x44; x54 \le x44;
     x15 <= x55; x25 <= x55; x35 <= x55; x45 <= x55;
      @bin(x11); @bin(x12); @bin(x13); @bin(x14); @bin(x15);
      @bin(x21); @bin(x22); @bin(x23); @bin(x24); @bin(x25);
```


Variable

Value

BÁSICO

7-29

Dispõe-se de 4 operários para executar 4 tarefas. O custo da designação está na Tabela abaixo. Encontrar a designação de custo mínimo.

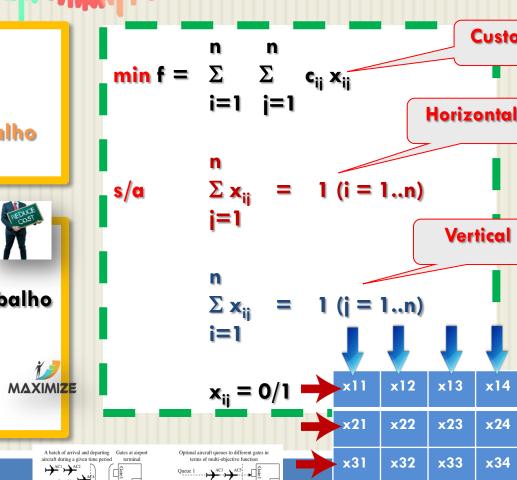
	Tarefa 1	Tarefa 2	Tarefa 3	Tarefa 4
Operário 1	6	3	2	4
Operário 2	10	6	2	5
Operário 3	6	10	9	8
Operário 4	11	5	4	9

Modelo da Designação

Modelo Matemático

Designação de:

7-30


- Operações a máquinas
- Operários a tarefas
- Trabalhadores a locais de trabalho
- Dinheiro a investimentos

Designação de custo mínimo

Minimizar o custo do transporte dos agentes designados aos locais de trabalho

Designação de lucro máximo

Maximizar a satisfação dos agentes designados aos locais de trabalho

Custo

Vertical

x14

x24

x34

×44

x42

x43

7-31

Variáveis

 $\min f = 6x_{11} + 3x_{12} + 2x_{13}$

 $2x_{23} + 5x_{24} + 6x_{31} + 10x_{32}$

 $+4x_{14} + 10x_{21} + 6x_{22} +$

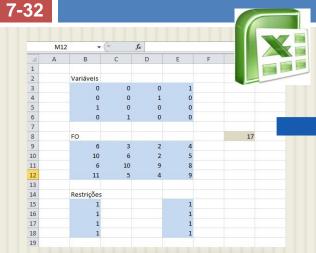
 $+9x_{33} + 8x_{34} + 11x_{41} +$

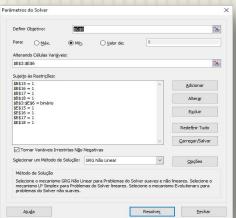
Restrições

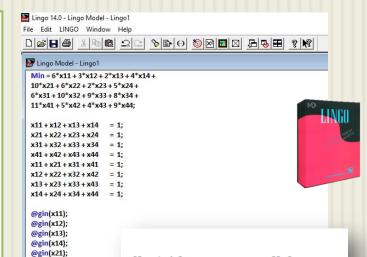
$x_{11} + x_{12} + x_{13} + x_{14} = 1$
$x_{21} + x_{22} + x_{23} + x_{24} = 1$
$x_{31} + x_{32} + x_{33} + x_{34} = 1$
$x_{41} + x_{42} + x_{43} + x_{44} = 1$
$x_{11} + x_{21} + x_{31} + x_{41} = 1$
$x_{12} + x_{22} + x_{32} + x_{42} = 1$
$x_{13} + x_{23} + x_{33} + x_{43} = 1$
$x_{14} + x_{24} + x_{34} + x_{44} = 1$
$v_{ii} = 0/1$

	TI	T2	Т3	T4
01	6	3	2	4
02	10	6	2	5
О3	6	10	9	8
04	11	5	4	9

xll	x12	x13	x14
x21	x22	x23	x24
x31	x32	x33	x34
x41	x42	x43	x44


 $5x_{42} + 4x_{43} + 9x_{44}$

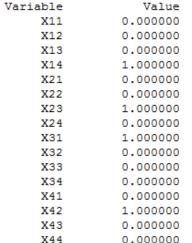

Função-Objetivo

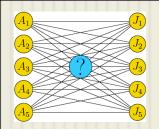

$$x_{14} = 1$$
 $x_{23} = 1$
 $x_{31} = 1$ $x_{42} = 1$

Operário 1 - Tarefa 4 Operário 2 - Tarefa 3

Operário 3 - Tarefa 1

Operário 4 - Tarefa 2


O custo dessa designação, dado pela soma total do custo da designação dos operários às tarefas, é igual a 4 + 2 + 6 + 5 = 17


@gin(x22); @gin(x23);

@gin(x24);

end

BÁSICO+

7-33

Um gerente vai realizar a conferência anual de vendas da empresa. Para auxiliar, ele contratou 4 funcionários temporários (Ana, Ivo, João e Silas) e cada um deles vai lidar com uma das 4 seguintes tarefas: 1) Word; 2) Excel; 3) Powerpoint; 4) Inscrições. Ele precisa determinar qual pessoa realizará cada tarefa. A Tabela ao lado fornece quantas horas cada um deles precisa para realizar cada tarefa e o salário por hora com base na formação de cada um deles. O que fazer?

	Word	Excel	Ppt	Inscrições	Salário/Hora
Ana	35	41	27	40	\$ 14
Ivo	47	45	32	51	\$ 12
João	39	56	36	43	\$ 13
Silas	32	51	25	46	\$ 15

7-34

 $35 \times 14 = 390$

Variáveis

O1 490 574 378 560 O2 564 540 384 612 O3 507 728 468 559 O4 480 765 375 690

T2

T3

T4

T1

Função-Objetivo

min f = 490x11 + 574x12
+ 378x13 + 560x14 +
564x21 + 540x22 +
384x23 + 612x24 +
507x31 + 728x32 +
468x33 + 559x34 +
480x41 + 765x42 +
$375 \times 43 + 690 \times 44$

Restrições

$x_{11} + x_{12} + x_{13} + x_{14} = 1$
$x_{21} + x_{22} + x_{23} + x_{24} = 1$
$x_{31} + x_{32} + x_{33} + x_{34} = 1$
$x_{41} + x_{42} + x_{43} + x_{44} = 1$
$x_{11} + x_{21} + x_{31} + x_{41} = 1$
$x_{12} + x_{22} + x_{32} + x_{42} = 1$
$x_{13} + x_{23} + x_{33} + x_{43} = 1$
$x_{14} + x_{24} + x_{34} + x_{44} = 1$
xii = 0/1

xll	x12	x13	x14
x21	x22	x23	x24
x31	×32	x33	x34
x41	x42	x43	x44

7-35

		378	
	540		
			559
480			

Value

0.000000

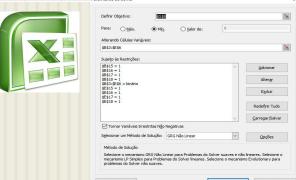
0.000000

0.000000

0.000000

1.000000 1.000000

0.000000 0.000000 0.000000

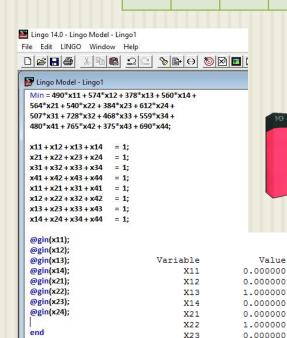

X24

X32

X34

X42

	G8	- (•	fx =SOMA	ARPRODUT	O(B9:E1:	2;B3:E6)	
4	А	В	С	D	E	F	G	Н
1								
2		Variáveis						
3		0	0	1	0			
4		0	1	0	0			
5		0	0	0	1			
6		1	0	0	0			
7								
8		FO					1957	
9		490	574	378	560			
10		564	540	384	612			
11		507	728	468	559			
12		480	765	375	690			
13								
14		Restrições						
15		1			1			
16		1			1			
17		1			1			
18		1			1			
19			Parân	etros do Solver				



Solução:

 $x_{13} = 1$ $x_{23} = 1$ $x_{34} = 1$ $x_{41} = 1$

- Powerpoint Ana - Excel Ivo João - Inscrições Silas - Word

O custo da designação, dado pela soma total do custo da designação dos funcionários às tarefas, é igual a 378 + 540 + 559+480 = 1957

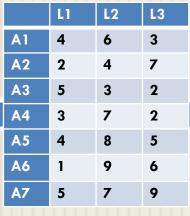
7-36

Uma prestadora de serviços dispõe de 7 agentes para designação a 3 locais de trabalho, sendo que os locais requerem 3, 2 e 1 agentes respectivamente, ou seja, 6 agentes no total. Os custos de designação são dados pelas tarifas de transporte público dos agentes aos locais de trabalho fornecidas na Tabela abaixo. O que fazer?

	Local 1	Local 2	Local 3		
Agente 1	4	6	3		
Agente 2	2	4	7	(20)	
Agente 3	5	3	2		
Agente 4	3	7	2		
Agente 5	4	8	5		V
Agente 6	1	9	6		
Agente 7	5	7	9		1
MINESTER					
	0	Carria	7		
		Capítulo 7			

7-37

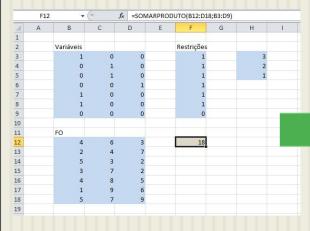
Variáveis


Função-Objetivo

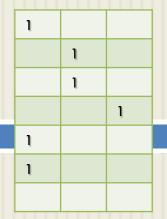
OUTSOURCING

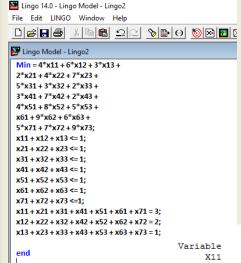
Restrições

$x11 + x12 + x13 \le 1$
$x21 + x22 + x23 \le 1$
$x31 + x32 + x33 \le 1$
$x41 + x42 + x43 \le 1$
$x51 + x52 + x53 \le 1$
$x61 + x62 + x63 \le 1$
$x71 + x72 + x73 \le 1$
x11 + x21 + x31 + x41 +
x51 + x61 + x71 = 3
x12 + x22 + x32 + x42 +
x52 + x62 + x72 = 2
x13 + x23 + x33 + x43 +
x53 + x63 + x73 = 1
xij = 0/1

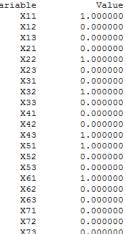


xll	x12	x13
x21	x22	x23
x31	x32	x33
x41	x42	x43
x51	x52	x53
x61	x62	x63
x71	x72	x73




$$x11 = 1$$
 $x22 = 1$
 $x32 = 1$ $x43 = 1$
 $x51 = 1$ $x61 = 1$

Os agentes 1, 5 e 6 serão designados ao local 1, os agentes 2 e 3 para o local 2 e o agente 4 para o local 3. O agente 7 não será designado.


O custo dessa designação, dado pela soma total do custo do transporte dos agentes aos locais de trabalho, é igual a (4 + 4 + 1) + (4 + 3) + (2) = 18.

> SALAS DE CIRURGIAS

7-39

Um hospital tem 5 médicos e 7 cirurgias para serem programadas para o dia seguinte em 3 salas, com tempo igual a 10 horas disponíveis em cada uma das salas (600 minutos).

A Tabela 1 apresenta as preferências de cada um dos médicos pelas salas, onde: 0 (= não), 5 (= indiferente), 10 (= sim). A Tabela 2 fornece o tempo em minutos que os médicos necessitam, em média, para efetuar cada uma das cirurgias.

O que fazer?

Capíti

7	ΛN
	43 V A

Médico	Sala	Sala	Sala
	1	2	3
1	10	5	0
2	10	10	10
3	0	10	5
4	5	10	0
5	10	5	10
			8

Preferências dos médicos

Duração das cirurgias

		Tempo de
Cirurgia	Médico	cirurgia
		(minutos)
1	1	400
2	2	180
3	3	120
4	4	60
5	5	480
6	3	90
7	1	240

> SALAS DE CIRURGIAS

7-41

Variáveis

Função-Objetivo

max f = 10x11 + 5x12+0x13 + 10x21 +10x22 + 10x23 + 0x31+ 10x32 + 5x33 +5x41 + 10x42 + 0x43+ 10x51 + 5x52 +10x53 + 0x61 + 10x62

Restrições

	x11 + x12 + x13 = 1
	x21 + x22 + x23 = 1
	x31 + x32 + x33 = 1
	x41 + x42 + x43 = 1
	x51 + x52 + x53 = 1
	x61 + x62 + x63 = 1
	x71 + x72 + x73 = 1
	400x11 + 180x21 + 120x31 +
	400X11 + 100X21 + 120X31 +
	60x41 + 480x51 + 90x61 +
	$240x71 \le 600$
	400x12 + 180x22 + 120x32 +
	60x42 + 480x52 + 90x62 +
	240×72 ≤ 600
	$400 \times 13 + 180 \times 23 + 120 \times 33 $
	40 40 1 400 50 1 00 40 1
	60x43 + 480x53 + 90x63 +
	240x73 ≤ 600
ĺ	

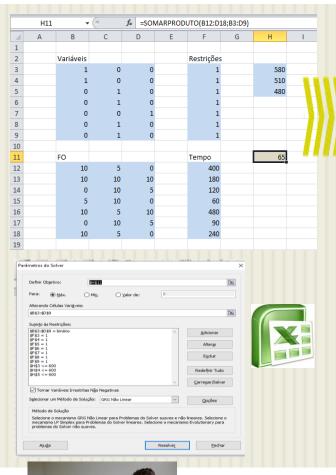
10	5	0
10	10	10
0	10	5
5	10	0
10	5	10
0	10	5
10	5	0

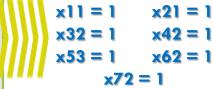
xll	x12	x13
x21	x22	x23
x31	x32	x33
x41	~42	x43
x51		x53
x61		x63
VI C		

x73

+ 5x63 + 10x71 +

5x72 + 0x73


Capítulo $7_{xij} = 0/1$



SALAS DE CIRURGIAS

7-42

Solução:

Assim, as cirurgias 1 e 2 serão designadas à sala 1, as cirurgias 3, 4, 6 e 7 à sala 2, e a cirurgia 5 à sala 3.

A soma das preferências da designação obtida é igual a (10 + 10) + (10 + 10 + 10 + 5) + (10) = 65, que corresponde ao máximo de atendimento das preferências de cada médico.

Max = 10*x11 + 5*x12 +

10*x21+10*x22+10*x23 10*x32+5*x33+ 5*x41+10*x42+ 10*x51+5*x52+10*x53+ 10*x62+5*x63+

x11+x12+x13=1; x21+x22+x23=1; x31+x32+x33=1; x41+x42+x43=1; x51+x52+x53=1; x61+x62+x63=1; x71+x72+x73=1;

 $\begin{array}{lll} 400^{\circ}x11 + 180^{\circ}x21 + 120^{\circ}x31 + 60^{\circ}x41 + 480^{\circ}x51 + 90^{\circ}x61 + 240^{\circ}x71 <= 600; \\ 400^{\circ}x12 + 180^{\circ}x22 + 120^{\circ}x32 + 60^{\circ}x42 + 480^{\circ}x52 + 90^{\circ}x62 + 240^{\circ}x72 <= 600; \\ 400^{\circ}x13 + 180^{\circ}x23 + 120^{\circ}x33 + 60^{\circ}x34 + 80^{\circ}x53 + 90^{\circ}x53 + 240^{\circ}x73 <= 600; \\ \oplus [m](x11); \oplus [m](x12); \oplus [m](x13); \oplus [m](x12); \oplus [m](x22); \oplus [m](x23); \\ \oplus [m](x11); \oplus [m](x22); \oplus [m](x33); \oplus [m](x31); \oplus [m](x32); \oplus [m](x32); \oplus [m](x32); \\ \oplus [m](x31); \oplus [m](x32); \oplus [m](x32); \oplus [m](x32); \oplus [m](x32); \oplus [m](x32); \\ \oplus [$

13. Problema dos Correios

7-43

Uma franquia dos Correios deseja determinar o número de funcionários de horário integral que deve contratar para iniciar suas atividades. Para fazê-lo, recebeu uma Tabela dos Correios com número mínimo de funcionários por dia da semana. Essas informações se encontram na Tabela ao lado. O sindicato dos empregados dos Correios mantém um acordo sindical que determina que cada empregado deve trabalhar 5 dias consecutivos e folgar em seguida 2 dias (por exemplo: um empregado que trabalhe de segunda a sexta feira deve folgar no sábado e no domingo), e que as franquias devem ter apenas empregados com horário integral. Qual o número total de empregados que a franquia deve contratar e o número de empregados por dia?

Dia da semana	Número de
	funcionários
Domingo	11
Segunda-feira	18
Terça-feira	12
Quarta-feira	15
Quinta-feira	19
Sexta-feira	14
Sábado	16

13. Problema dos Correios

7-44

Variáveis

xi = número de funcionários que começam a trabalhar no dia i (domingo... sábado)

Função-objetivo

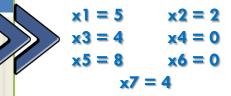
min
$$f = x1 + x2 + x3 + x4 + x5 + x6 + x7$$

Restrições

$$x1 + x2 + x3 + x4 + x5 >= 19$$

 $x2 + x3 + x4 + x5 + x6 >= 14$
 $x3 + x4 + x5 + x6 + x7 >= 16$
 $x4 + x5 + x6 + x7 + x1 >= 11$
 $x5 + x6 + x7 + x1 + x2 >= 18$
 $x6 + x7 + x1 + x2 + x3 >= 12$
 $x7 + x1 + x2 + x3 + x4 >= 15$
 $xi >= 0$ e inteiras

13. Problema dos Correios


7-45

Lingo 16.0 - Lingo Model - Lingo1
File Edit Solver Window Help

🔀 Lingo Model - Lingo1

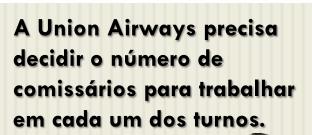
Desta forma, 5 agentes começam a trabalhar no domingo, 2 na segunda, 4 na terça, 8 na quinta e 4 no sábado.

Domingo	11	Segunda	18
Terça	12	Quarta	15
Quinta	19	Sexta	14
Sábado	16		

Função-Objetivo = 23

Variable	Value
X1	5.000000
X2	2.000000
Х3	4.000000
X4	0.000000
X5	8.000000
Х6	0.000000
X7	4.000000

@gin(x7);


end

14. Problema da Companhia

Aérea

7-46

Período	Turno 1	Turno 2	Turno 3	Turno 4	Turno 5	N° mínimo de comissários
6-8h	x					48
8-10h	x	x				79
10-12h	x	x				65
12-14h	x	x	x			87
14-16h		x	x			64
16-18h			x	x		73
18-20h			x	x		82
20-22h				x		43
22-0h				x	x	52
0-6h					x	15
Custo diário por comissário	\$170	\$160	\$175	\$180	\$195	A STATE OF THE STA

14. Problema da Companhia Aérea

7-47

Variáveis

xi = número de comissários no turno i

Restrições

$$x1 >= 48$$

$$x1 + x2 >= 79$$
 $\frac{x1 + x2 >= 65}{}$

$$x1 + x2 + x3 >= 87$$

$$x2 + x3 >= 64$$

$$x3 + x4 > = 73$$
 $x3 + x4 > = 82$

$$x4 >= 43$$

$$x4 + x5 >= 52$$

$$x5 >= 15$$

$$xi \ge 0$$
 e inteiras

Função-objetivo

14. Problema daCompanhia Aérea

7-48

Lingo 16.0 - Lingo Model - Lingo1
File Edit Solver Window Help

min = 170*x1 + 160*x2 + 175*x3 + 180*x4 + 195*x5;

x1 >= 48;

x1 + x2 >= 79;

x1 + x2 + x3 >= 87;

x2 + x3 >= 64;

x3 + x4 >= 82;

x4 >= 43;

x4 + x5 >= 52;

x5 >= 15;

@gin(x1); @gin(x2);

@gin(x3); @gin(x4);

@gin(x5);

end

Solução:

$$x1 = 48$$
 $x2 = 31$
 $x3 = 39$ $x4 = 43$

x5 = 15

Desta forma, 48 comissários trabalharão no turno 1, 31 no turno 2, 39 no turno 3, 43 no turno 4 e 15 comissários no turno 5.

Função-Objetivo = 30610

Variable	Value
X1	48.00000
X2	31.00000
Х3	39.00000
X4	43.00000
X5	15.00000
X6	0.000000
X7	0.000000

15. Transporte Público

7-49

O transporte público de uma cidade é formado por uma frota de 140 ônibus distribuídos em 22 linhas conforme a Tabela a seguir.

15. Transporte Público

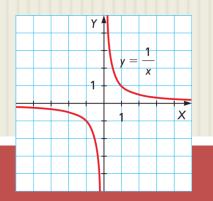
7-50

Linha de ônibus	Tempo de rotação (s)	Comprimento (m)	Quantidade de ônibus
1	3717	10160	6
2	4982	17280	8
3	3688	10280	6
4	4337	13400	7
5	6405	23940	14
6	3769	13080	6
7	3968	13460	5
8	4900	17460	4
9	5746	22220	7
10	5753	24600	7
11	7388	30890	14
12	2832	7620	3 GR
13	4182	13100	12
14	3618	12340	3
15	4009	20040	2
16	5291	17390	8
17	5710	20250	7
18	3742	13540	3
19	3875	16260	3
20	3436	10440	5
21	5167	19740	6
27	3950	14000	4

GRENOBLE ET SON AGGLOMÉRATION

15. Transporte Público

Transporte



7-51

Modelo Matemático

Minimizar \sum TRi / xi

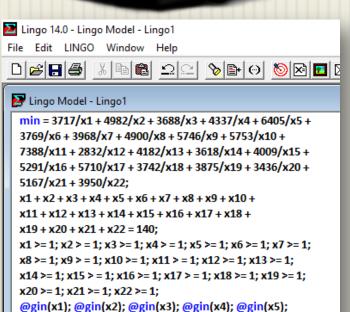
Sujeito a
$$\begin{cases} \sum xi = 140 \\ xi \ge 1 \text{ e inteiro} \end{cases}$$

TRi = tempo de rotação da linha i

xi = quantidade deônibus na linha i




Programação Não Linear Inteira


15. Transporte Público EXCEL

15. Transporte Público LINGO

7-53

@gin(x6); @gin(x7); @gin(x8); @gin(x9); @gin(x10); @gin(x11); @gin(x12); @gin(x13); @gin(x14); @gin(x15); @gin(x16); @gin(x17); @gin(x18); @gin(x19); @gin(x20); @gin(x21);@gin(x22);

	_
Variable	Value
X1	6.000000
X2	7.000000
Х3	6.000000
X4	6.000000
X5	7.000000
X6	6.000000
X7	6.000000
X8	7.000000
X9	7.000000
X10	7.000000
X11	8.000000
X12	5.000000
X13	6.000000
X14	6.000000
X15	6.000000
X16	7.000000
X17	7.000000
X18	6.000000
X19	6.000000
X20	5.000000
X21	7.000000
X22	6.000000

end