Chapter 2

Random Processes

2.1 Preview

In this chapter we illustrate methods for generating random variables and samples of
random processes. We begin with the description of a method for generating random
variables with a specified probability distribution function. Then we consider Gaussian
and Gauss—Markov processes and illustrate a method for generating samples of such
processes. The third topic that we consider is the characterization of a stationary ran-
dom process by its autocorrelation in the time domain and by its power spectrum in
the frequency domain. Because linear filters play a very important role in communi-
cation systems, we also consider the autocorrelation function and the power spectrum
of a linearly filtered random process. The final section of this chapter deals with the
characteristics of lowpass and bandpass random processes.

2.2 Generation of Random Variables

Random number generators are often used in practice to simulate the effect of noise-
like signals and other random phenomena that are encountered in the physical world.
Such noise is present in electronic devices and systems and usually limits our ability to
communicate over large distances and to detect relatively weak signals. By generating
such noise on a computer, we are able to study its effects through simulation of com-
munication systems and to assess the performance of such systems in the presence of
noise.

Most computer software libraries include a uniform random number generator.
Such a random number generator generates a number between 0 and 1 with equal
probability. We call the output of the random number generator a random variable. If
A denotes such a random variable, its range is the interval 0 < A < 1.

We know that the numerical output of a digital computer has limited precision, and
as a consequence it is impossible to represent the continuum of numbers in the interval
0 < A < 1. However, we may assume that our computer represents each output by
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Figure 2.1: Probability density function f(A) and the probability distribution function
F(A) of a uniformly distributed random variable A

a large number of bits in either fixed point or floating point. Consequently, for all
practical purposes, the number of outputs in the interval 0 < A < 1 is sufficiently large
so that we are justified in assuming that any value in the interval is a possible output
from the generator.

The uniform probability density function for the random variable A, denoted as
f(A), is illustrated in Figure 2.1(a). We note that the average value or mean value of
A, denoted as M4, is Mg = % The integral of the probability density function, which
represents the area under f(A), is called the probability distribution function of the
random variable A and is defined as

A
Fm)=L.ﬂmdx @22.1)

For any random variable, this area must always be unity, which is the maximum value
that can be achieved by a distribution function. Hence, for the uniform random variable
A we have

1
HD=£_ﬂde=1 (222)

and the range of F(A) is 0 < F(A) < 1 for 0 < A < 1. The probability distribution
function is shown in Figure 2.1(b).

If we wish to generate uniformly distributed noise in an interval (b, b + 1), it can
be accomplished simply by using the output A of the random number generator and
shifting it by an amount b. Thus a new random variable B can be defined as

B=A+b (2.2.3)

which now has a mean value mg = b + % For example, if b = —%, the random
variable B is uniformly distributed in the interval (- %, %), as shown in Figure 2.2(a).
Its probability distribution function F(B) is shown in Figure 2.2(b).

A uniformly distributed random variable in the range (0,1) can be used to generate
random variables with other probability distribution functions. For example, suppose
that we wish to generate a random variable C with probability distribution function
F(C), as illustrated in Figure 2.3.
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Figure 2.2: Probability density function and the probability distribution function of a
zero-mean uniformly distributed random variable
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Figure 2.3: Inverse mapping from the uniformly distributed random variable A to the
new random variable C

Because the range of F(C) is the interval (0,1), we begin by generating a uniformly
distributed random variable A in the range (0,1). If we set

F(C)=A 224

then
C =F1A) (2.2.5)

Thus we solve (2.2.4) for C, and the solution in (2.2.5) provides the value of C for
which F(C) = A. By this means we obtain a new random variable C with proba-
bility distribution function F(C). This inverse mapping from A to C is illustrated in
Figure 2.3.

ILLUSTRATIVE PROBLEM

Illustrative Problem 2.1 Generate a random variable C that has the linear probability
density function shown in Figure 2.4(a); that is,

3C, 0<C=<2
0, otherwise

f(C)={
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Figure 2.4: Linear probability density function and the corresponding probability dis-
tribution function

g SOLUTION

This random variable has a probability distribution function

0, C<O0
F(C)={3C? 0=<C<2
1, C>2

which is illustrated in Figure 2.4(b). We generate a uniformly distributed random vari-
able A and set F(C) = A. Hence

1

F(C) = ZC2 =A (2.2.6)

Upon solving for C, we obtain
C=2J/A 227

Thus we generate a random variable C with probability distribution function F(C), as
shown in Figure 2.4(b).

In Illustrative Problem 2.1 the inverse mapping C = F~1(A) was simple. In some
cases it is not. This problem arises in trying to generate random numbers that have a
normal distribution function.

Noise encountered in physical systems is often characterized by the normal, or
Gaussian, probability distribution, which is illustrated in Figure 2.5. The probability
density function is given by

F(C) = ﬁe-@/”z, —0<C<® (2.2.8)

where 02 is the variance of C, which is a measure of the spread of the probability
density function f(C). The probability distribution function F(C) is the area under
f(C) over the range (—oo, C). Thus

c
F(C) = I_ f(x)dx (2.2.9)

Unfortunately, the integral in (2.2.9) cannot be expressed in terms of simple func-
tions. Consequently, the inverse mapping is difficult to achieve. A way has been found
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to circumvent this problem. From probability theory it is known that a Rayleigh dis-
tributed random variable R, with probability distribution function

R) = % R<0 22.10
Fig)= 1-eR20° R>0 (22.10)
is related to a pair of Gaussian random variables C and D through the transformation

C =Rcos0® (2.2.11)
D =Rsin® 2212

where O is a uniformly distributed variable in the interval (0, 27r). The parameter o2
is the variance of C and D. Because (2.2.10) is easily inverted, we have

F(R)=1-¢R/20° _ (2.2.13)

and hence

R = \/202 In ( 1 }A) 2.2.14)

where A is a uniformly distributed random variable in the interval (0,1). Now, if we
generate a second uniformly distributed random variable B and define

0 =2mB (2.2.15)

then from (2.2.11) and (2.2.12) we obtain two statistically independent Gaussian dis-
tributed random variables C and D.

The method described above is often used in practice to generate Gaussian dis-
tributed random variables. As shown in Figure 2.5, these random variables have a
mean value of zero and a variance g2. If a non-zero-mean Gaussian random variable
is desired, then C and D can be translated by the addition of the mean value.

The MATLAB script that implements the preceding method for generating Gaus-
sian distributed random variables is given next.
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Figure 2.5: Gaussian probability density function and the corresponding probability
distribution function
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function [gsrv1,gsrv2]=gngauss(m,sgma)
%  [gsrvl,gsrv2]=gngauss(m,sgma)

%  [gsrvl,gsrv2]=gngauss(sgma)

%  [gsrvl,gsrv2]=gngauss

% GNGAUSS generates two independent Gaussian random variables with mean
% m and standard deviation sgma. If one of the input arguments is missing,
% it takes the mean as 0.
%0 If neither the mean nor the variance is given, it generates two standard
% Gaussian random variables.
if nargin == 0,

m=0; sgma=1;
elseif nargin == 1,

sgma=m; m=0;
end;
u=rand; % a uniform random variable in (0,1)
z=sgma*(sqrt(2*log(1/(1-1)))); % a Rayleigh distributed random variable
u=rand; % another uniform random variable in (0,1)

gsrvl=m+z*cos(2*pi*u);
gsrv2=m+z"sin(2*pi*u);

2.2.1 Estimation of the Mean of a Random Variable

Suppose we have N statistically independent observations x1, X2, .., X, of a random
variable X. We wish to estimate the mean value of X from the N observations. The
estimate of the mean value is

m =

M=z

% Xk (2.2.16)
k=1
Because 71 is a sum of random variables, it is also a random variable. We note that the

expected value of the estimate 1 is

E[xk] = % -mN =m 2.2.17)

M=z

E[Th]=%
k

1

where m is the actual mean of X. Thus, the estimate 1 is said to be unbiased.
The variance of the the estimate 771 is a measure of the spread or dispersion of 71
relative to its mean value. The variance of #1 is defined as

E[(h-m)?| =E [mz] —2E[m]m + m?
- e[ -

But the E [#1?] is
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