

Escola Politécnica da Universidade de São Paulo

Termodinâmica

Ciclos motores a ar

1 v. 1.2

Ciclo padrão a ar


*Trata-se de um modelo simplificado para representar alguns sistemas de potência com processos complexos.

Exemplos:

- ◆Motores de combustão interna de ignição por faísca (ciclo Otto);
- ◆Motores de combustão interna de ignição por compressão (ciclo Diesel);
- ◆Turbinas a gás (ciclo Brayton).

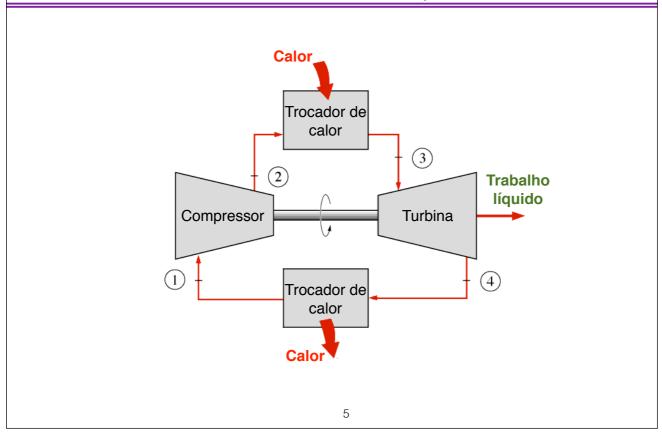
Ciclo Brayton

3

Ciclo padrão a ar

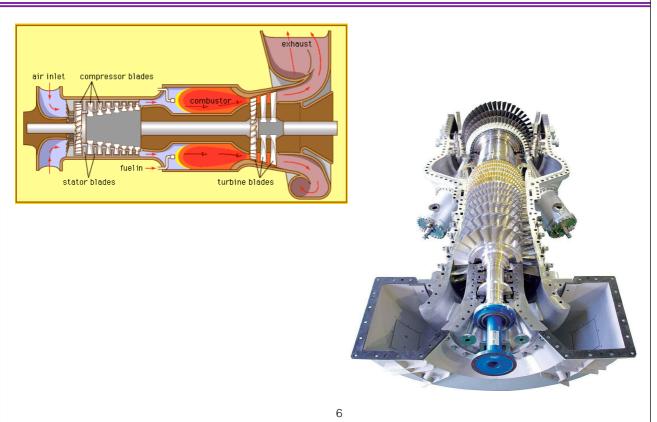
Hipóteses:

O fluido de trabalho é uma quantidade fixa de ar modelado como gás ideal com calores específicos constantes;


O processo de combustão é substituído por uma transferência de calor de uma fonte externa;

Os processos de admissão e descarga não existem;

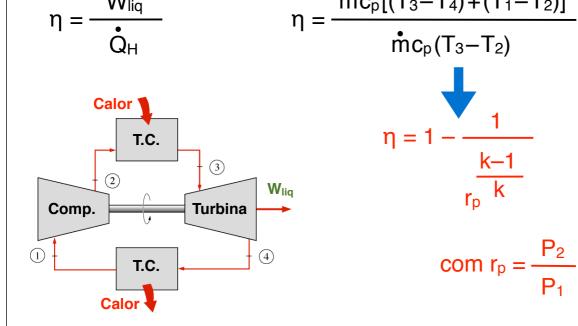
Todos os processos são internamente reversíveis.


Ciclos padrão a ar: Brayton

Turbina a gás

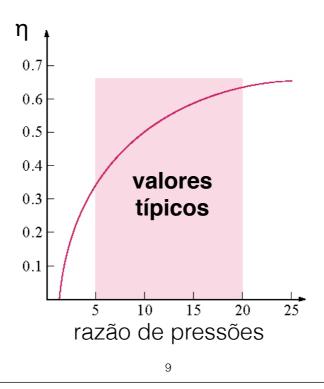
Ciclos Brayton ideal

O ciclo de potência Brayton ideal é composto por quatro processos reversíveis:


- Compressão isentrópica em um compressor;
- •Fornecimento de calor a pressão constante em um aquecedor;
- •Expansão isentrópica em uma turbina;
- •Rejeição de calor a pressão constante em um trocador de calor.

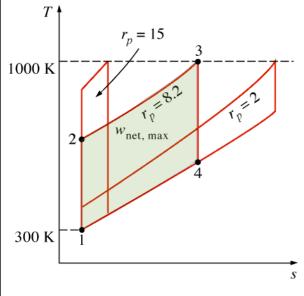
7

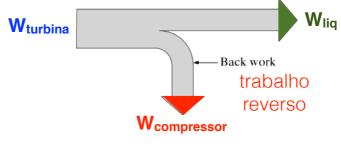
Ciclo Brayton



Eficiência térmica (calores específicos constantes):

Eficiência térmica (calores específicos constantes):

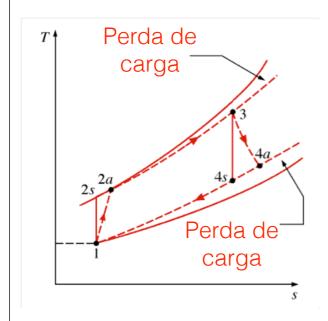

Ciclo Brayton


- ◆A máxima temperatura do ciclo ocorre no final do processo de combustão (estado 3);
- ◆A máxima temperatura é limitada pela resistência do material das palhetas (1700 K, valor atual);
- ◆Essa restrição também limita a razão máxima de pressão;
- ◆Para uma temperatura T₃ fixa na entrada da turbina, o trabalho líquido cresce, passa por um máximo e depois decresce (veja a figura a seguir).

Ciclo Brayton

Eficiência térmica X trabalho líquido

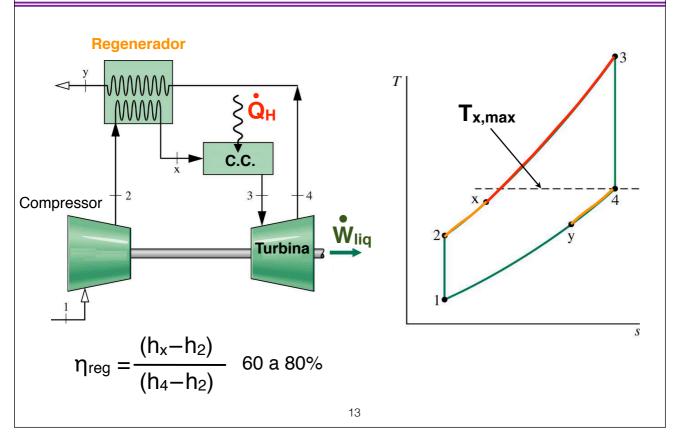
- Menores trabalhos líquidos resultam na necessidade de maiores vazões mássicas e, portanto, maiores instalações;
- Uma parcela significativa do trabalho é usada para acionar o compressor.

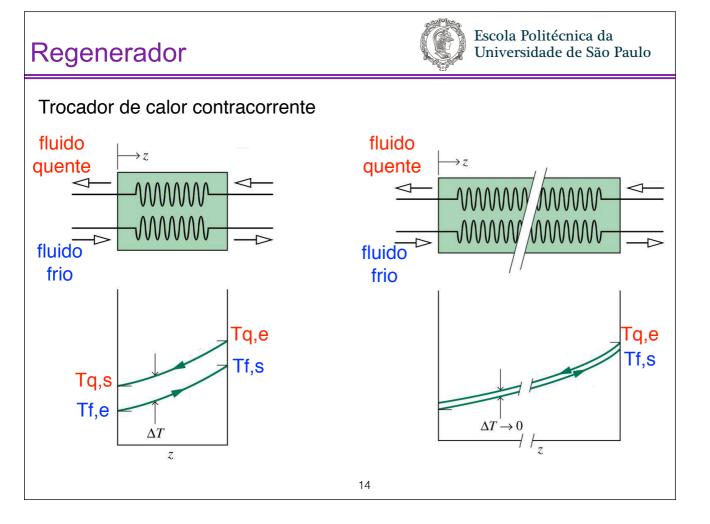


11

Ciclo Brayton

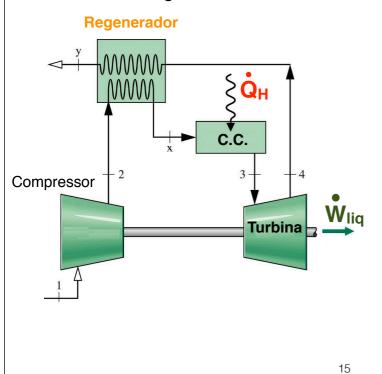
Desvios do comportamento ideal

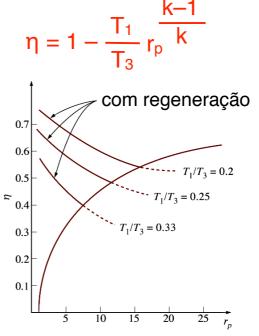



$$\eta_c = \frac{(h_1 - h_{2s})}{(h_1 - h_{2a})}$$

$$\eta_t = \frac{(h_3 - h_{4a})}{(h_3 - h_{4s})}$$

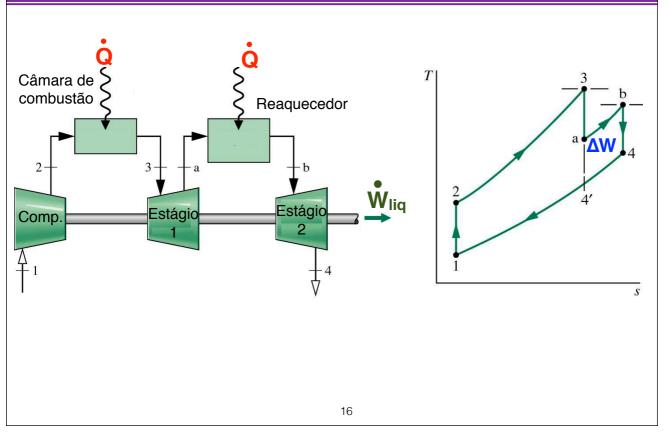
Ciclo Brayton regenerativo



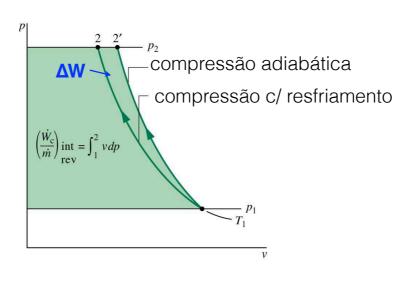


Ciclo Brayton regenerativo

Eficiência com regenerador ideal

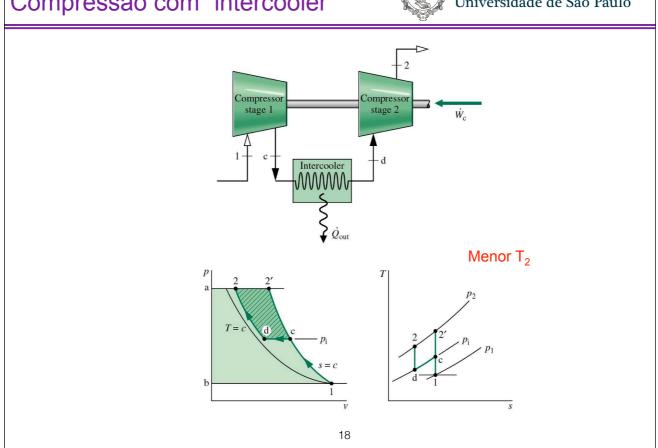


Ciclo Brayton com reaquecimento



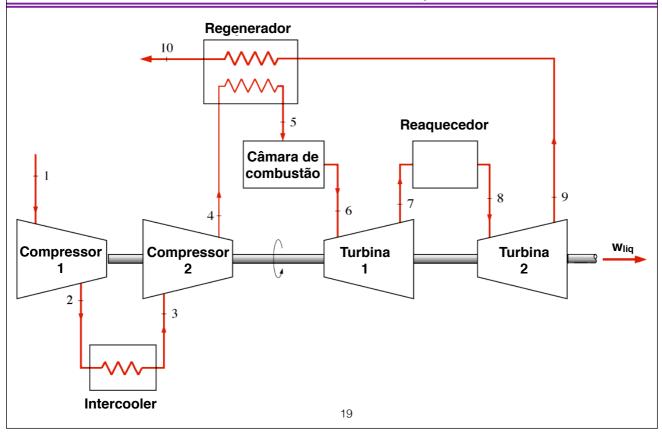
Escola Politécnica da Universidade de São Paulo

Compressão com "intercooler"

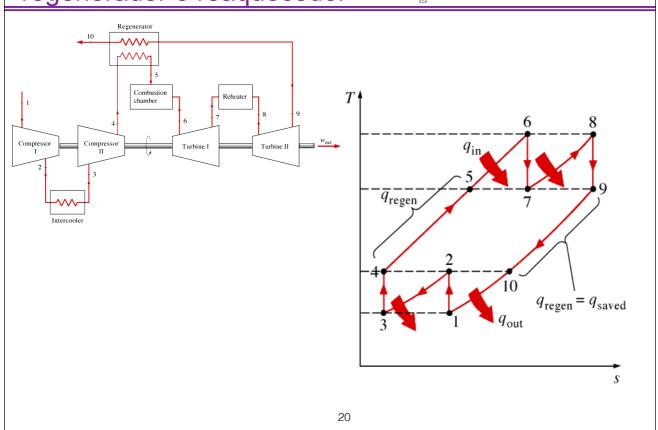


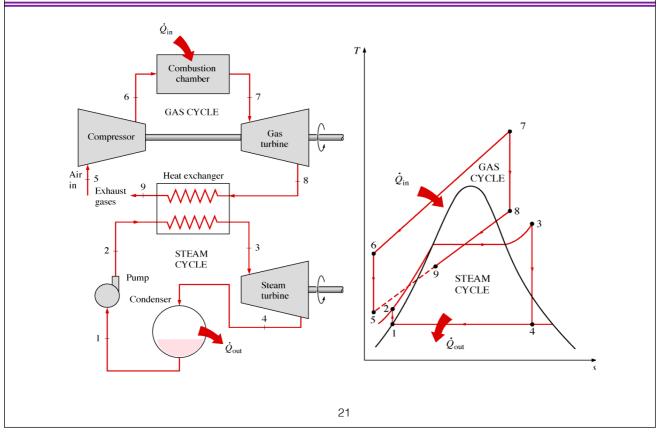
17

Compressão com "intercooler"



Escola Politécnica da Universidade de São Paulo


Brayton com intecooler, regenerador e reaquecedor

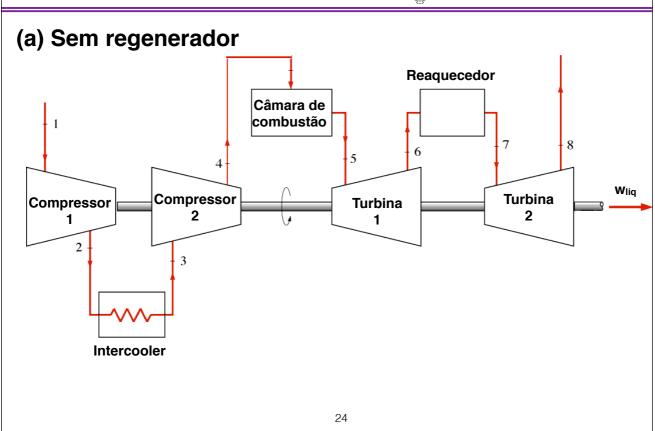

Brayton com intecooler, regenerador e reaquecedor

Ciclo combinado

Exercícios

1) Considere um ciclo de turbina a gás ideal com dois estágios de compressão e dois estágios de expansão. A razão de pressão em cada estágio do compressor e da turbina é de 3. O ar entra em cada estágio do compressor a 300K e em cada estágio da turbina a 1200K. Considerando calores específicos variáveis, pede-se: (a) o esquema da instalação com e sem regenerador, (b) a representação do ciclo com e sem regenerador em um diagrama T-s, (c) a relação entre a potência necessária para acionar o compressor e a potência desenvolvida pela turbina, assim como o rendimento térmico do ciclo para o caso em que não há um regenerador, e (d) a relação entre a potência necessária para acionar o compressor e a potência desenvolvida pela turbina, assim como o rendimento térmico para o caso em que há um regenerador com eficiência de 75%.

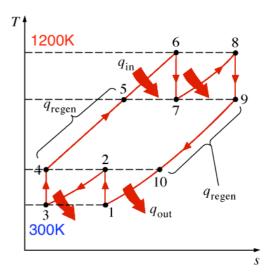
Solução


Hipóteses:

- 1.Regime permanente;
- 2. Variações de energia cinética e potencial desprezíveis;
- 3. Compressores adiabáticos reversíveis;
- 4. Ciclo padrão a ar;
- 5. Gás ideal com calores específicos variáveis.


23

Exercícios


Exercícios

(b) Sem regenerador

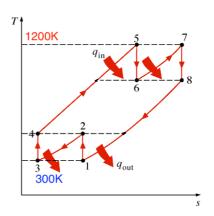
1200K 5 7 7 1200K 5 7 8 8 300K

(b) Com regenerador

(c) Sem regenerador

♦Estado 1: T₁ = 300K

 $h_1 = h_3 = 300,47 \text{kJ/kg}$


 $s_1^T = 6.86926kJ/kgK$

♦Estado 2: s₂ = s₁

$$S_2 - S_1 = S_2^T - S_1^T - R \ln P_2 / P_1 = 0$$

$$s_2^T = s_1^T + R \ln P_2 / P_1 = 6,86926 + 0,287. \ln 3$$

 $s_2^T = 7,18kJ/kgK$

Propriedades do ar (gás ideal)

T / (K)	h / (kJ/kg)	$s_0^T / (kJ/kgK)$	
400	401,30	7,15926	
420	421,59	7,20875	

Interpolando, $T_2 = 410K$ e $h_2 = 412kJ/kg$

Note que, $T_4 = T_2$ e $h_4 = h_2$

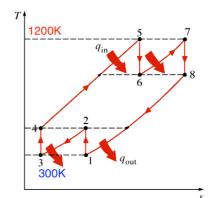
27

Exercícios

(c) Sem regenerador

♦Estado 5: T₅ = 1200K

 $h_5 = h_7 = 1277,81 \text{kJ/kg}$


 $s_5^T = 8,34596kJ/kgK$

♦Estado 6: s₆ = s₅

$$..s_6 - s_5 = s_6^T - s_5^T - R ln P_6 / P_5 = 0$$

 $s_6^T = s_5^T + R \ln P_6 / P_5 = 8,34596 + 0,287. \ln(1/3)$

 $s_6^T = 8,03kJ/kgK$

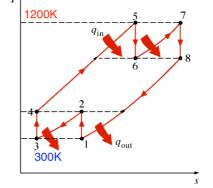
Propriedades do ar (gás ideal)

T / (K)	h / (kJ/kg)	$s_0^T / (kJ/kgK)$	
900	933,15	8,01581	
950	989,44	8,07667	

Interpolando, $T_6 = 912K$ e $h_6 = 947kJ/kg$

Note que, $T_8 = T_6$ e $h_8 = h_6$

(c) Sem regenerador


♦Trabalho específico para acionar os compressores:

$$W_c = 2(h_2 - h_1) = 2(412 - 300,47) = 223kJ/kg$$

♦Trabalho específico nas turbinas:

$$W_T = 2(h_5 - h_6) = 2(1277,81 - 947) = 662kJ/kg$$

♦Calor fornecido ao ciclo:

$$q_{in} = (h_5 - h_4) + (h_7 - h_6) = 1277,81 - 412 + 1277,81 - 947 = 1197kJ/kg$$

♦Back work:

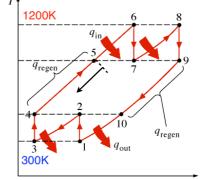
$$r_{bw} = w_c / w_T = 223 / 662 = 0.337$$

♦Rendimento térmico:

$$\eta_t = (w_T - w_c) / q_{in} = (662 - 223) / 1197 = 0,367$$

29

Exercícios



(c) Com regenerador

♦Os trabalhos específicos nos compressores e turbinas permanecem iguais, logo:

$$r_{bw} = 0.337$$

♦Calor no regenerador:

$$\eta_{\text{reg}} = \frac{q_{\text{reg}}}{(h_9 - h_4)}$$

$$q_{\text{reg}} = \eta_{\text{reg}}(h_9 - h_4) = 0,75 (947 - 412) = 401 \text{kJ/kg}$$

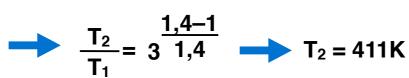
♦Calor na câmara de combustão:

$$q_{in} = q_{in,anterior} - q_{reg} = 1197 - 401 = 796kJ/kg$$

♦Rendimento térmico:

$$\eta_t = (w_T - w_c) / q_{in} = (662 - 223) / 796 = 0,552$$

1200K


Vamos repetir os cálculos considerando calores específicos constantes ($c_{p0} = 1,004 e c_{v0} = 0,717 kJ/kgK, 300K$)...

(c) Sem regenerador

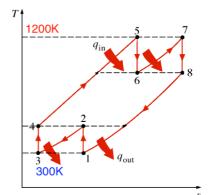
♦Estado 1: T₁ = 300K

♦Estado 2: S₂ = S₁

$$\frac{\mathsf{T}_2}{\mathsf{T}_1} = \left(\frac{\mathsf{P}_2}{\mathsf{P}_1}\right)^{\frac{\mathsf{k}-1}{\mathsf{k}}}$$

31

Exercícios


(c) Sem regenerador

◆Estado 5: T₅ = 1200K

♦Estado 6: s₆ = s₅

$$\frac{\mathsf{T}_6}{\mathsf{T}_5} = \left(\frac{\mathsf{P}_6}{\mathsf{P}_5}\right)^{\frac{\mathsf{k}-1}{\mathsf{k}}}$$

 $\frac{T_6}{T_5} = 1/3 \frac{1,4-1}{1,4} \longrightarrow T_6 = 877K$

1200K

(c) Sem regenerador

♦Trabalho específico para acionar os compressores:

$$w_c = 2(h_2 - h_1) = 2c_{p0}(T_2 - T_1) = 223kJ/kg$$

♦Trabalho específico nas turbinas:

$$w_T = 2(h_5 - h_6) = 2c_{p0}(T_5 - T_6) = 649kJ/kg$$

♦Calor fornecido ao ciclo:

$$q_{in} = (h_5 - h_4) + (h_7 - h_6) = c_{p0}(T_5 - T_4 + T_7 - T_6) = 1116kJ/kg$$

♦Back work:

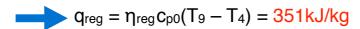
$$r_{bw} = w_c / w_T = 223 / 649 = 0.343$$

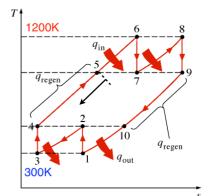
Pequena diferença!

♦Rendimento térmico:

$$\eta_t = (w_T - w_c) / q_{in} = (649 - 223) / 1116 = 0,382$$

33


Exercícios



(c) Com regenerador

♦Calor no regenerador:

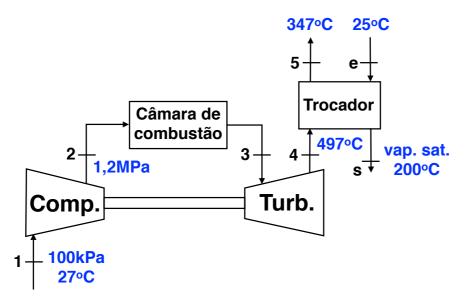
$$\eta_{reg} = \frac{q_{reg}}{(h_9 - h_4)}$$

♦Calor na câmara de combustão:

$$q_{in} = q_{in,anterior} - q_{reg} = 1116 - 351 = 765 \text{kJ/kg}$$

♦Rendimento térmico:

$$\eta_t = (w_T - w_c) / q_{in} = (649 - 223) / 796 = 0,557$$


- 2) Uma planta de cogeração é composta basicamente por uma turbina a gás e um trocador de calor para produção de vapor. A planta opera segundo um ciclo simples de Brayton entre as pressões de 100kPa e 1200kPa. Ar entra no compressor a 27°C. Os gases de combustão deixam a turbina a 497°C e o trocador de calor a 347°C. Água líquida entra no trocador a 25°C deixando-o como vapor saturado a 200°C. A potência líquida produzida no ciclo é de 800kW. Assumindo uma eficiência isentrópica de 82% para o compressor e para a turbina e *considerando calores específicos variáveis*, determine:
- (a) temperatura do ar na entrada da turbina;
- (b) a relação entre a potência do compressor e da turbina e o rendimento térmico do ciclo não considerando o calor trocado como energia útil;
- (c) a vazão mássica de ar;
- (d) a taxa de produção de vapor no trocador de calor.

35

Exercícios

Esquema:

Solução

Hipóteses:

- 1.Regime permanente;
- 2. Variações de energia cinética e potencial desprezíveis;
- 3. Ciclo padrão a ar;
- 4. Gás ideal com calores específicos variáveis.

37

Exercícios

Solução (a)

Estado 1:
$$T_1 = 27^{\circ}C$$
 (300K) e $P_1 = 100$ kPa $h_1 = 300,47$ kJ/kg

$$s_1 = s_1^T = 6.86926 \text{kJ/kgK}$$

♦Estado 2:
$$P_2 = 1200$$
kPa e $s_{2s} = s_1$

$$S_{2s} - S_1 = S_{2s}^T - S_1^T - RInP_2/P_1 = 0$$

$$s_{2s}^{T} = s_{1}^{T} + R ln P_{2} / P_{1} = 6,86926 + 0,287.ln 12$$

 s_{2s} ^T =7,58kJ/kgK

Propriedades do ar (gás ideal)					
T / (K) h / (kJ/kg)		$s_0^T / (kJ/kgK)$			
600	607,32	7,57638			
620	628.38	7.61090			

$$T_{2s} \approx 603 \text{K e } h_{2s} \approx 611 \text{kJ/kg}$$

$$\eta_{s,c} = \frac{h_{2s} - h_1}{h_2 - h_1} \qquad h_2 = 679 \text{kJ/kg}$$

Solução (a)

♦ Estados 3 e 4: $T_4 = 497^{\circ}C$ (770K) e $P_4 = 100$ kPa

 $h_4 = 789,37kJ/kg e s_4 = s_4^T = 7,8432kJ/kgK$

$$\eta_{s,T} = \frac{h_3 - h_4}{h_3 - h_{4s}}$$

$$\eta_{s,T} = \frac{h_3 - h_4}{h_3 - h_{4s}}$$
 $0,82 = \frac{h_3 - 789,37}{h_3 - h_{4s}}$
Eq. 1

Problema iterativo!

$$s_3 = s_{4s} = s_{4s}^T - R ln P_4 / P_{ref} = s_{4s}^T$$
 Eq. 2

$$s_3 = s_3^T - RInP_3/P_{ref} \Rightarrow s_3^T = s_3 + 0.287In12$$
 Eq. 3

Processo iterativo					
palpite	tabela	Eq. 1	tabela	Eq. 2 e 3	Tabela
T ₃ / (K)	h ₃ / (kJ/kg)	h _{4s} / (kJ/kg)	s _{4s} T / (kJ/kgK)	s ₃ ^T / (kJ/kgK)	T ₃ / (K)
1200	1277,81	682,2	7,69	8,40	1256
1256	1344	667,6	7,67	8,38	1235
1246	1332	670,3	7,68	8,39	1246

39

Exercícios

Solução (b)

♦Trabalho específico para acionar o compressor:

$$w_c = (h_2 - h_1) = 679 - 300,47 = 378 \text{kJ/kg}$$

♦Trabalho específico nas turbinas:

$$W_T = (h_3 - h_4) = 1332 - 789,37 = 543kJ/kg$$

♦Back work:

$$r_{bw} = w_c / w_T = 378 / 543 = 0,696$$

♦Calor fornecido ao ciclo:

$$q_{in} = (h_3 - h_2) = 1332 - 679 = 653kJ/kg$$

◆Rendimento térmico:

$$\eta_t = (w_T - w_c) / q_{in} = (543 - 378) / 653 = 0,277$$

Solução (c)

♦Potência líquida e vazão mássica

$$\dot{m}_{ar} = \frac{\dot{W}}{(w_T - w_c)}$$
 $\dot{m}_{ar} = \frac{800}{(543 - 378)}$ $\dot{m}_{ar} = 4,84 \text{kg/s}$

41

Exercícios

Solução (d)

♦balanço de energia no trocador de calor:

$$\dot{m}_{ar}(h_4-h_5) = \dot{m}_{água}(h_s-h_e)$$

Estado 5: $T_5 = 620$ K, assim $h_5 = 628,38$ kJ/kg

♦Estado s: $T_s = 200$ °C e $P_{sat} = 1553,8$ kPa, assim $h_v = 2793,18$ kJ/kg

Estado e: $T_e = 25^{\circ}C$ e $P_e = 1553,8kPa$, $h_e = u_I(T_e) + P_e v_e$ $h_e = 104,86 + 1553,8.0,001003 = 106,4kJ/kg$

$$4,84(789,37-628,38) = \mathring{m}_{água}(2793,18-106,4)$$

$$\dot{m}_{\text{água}} = 0.27 \text{kg/s}$$