

UNIVERSIDADE DE SÃO PAULO

Escola Superior de Agricultura "Luiz de Queiroz" Departamento de Engenharia de Biossistemas

LEB0140 – Física Ciências dos Alimentos

Prof. Jarbas H. de Miranda

Engenheiro Agrônomo Depto. de Engenharia de Biossistemas ESALQ/USP

e-mail: jhmirand@usp.br

Áreas de Pesquisa:

- 1. Irrigação e Drenagem de Terras Agrícolas
- 2. Modelagem Computacional (desenvolvimento de softwares em Visual Basic/VBA Excel)
 3. Movimento da Água e Solutos no Solo (Engenharia de Água e Solo)

25 de fevereiro de 2019 Piracicaba, SP

Disciplina

Elementos Climáticos

Grandezas Físicas

Contato

Ciências dos Alimentos: Ramo multidisciplinar que estuda a composição, deterioração, processamento, conservação, elaboração, qualidade e comercialização dos alimentos para o consumidor.

Objetivos: A disciplina LEB0140 (Física) objetiva fornecer conhecimentos sobre processos físicos relacionados às Ciências dos Alimentos. O conteúdo programático é composto pelos seguintes temas: Revisão sobre grandezas físicas e unidades; Termodinâmica de sistemas gasosos: equação de estado e processos termodinâmicos; 1ª lei da Termodinâmica: calor, trabalho e energia interna. Energia térmica: radiação e condução; Aplicações da Termodinâmica de Sistemas Gasosos (Umidade Relativa do Ar). Hidrodinâmica (estudo do movimento dos fluídos).

LEB0140 - Física - Ciências dos Alimentos

Disciplina

Elementos Climáticos

Grandezas Físicas

Contato

Conteúdo Programático

Capítulos e Textos Complementares (Moodle USP e-Disciplinas)

- Grandezas Físicas e Sistemas de Unidades
- Termodinâmica de Sistemas Gasosos (Condução Térmica & Radiação Térmica (Leis))
- Umidade Relativa do Ar
- Hidrodinâmica (estudo do movimento dos fluídos)

Disciplina

Elementos Climáticos

Grandezas Físicas

Contato

Conteúdo Programático

Capítulos e Textos Complementares (Moodle USP e-Disciplinas):

CAPITULO 1 - Conversão de Unidades - 1

Texto Complementar - Sistemas de Unidades

Capítulo1 - Medidas Físicas

Medidas Físicas, Grandezas e Unidades

Capítulo 2 - Termodinâmica

Capítulo 3 - Radiação Térmica

Capítulo 4 - Outras Leis da Radiação

Capítulo 5 - Umidade Relativa do Ar

Capítulo 6 – Hidrodinâmica (estudo do movimento dos fluídos)

Lista de Exercícios (Moodle USP e-Disciplinas):

Lista 1 - Sistemas e conversão de unidades

Lista 2 - Termodinâmica

Lista 3 - Radiação Térmica

Lista 4 - Umidade Relativa do Ar

Lista 5 - Umidade do Solo

Lista 6 - Hidrodinâmica (estudo do movimento dos fluídos)

Escola Superior de Agricultura "Luiz de Queiroz" LEB0140 - Física - Ciências dos Alimentos

Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

Turma

Aulas: 2ª Feira 19:00 - 22:20 h 44 alunos

Disciplina

Elementos **Climáticos**

Grandezas Físicas

Contato

Avaliações

PROVA 1: 18/03/2019 (segunda-feira) (20%)**PROVA 2: 06/05/2019 (segunda-feira)** (30%)**PROVA 3: 17/06/2019 (segunad-feira)** (40%)

Revisão de Prova: Datas e Horários especificados após a divulgação das notas

Maiores informações: Secretaria de Graduação do LEB Angela (angelads@usp.br)

Disciplina

Elementos Climáticos

Grandezas Físicas

Contato

Jarbas H. de Miranda

Engenheiro Agrônomo

Prof. Dr. Departamento de Engenharia de Biossistemas ESALQ/USP

Fone: (19) 3429-4123 Ramal: 210

e-mail: jhmirand@usp.br

Imprimir Tabela: Moodle USP e-Disciplinas

DESIGNAÇÃO		DIMENSÕES		CGS	SI	ST
		MLT	FLT	(M, L ,T)	(M, L ,T)	(F, L ,T)
	Comprimento	L	L	centímetro (cm)	metro (m)	metro (m)
Unidades Fundamentais	Massa	М	F L ⁻¹ T ²	grama (g)	quilograma (kg)	U.T.M
	Tempo	Т	Т	segundo (s)	segundo (s)	segundo (s)

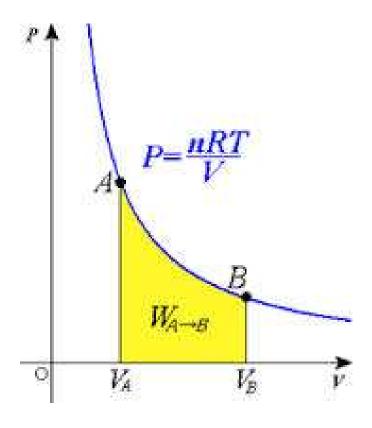
Escalas

Imprimir Tabela: Moodle USP e-Disciplinas

DESIGNAÇÃO		DIMENSÕES		CGS	SI	ST
		MLT	FLT	(M, L ,T)	(M, L ,T)	(F, L ,T)
	Área	L²	L²	cm²	m²	m²
	Volume	L³	L³	cm³	m³	m³
	Velocidade	L T ⁻¹	L T ⁻¹	cm s ⁻¹	m s ⁻¹	m s ⁻¹
	Aceleração	L T ⁻²	L T ⁻²	cm s ⁻²	m s ⁻²	m s ⁻²
	Força	M L T ⁻²	F	Dina (dyn) g cm s ⁻²	Newton (N) kg m s ⁻²	Quilograma Força (kgf)
Unidades Derivadas	Trabalho	M L ² T ⁻²	FL	erg g cm² s ⁻²	Joule (J) kg m² s-²	Quilogrâmetro (kgf m)
	Potência	M L ² T ⁻³	FLT-1	erg s ⁻¹ g cm ² s ⁻³	Watt (W) kg m² s ⁻³	Quilogrâmetro kgf m s ⁻¹

Algumas considerações sobre Trabalho (W):

$$\mathbf{W} = \mathbf{F} \cdot \Delta \mathbf{x}$$



Energia (?) (Formas de Energia, Ec e Ep)

$$\mathbf{W} = \mathbf{P} \cdot \Delta \mathbf{V}$$

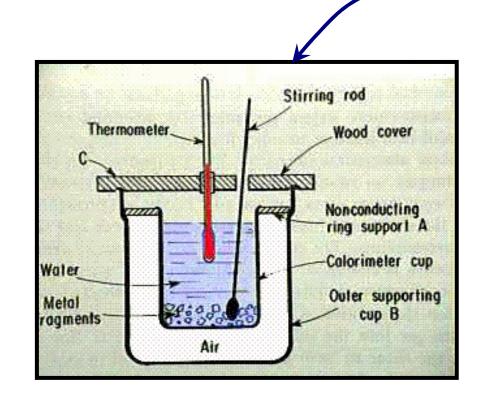
Energia

Algumas considerações sobre potência (W):

$$Pot = V.A$$

$$\begin{matrix} J & c \\ \hline c & s \end{matrix}$$

$$Pot = \frac{J}{s}$$


$Pot = \frac{Q}{A}$

Alguns valores de potência (W):

$$1 \text{ HP} = 1,014 \text{ cv}$$

$$1 BTU = 251,99 cal$$

$$1 J = 0,23884 cal$$

Calorímetro

"utilizar de 4 a 5 casas decimais"

Pressão	M L ⁻¹ T ⁻²	F L ⁻²	dyn cm ⁻²	Pascal (N m ⁻²)	Kgf m ⁻²
Massa Específica ($ ho$)	M L ⁻³	F L ⁻⁴ T ²	g cm ⁻³	kg m ⁻³	UTM m ⁻³
Peso Específico (γ)	M L ⁻² T ⁻²	F L ⁻³	dyn cm ⁻³	N m ⁻³	Kgf m ⁻³
Vazão	L ³ T ⁻¹	L ³ T ⁻¹	cm ³ s ⁻¹	$m^3 s^{-1}$	$m^3 s^{-1}$
Momento	M L T ⁻¹	FT	g cm s ⁻¹	kg m s ⁻¹	UTM m s ⁻¹
Viscosidade	M L ⁻¹ T ⁻¹	FTL ⁻²	g cm ⁻¹ s ⁻¹	kg m ⁻¹ s ⁻¹	UTM m ⁻¹ s ⁻¹

 $Viscosidade = \frac{F. d}{A. v}$ Poise = Pa.s

EXERCÍCIOS

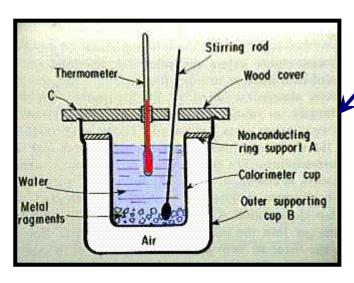
LEB0140 - Física - Ciências dos Alimentos Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

1) Calcule a distância do vão livre conforme a placa de sinalização abaixo:

1 ft = 30,48 cm 1 in = 2,54 cm

Resposta: 3,81 m

2) Faça as seguintes conversões (1 cal = 4,1868 J):


$$1 N = ? dyn$$
 Resposta: 1 N = 10⁵ dyn

$$\frac{1 \text{ cal}}{\text{cm}^2 \text{ min}} = ? \frac{\text{W}}{\text{m}^2}$$
 Resposta: 697,8 W m⁻²

LEB0140 - Física - Ciências dos Alimentos Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

4) Qual o calor específico da água em J kg⁻¹ K⁻¹, diante da seguinte situação:

$$Pot = \frac{Trabalho}{Tempo} = \frac{Energia}{Tempo} = \frac{Calor}{Tempo}$$

Pot = V.A
$$c = \frac{V.A.t}{m.\Delta T}$$

Calorímetro:

Dados do Exercício:

m = 200 mL

 $V = 25,11 J C^{-1}$

 $A = 2,33 \text{ C s}^{-1}$

 $T_1 = 25 \, {}^{\circ}\text{C} \quad T_2 = 32 \, {}^{\circ}\text{C}$

 Δ Tempo = 1'40"

Resposta:

4.179,02 J kg⁻¹ K⁻¹

LEB0140 – Física - Ciências dos Alimentos Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

5) Um animal ao ingerir uma ração com valor nutricional de 350 kCal fornecerá quantos kW.h ao organismo?

Por quanto tempo daria para manter uma lâmpada de 100 W acesa?

$$1 J = 0,2388 cal$$

$$1 W = \frac{1 J}{s}$$

$$\boxed{1 J = 1 W.s}$$

Resposta:

a) 0,407 kW.h b) 4,07 h

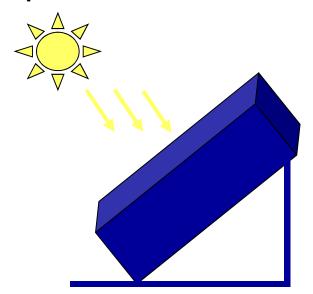
LEB0140 - Física - Ciências dos Alimentos Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

- 6) Um determinado alimento sofre a incidência de radiação solar de 300 W m⁻². Supondo que toda essa energia seja utilizada para evaporar água e que a duração dessa aplicação seja de 12 horas, pergunta-se:
- a) Quantos litros de água seriam evaporados por dia por m^2 ? (Latente de vaporização (Lv) = 2260.10 3 J/KgH $_2$ O)

$$\frac{1 \text{ W}}{\text{m}^2} = \frac{1 \text{ J}}{\text{s m}^2}$$

$$L_{v} = 2260.10^{3} \frac{J}{kg_{H_{2}O}}$$

Resposta:


a) 5,73 L m⁻²

LEB0140 – Física - Ciências dos Alimentos Prof. Jarbas H. de Miranda e-mail: jhmirand@usp.br

7) Um aquecedor solar é utilizado para fornecer calor a um secador de frutas. O secador possui um total de frutas de 250 kg. A intensidade de radiação incidente é de 400 W m⁻² e o rendimento do painel é de 40%.

Pergunta-se: Qual deverá ser a área do painel solar para que se consiga aquecer essa massa de frutas de 23 °C a 70 °C em 6 horas.

Q_{Re cebido pela área} = Q_{Fornecido à água}

$$\frac{1 \text{ W}}{\text{m}^2} = \frac{1 \text{ J}}{\text{s m}^2}$$

Resposta:

Área = 14,21m²