LBE5010 Renewable Energies and Energy Planning

EXERGY ANALYSIS: Gibbs free energy and chemical exergy

Prof. Paulo Seleghim Jr. Universidade de São Paulo

THERMODYNAMICS OF CHEMICAL REACTIONS: Gibbs free energy and chemical exergy

Entry point: How to quantify the spontaneity of a bio, thermo or chemical process ?

GIBBS FREE ENERGY:

Assessing the spontaneity of a process: thermodynamic potential that vanishes when the process reaches equilibrium at constant temperature and pressure ...

J. Willard Gibbs

GIBBS FREE ENERGY:

Assessing the spontaneity of a process: thermodynamic potential that vanishes when the process reaches equilibrium at constant temperature and pressure ...

J. Willard Gibbs

GIBBS FREE ENERGY \Box

Gibbs free energy Gibbs function Gibbs potential Free enthalpy Etc.

 $N_{2(g)} + O_{2(g)} \xrightarrow{T=T^{\phi}} 2NO_{(g)}$

$$N_{2(g)} + O_{2(g)} \xrightarrow{T=T^{\phi}} 2NO_{(g)}$$

$$\Delta H = \sum_{\text{prod}} H_k(T) - \sum_{\text{reag}} H_k(T)$$

$$N_{2(g)} + O_{2(g)} \xrightarrow{T=T^{\phi}} 2NO_{(g)}$$

$$\Delta H = \sum_{\text{prod}} H_k(T) - \sum_{\text{reag}} H_k(T)$$

$$\Delta H = 2 \cdot \left(90,29 \frac{kJ}{mol}\right) - 1 \cdot (0+0) = +180,58 \text{ kJ}$$

$$N_{2(g)} + O_{2(g)} \xrightarrow{T=T^{\phi}} 2NO_{(g)}$$

$$\Delta H = \sum_{\text{prod}} H_k(T) - \sum_{\text{reag}} H_k(T)$$

$$\Delta H = 2 \cdot \left(90,29 \frac{kJ}{mol}\right) - 1 \cdot \left(0+0\right) = +180,58 \text{ kJ}$$

Endothermic —

A energia necessária para a reação pode ser vir de uma fonte externa, ou da própria temperatura das moléculas...

CONJECTURES:

 $\Delta H > 0$ (endothermic) \rightarrow "less" spontaneous

 $\Delta H < 0$ (exothermic) \rightarrow "more" spontaneous

Case 1: $\Delta H < 0 e \Delta S > 0$ greater quantity of microstates

Case 1: $\Delta H < 0 e \Delta S > 0$ greater quantity of microstates

Crash test: two cars hitting each other and spreading various pieces...

Case 1: $\Delta H < 0 e \Delta S > 0$ greater quantity of microstates

Crash test: two cars hitting each other and spreading various pieces...

Spontaneous in the indicated sense (\forall Temperature)

- \bullet Opposite sense \rightarrow smaller probability of three molecules bumping into each other at the same time to form two molecules
- The products (three molecules) are at a lower energy level compared with the reagents ($\Delta H < 0$)

Case 1: $\Delta H < 0 e \Delta S < 0$ smaller quantity of microstates

Case 1: $\Delta H < 0 e \Delta S < 0$ smaller quantity of microstates

"Inverse" crash test: many parts bumping into each other assembling a car...

Conditionally spontaneous in the indicated direction

- Low temperature: favors spontaneity (greater and better contact time for the parts to assemble in the correct way...)
- High temperature: hinders spontaneity (contact time is too short and kinetic energy is too high...)

water
$$\stackrel{1}{\underset{2}{\longleftarrow}}$$
 ice

J. Willard Gibbs

A measure of a processes' spontaneity: thermodynamic potential that vanishes when the system reaches equilibrium at constant pressure and temperature...

$$\Delta G \stackrel{\text{def}}{=} \begin{cases} < 0 \rightarrow \text{spontaneous} \\ > 0 \rightarrow \text{non spontaneous} \end{cases}$$

	$\Delta H < 0$	$\Delta H > 0$
$\Delta S > 0$	spontaneous	spontaneous at high temperatures
$\Delta S < 0$	spontaneous at low temperatures	non spontaneous

$$\Delta G = + \Delta H - \dots \Delta S \leftarrow \text{different physical units}$$

	$\Delta H < 0$	$\Delta H > 0$
$\Delta S > 0$	spontaneous	spontaneous at high temperatures
$\Delta S < 0$	spontaneous at low temperatures	non spontaneous

$$\Delta G = + \Delta H + \dots - T \cdot \Delta S$$

	$\Delta H < 0$	$\Delta H > 0$
$\Delta S > 0$	spontaneous	spontaneous at high temperatures
$\Delta S < 0$	spontaneous at low temperatures	non spontaneous
$\Delta G = A(\Delta H) + B(T, \Delta S)$

J. Willard Gibbs

 $\Delta G \stackrel{\text{def}}{=} \Delta H - T \cdot \Delta S$

	$\Delta H < 0$	$\Delta H > 0$
$\Delta S > 0$	spontaneous	spontaneous at high temperatures
$\Delta S < 0$	spontaneous at low temperatures	non spontaneous

$\Delta G = A(\Delta H) + B(T, \Delta S)$

J. Willard Gibbs

 $G \stackrel{\text{def}}{=} H - T \cdot S$ dG<0

Practical application:

Example: spontaneity analysis of carbon monoxide oxidation in function of the temperature

$$CO_{(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{\text{latm}} CO_{2(g)}$$

Example: spontaneity analysis of carbon monoxide oxidation in function of the temperature

Oxidation occurring (a) T^{ϕ} (25°C = 298K)

$$\Delta G \stackrel{\text{def}}{=} \Delta H - T \cdot \Delta S$$

$$\Delta H^{\varphi} = \sum_{prod} n_k \Delta h_{f,k}^{\varphi} - \sum_{reag} n_k \Delta h_{f,k}^{\varphi}$$

$$\Delta S^{\phi} = \sum_{\text{prod}} n_k \Delta S^{\phi}_{\text{f,k}} - \sum_{\text{reag}} n_k \Delta S^{\phi}_{\text{f,k}}$$

Charted data...

 $\Delta h_{f,CO}^{\phi} = -110,53 \text{ kJ/mol} \qquad \Delta s_{f,C}^{\phi}$

 $\Delta s_{f,CO}^{\phi} = 197,67 \text{ J/mol/K}$

 $\Delta h^{\phi}_{f,O_2} = 0 \qquad \qquad \Delta s^{\phi}_{f,O_2} = 205,14 \text{ J/mol/K}$

 $\Delta h_{f,CO_2}^{\phi} = -393,51 \text{ kJ/mol}$ $\Delta s_{f,CO_2}^{\phi} = 213,74 \text{ J/mol/K}$

 $C_{P,CO} = 29,14 \text{ J/mol}$

 $C_{P,O_2} = 29,38 \text{ J/mol}$

 $C_{P,CO_2} = 37,11 \text{ J/mol}$

$$\Delta H^{\varphi} = \sum_{\text{prod}} n_k \Delta h_{\text{f},k}^{\varphi} - \sum_{\text{reag}} n_k \Delta h_{\text{f},k}^{\varphi}$$

$$\Delta \mathsf{H}^{\phi} = \left[1 \cdot (-393,51)\right] - \left[1 \cdot (-110,53) + 1/2 \cdot (0)\right]$$

 $\Delta H^{\phi} = -282,98 \text{ kJ}$

$$\Delta S^{\phi} = \sum_{\text{prod}} n_k \Delta s^{\phi}_{f,k} - \sum_{\text{reag}} n_k \Delta s^{\phi}_{f,k}$$

$$\Delta S^{\phi} = \left[1 \cdot (213,74)\right] - \left[1 \cdot (197,67) + 1/2 \cdot (205,14)\right]$$
$$\Delta S^{\phi} = -86,5 \frac{J}{K}$$

$\Delta G^{\phi} = \Delta H^{\phi} - T \cdot \Delta S^{\phi}$

$$\Delta H^{\phi} = -282,98 \text{ kJ} \quad \Delta S^{\phi} = -86,5 \frac{\text{kJ}}{\text{K}}$$

$$\Delta G^{\phi} = -282,98 \text{ kJ} - 298 \text{ K} \cdot (-86,5 \cdot 10^{-3} \text{ kJ/K})$$

 $\Delta G^{\phi} = -257,203 \text{ kJ}$

$$CO_{(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{\text{latm}} CO_{2(g)} \longrightarrow \text{Spontaneous @ 1atm, 25°C}$$

Oxidation occurring @ T \neq T^{ϕ} (Hess law)

$$\Delta H_{\text{reac}}^{\text{T}} = \Delta_{\text{CO}} + \Delta_{\text{O}_2} + \Delta H_{\text{reac}}^{\text{T}^{\phi}} + \Delta_{\text{CO}_2}$$

Oxidation occurring @ T \neq T^{ϕ} (Hess law)

$$\Delta_{k} = \pm n_{k} \int_{T^{\phi}}^{T} C_{P,k} \cdot dT$$
$$\Delta_{k} = \pm n_{k} C_{P,k} \cdot (T - T^{\phi})$$

Oxidation occurring (a) $T \neq T^{\phi}$ (Hess law)

$$\Delta_{k} = \pm n_{k}C_{P,k} \cdot (T - T^{\phi})$$

 $C_{P,CO} = 29,14 \text{ J/mol}$ $\Delta_{CO} = -1.29,14 \cdot (T - 298) = -29,14 \cdot (T - 298)$

$$C_{P,O_2} = 29,38 \text{ J/mol}$$
 $\Delta_{O_2} = -1/2 \cdot 29,38 \cdot (T - 298) = -14,69 \cdot (T - 298)$

$$C_{P,CO_2} = 37,11 \text{ J/mol}$$
 $\Delta_{CO_2} = +1.37,11.(T-298) = +37,11.(T-298)$

$$\Delta H_{reac}^{T} = \Delta_{CO} + \Delta_{O_{2}} + \Delta H_{reac}^{T^{\phi}} + \Delta_{CO_{2}}$$
$$\Delta H_{reac}^{T} = (-29,14 - 14,69 + 37,11) \cdot 10^{-3} \cdot (T - 298) - 282,98$$
$$\Delta H_{reac}^{T} = -280,98 - 6,72 \cdot 10^{-3} \cdot T$$

Oxidation occurring @ T \neq T^{ϕ} (Hess law)

$$\begin{split} \Delta_{k} &= \pm n_{k} \int_{T^{\phi}}^{T} \frac{C_{P,k}}{T} \cdot dT & \text{Obs.: } P_{k} = \text{cte} \\ \Delta_{k} &= \pm n_{k} C_{P,k} \cdot \ln(T/T^{\phi}) \end{split}$$

Oxidation occurring @ T \neq T^{ϕ} (Hess law)

$$\Delta_{k} = \pm n_{k}C_{P,k} \cdot \ln(T/T^{\phi})$$

 $C_{P,CO} = 29,14 \text{ J/mol}$ $\Delta_{CO} = -1.29,14.\ln(T/298) = -29,14.\ln(T/298)$

 $C_{P,O_2} = 29,38 \text{ J/mol}$ $\Delta_{O_2} = -1/2 \cdot 29,38 \cdot \ln(T/298) = -14,69 \cdot \ln(T/298)$

 $C_{P,CO_2} = 37,11 \text{ J/mol}$ $\Delta_{CO_2} = +1.37,11.\ln(T/298) = +37,11.\ln(T/298)$

$$\Delta S_{reac}^{T} = \Delta_{CO} + \Delta_{O_{2}} + \Delta S_{reac}^{T^{\phi}} + \Delta_{CO_{2}}$$
$$\Delta S_{reac}^{T} = (-29,14 - 14,69 + 37,11) \cdot \ln(T/298) - 86,5$$
$$\Delta S_{reac}^{T} = -86,5 - 6,72 \cdot \ln(T/298)$$

$$\Delta H_{\text{reac}}^{\text{T}} = -280,98 - 6,72 \cdot 10^{-3} \cdot \text{T} \qquad \left[\Delta H_{\text{reac}}^{\text{T}} \right] = \text{kJ}$$
$$\Delta S_{\text{reac}}^{\text{T}} = -86,5 - 6,72 \cdot \ln(\text{T}/298) \qquad \left[\Delta S_{\text{reac}}^{\text{T}} \right] = \text{J}$$

$$\Delta G^{\phi} = \Delta H^{\phi} - T \cdot \Delta S^{\phi}$$

 $\Delta G_{\text{reac}}^{\text{T}} = -280,98 - 6.72 \cdot 10^{-3} \cdot \text{T} - \text{T} \cdot \left[-86,5 - 6,72 \cdot \ln(\text{T}/298)\right] \cdot 10^{-3}$

 $\Delta G_{\text{reac}}^{\text{T}} = -280,98 + \text{T} \cdot \left[79,78 + 6,72 \cdot \ln(\text{T}/298)\right] \cdot 10^{-3}$

CHEMICAL EXERGY

Chemical exergy:

environment...

the maximum quantity of useful mechanical work that can be obtained from a system when it chemically transforms itself until chemical equilibrium is stablished with the

J. Willard Gibbs

Volume^(A)

in %

78.084

20.946

0.9340

0.0397

0.001818

0.000524

0.000179

in ppmv^(B)

780,840

209,460

9,340

397

18.18

5.24

1.79

Gas

Formula

 N_2

 O_2

Ar

CO₂

Ne

He

CH₄

Name

Carbon dioxide

Nitrogen

Oxygen

Argon

Neon

Helium

Methane

Standard Chemical Exergy of Atmospheric Gases:

Bringing earth's atmosphere to its pre industrial revolution composition

Standard Chemical Exergy of Atmospheric Gases

Standard Chemical Exergy of Atmospheric Gases

atmosfera = "estado morto"

Gas		Volume ^(A)	
Name	Formula	in ppmv ^(B)	in %
Nitrogen	N ₂	780,840	78.084
Oxygen	O ₂	209,460	20.946
Argon	Ar	9,340	0.9340
Carbon dioxide	CO ₂	397	0.0397
Neon	Ne	18.18	0.001818
Helium	He	5.24	0.000524
Methane	CH ₄	1.79	0.000179

$$e_{N2}^{ch} = -RT_0 \cdot ln(x_{N2}^{e}) = ...$$

... = -8.314 $\frac{J}{molK} \cdot (25 + 273.1)K \cdot ln(0.781)$
 $e_{N2}^{ch} = 613.2 J/mol$

$$e_{O2}^{ch} = -RT_0 \cdot ln(x_{O2}^{e}) = ...$$

... = -8.314 $\frac{J}{molK} \cdot (25 + 273.1)K \cdot ln(0.2095)$
 $e_{O2}^{ch} = 3874.9 J/mol$

Extracting O_2 from the atmosphere requires more exergy than extracting N_2 because its molar concentration is smaller

Standard Chemical Exergy of Atmospheric Gases

 e_{CO2}

atmosfera = "estado morto"

Gas		Volume ^(A)	
Name	Formula	in ppmv ^(B)	in %
Nitrogen	N ₂	780,840	78.084
Oxygen	O ₂	209,460	20.946
Argon	Ar	9,340	0.9340
Carbon dioxide	CO ₂	397	0.0397
Neon	Ne	18.18	0.001818
Helium	He	5.24	0.000524
Methane	CH ₄	1.79	0.000179

$$e_{Ar}^{ch} = -RT_0 \cdot ln(x_{Ar}^e) = ...$$

... = -8.314 $\frac{J}{molK} \cdot (25 + 273.1)K \cdot ln(0.00934)$
 $e_{Ar}^{ch} = 11584.6 J/mol$

$$e_{CO2}^{ch} = -RT_0 \cdot ln(x_{CO2}^{e}) = ...$$

... = -8.314 $\frac{J}{molK} \cdot (25 + 273.1)K \cdot ln(0.000397)$
 $e_{CO2}^{ch} = 19413.0 J/mol$

Standard Chemical Exergy of a Mixture of Environmental Gases

Standard Chemical Exergy of a Mixture of Environmental Gases

$$e^{ch} = -RT_0 \sum_{x} x_k \cdot (\ln x_k^e - \ln x_k) = ...$$

$$\bigcup e^{ch} = -RT_0 \cdot \ln(x_k^e)$$

$$e^{ch} = \sum_{x} x_k \cdot e^{ch}_k + RT_0 \sum_{x} x_k \cdot \ln x_k$$
Chemical exergy based on ______ Molar concentration defines a "chemical distance" to the environment

$$x_k = x_k^e \ \forall k \implies e^{ch} = 0$$

Standard Chemical Exergy of a Mixture of Environmental Gases

$$e^{ch} = -RT_0 \sum_{x} x_k \cdot (\ln x_k^e - \ln x_k) = ...$$

$$\bigcup e^{ch} = -RT_0 \cdot \ln(x_k^e)$$

$$e^{ch} = \sum_{x} x_k \cdot e^{ch}_k + RT_0 \sum_{x} x_k \cdot \ln x_k$$
Chemical exergy based on ______ Molar concentration defines a "chemical distance" to the environment
$$x_k = x_k^e \quad \forall k \implies e^{ch} = 0$$

Chemical exergy can also be defined as the minimum amount of mechanical work necessary to reconstitute the state and composition of a system from the environment through compression, chemical reaction, etc.

But is it feasible ? What is the minimum amount of exergy necessary to remove CO2 from the atmosphere so that its concentration drops to levels prior to the industrial revolution ?

$$w_{\min} = -RT_0 \sum_{x} x_k \cdot (\ln x_k^e - \ln x_k) = \dots$$

$$w_{min} = -RT_0 \sum_{x} x_k \cdot (\ln x_k^e - \ln x_k) = ...$$

 $w_{\min} = -8.314(25 + 273.15)[0.780887(\ln(0.78040) - (\ln(0.78088)) + 0.209473...]$ universal $w_{min} = -0.01315 J/mol$ total mas of earth's gas constant atmosphere $W_{min} = -0.01315 \frac{J}{mol} \times \frac{1}{28.97 g/mol} \times 5.1480 \times 10^{18} kg$ molar mas of atmospheric air $W_{min} = -2.337 \times 10^{18} \text{ J}$ $W_{world} \approx 78.4 \times 10^{18} \text{ J} \sim \text{eleven days }!$ (world power consumption)

 ΔM_{CO2}

Fig. 1.12 Plot showing the relationship between the 2nd-law efficiency and concentration of initial gas mixture

that low-sulfur Appalachian bituminous coal was burned in a 500-MW utility boiler. The capture technologies assumed for CO_2 , SO_x , NO_x , and Hg consisted of amine scrubbing, wet flue gas desulfurization, selective catalytic reduction, and activated carbon injection, respectively. In the case of NGCC, precombustion separation based upon amine scrubbing is assumed for a 477-MW plant. It is interesting to note that the 2nd-law efficiency decreases with decreasing CO_2 concentration [48]. This implies that there are still efficiencies to gain in SO_x , NO_x , and Hg capture since these processes do not include regeneration, yet they still follow the trend.

 House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ (2011) Economic and energetic analysis of capturing CO₂ from ambient air. Proc Natl Acad Sci U S A 108(51):20428– 20433

Carbon Capture

Description Springer

Chemical exergy of substances not present in the environment

The chemical exergy of any substance can be determined considering its chemical transformation to the environment constituents ...

infinite supply

Chemical exergy of substances not present in the environment

The chemical exergy of any substance can be determined considering its chemical transformation to the environment constituents ...

$$\frac{Q_{vc}}{n_F} - \frac{W_{vc}}{n_F} = \left[a \cdot h_{CO2} + b / 2 \cdot h_{H2O}\right] - \left[h_F + (a + b / 4 - c / 2) \cdot h_{O2}\right]$$

$$\frac{Q_{vc}}{T_0} + s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F = 0$$
b. entropia
$$\frac{Q_{vc}}{T_0} + s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F = 0 \qquad \text{b. entropia}$$

$$\frac{Q_{vc}}{T_0} + s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F = 0 \qquad \text{b. entropia}$$

$$Q_{vc} = -T_0 \cdot \left[s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F \right]$$

$$\frac{Q_{vc}}{T_0} + s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F = 0 \qquad \text{b. entropia}$$

$$\begin{array}{c} -Q_{vc} = -T_0 \cdot \left[s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F \right] \\ \xrightarrow{} \frac{Q_{vc}}{n_F} - \frac{W_{vc}}{n_F} = \left[a \cdot h_{CO2} + b / 2 \cdot h_{H2O} \right] - \left[h_F + (a + b / 4 - c / 2) \cdot h_{O2} \right] \\ 1^{ra} \text{ Lei} \end{array}$$

$$\frac{Q_{vc}}{T_0} + s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F = 0 \qquad \text{b. entropia}$$

$$\begin{array}{c} -Q_{vc} = -T_0 \cdot \left[s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F \right] \\ \xrightarrow{Q_{vc}} \frac{Q_{vc}}{n_F} - \frac{W_{vc}}{n_F} = \left[a \cdot h_{CO2} + b / 2 \cdot h_{H2O} \right] - \left[h_F + (a + b / 4 - c / 2) \cdot h_{O2} \right] \\ \xrightarrow{\text{1ra Lei}} \end{array}$$

$$\frac{W_{vc}}{n_F} = \left[h_F + \left(a + \frac{b}{4} - \frac{c}{2}\right) \cdot h_{O2} - a \cdot h_{CO2} - \frac{b}{2} \cdot h_{H2O}\right] - T_0 \cdot \left[s_F + \left(a + \frac{b}{4} - \frac{c}{2}\right) \cdot s_{O2} - a \cdot s_{CO2} - \frac{b}{2} \cdot s_{H2O}\right] - T_0 \frac{\sigma_{vc}}{n_F}$$

$$\frac{Q_{vc}}{T_0} + s_F + (a + b / 4 - c / 2) \cdot s_{O2} - a \cdot s_{CO2} - b / 2 \cdot s_{H2O} + \sigma_{vc} / n_F = 0 \qquad \text{b. entropia}$$

$$\begin{array}{c} -Q_{vc} = -T_0 \cdot \left[s_F + (a + b/4 - c/2) \cdot s_{O2} - a \cdot s_{CO2} - b/2 \cdot s_{H2O} + \sigma_{vc} / n_F \right] \\ \xrightarrow{} \frac{Q_{vc}}{n_F} - \frac{W_{vc}}{n_F} = \left[a \cdot h_{CO2} + b/2 \cdot h_{H2O} \right] - \left[h_F + (a + b/4 - c/2) \cdot h_{O2} \right] \\ \xrightarrow{} 1^{ra} \text{Lei} \end{array}$$

$$\frac{W_{vc}}{n_F} = \left[h_F + \left(a + \frac{b}{4} - \frac{c}{2}\right) \cdot h_{O2} - a \cdot h_{CO2} - \frac{b}{2} \cdot h_{H2O}\right] - T_0 \cdot \left[s_F + \left(a + \frac{b}{4} - \frac{c}{2}\right) \cdot s_{O2} - a \cdot s_{CO2} - \frac{b}{2} \cdot s_{H2O}\right] - T_0 \frac{\sigma_{vc}}{n_F} + \left[a + \frac{b}{4} - \frac{c}{2}\right] \cdot s_{O2} - a \cdot s_{CO2} - \frac{b}{2} \cdot s_{H2O}\right] - T_0 \frac{\sigma_{vc}}{n_F} + \left[a + \frac{b}{4} - \frac{c}{2}\right] \cdot s_{O2} - a \cdot s_{CO2} - \frac{b}{2} \cdot s_{H2O}\right] - T_0 \frac{\sigma_{vc}}{n_F} + \left[a + \frac{b}{4} - \frac{c}{2}\right] \cdot s_{O2} - a \cdot s_{CO2} - \frac{b}{2} \cdot s_{H2O}\right] - T_0 \frac{\sigma_{vc}}{n_F} + \left[a + \frac{b}{4} - \frac{c}{2}\right] \cdot s_{O2} - a \cdot s_{CO2} - \frac{b}{2} \cdot s_{H2O}\right]$$

Enthalpies and entropies are calculated at T_0 and at the corresponding partial pressure of the environment component...

$$\mathbf{e}_{\mathsf{F}}^{\mathsf{ch}} = \left[\mathbf{h}_{\mathsf{F}} + \left(\mathbf{a} + \frac{\mathbf{b}}{4} - \frac{\mathbf{c}}{2}\right) \cdot \mathbf{h}_{\mathsf{O2}}(\mathsf{T}_{0}) - \mathbf{a} \cdot \mathbf{h}_{\mathsf{CO2}}(\mathsf{T}_{0}) - \frac{\mathbf{b}}{2} \cdot \mathbf{h}_{\mathsf{H2O}}(\mathsf{T}_{0})\right] + \dots\right]$$

gás ideal, h = h(T)

$$\dots - T_{0} \cdot \left[s_{F} + \left(a + \frac{b}{4} - \frac{c}{2} \right) \cdot s_{O2}(P_{0}, T_{0}) - a \cdot s_{CO2}(x_{CO2}^{e} \cdot P_{0}, T_{0}) - \frac{b}{2} \cdot s_{H2O}(x_{H2O}^{e} \cdot P_{0}, T_{0}) \right]$$

gás ideal, s = ...

$$\mathbf{e}_{\mathsf{F}}^{\mathsf{ch}} = \left[\mathbf{h}_{\mathsf{F}} + \left(\mathbf{a} + \frac{\mathbf{b}}{4} - \frac{\mathbf{c}}{2} \right) \cdot \mathbf{h}_{\mathsf{O2}} - \mathbf{a} \cdot \mathbf{h}_{\mathsf{CO2}} - \frac{\mathbf{b}}{2} \cdot \mathbf{h}_{\mathsf{H2O}} \right]_{(\mathsf{P}_{0},\mathsf{T}_{0})} - \mathsf{T}_{0} \cdot \left[\mathbf{s}_{\mathsf{F}} + \left(\mathbf{a} + \frac{\mathbf{b}}{4} - \frac{\mathbf{c}}{2} \right) \cdot \mathbf{s}_{\mathsf{O2}} - \mathbf{a} \cdot \mathbf{s}_{\mathsf{CO2}} - \frac{\mathbf{b}}{2} \cdot \mathbf{s}_{\mathsf{H2O}} \right]_{(\mathsf{P}_{0},\mathsf{T}_{0})} + \dots$$

... + RT₀ In
$$\left[\frac{(x_{O2}^{e})^{\alpha+b/4-c/2}}{(x_{CO2}^{e})^{\alpha} \cdot (x_{H2O}^{e})^{b/2}} \right]$$

Obs: se o componente for líquido ou sólido, $x^e_{O2} = 1$.

$$\mathbf{e}_{\mathsf{F}}^{\mathsf{ch}} = \left[\mathbf{h}_{\mathsf{F}} + \left(\mathbf{a} + \frac{\mathsf{b}}{4} - \frac{\mathsf{c}}{2}\right) \cdot \mathbf{h}_{\mathsf{O2}} - \mathbf{a} \cdot \mathbf{h}_{\mathsf{CO2}} - \frac{\mathsf{b}}{2} \cdot \mathbf{h}_{\mathsf{H2O}}\right]_{(\mathsf{P}_{0},\mathsf{T}_{0})} - \mathsf{T}_{0} \cdot \left[\mathbf{s}_{\mathsf{F}} + \left(\mathbf{a} + \frac{\mathsf{b}}{4} - \frac{\mathsf{c}}{2}\right) \cdot \mathbf{s}_{\mathsf{O2}} - \mathbf{a} \cdot \mathbf{s}_{\mathsf{CO2}} - \frac{\mathsf{b}}{2} \cdot \mathbf{s}_{\mathsf{H2O}}\right]_{(\mathsf{P}_{0},\mathsf{T}_{0})} + \dots$$

 $G \stackrel{\text{def}}{=} H - T \cdot S$

... + RT₀ In
$$\left[\frac{(x_{O2}^{e})^{a+b/4-c/2}}{(x_{CO2}^{e})^{a} \cdot (x_{H2O}^{e})^{b/2}}\right]$$

Obs: se o componente for líquido ou sólido, $x^e_{O2} = 1$.

J. Willard Gibbs

$$\mathbf{e}_{\mathsf{F}}^{\mathsf{ch}} = \left[\mathbf{h}_{\mathsf{F}} + \left(\mathbf{a} + \frac{\mathsf{b}}{4} - \frac{\mathsf{c}}{2}\right) \cdot \mathbf{h}_{\mathsf{O2}} - \mathbf{a} \cdot \mathbf{h}_{\mathsf{CO2}} - \frac{\mathsf{b}}{2} \cdot \mathbf{h}_{\mathsf{H2O}}\right]_{(\mathsf{P}_{0},\mathsf{T}_{0})} - \mathsf{T}_{0} \cdot \left[\mathbf{s}_{\mathsf{F}} + \left(\mathbf{a} + \frac{\mathsf{b}}{4} - \frac{\mathsf{c}}{2}\right) \cdot \mathbf{s}_{\mathsf{O2}} - \mathbf{a} \cdot \mathbf{s}_{\mathsf{CO2}} - \frac{\mathsf{b}}{2} \cdot \mathbf{s}_{\mathsf{H2O}}\right]_{(\mathsf{P}_{0},\mathsf{T}_{0})} + \dots$$

 $G \stackrel{\text{def}}{=} H - T \cdot S$

J. Willard Gibbs

... + RT₀ In
$$\left[\frac{(x_{O2}^{e})^{\alpha+b/4-c/2}}{(x_{CO2}^{e})^{\alpha} \cdot (x_{H2O}^{e})^{b/2}} \right]$$

Obs: se o componente for líquido ou sólido, $x^e_{O2} = 1$.

$$e_{F}^{ch} = \left[g_{F} + \left(a + \frac{b}{4} - \frac{c}{2}\right) \cdot g_{O2} - a \cdot g_{CO2} - \frac{b}{2} \cdot g_{H2O}\right]_{(P_{0}, T_{0})} + RT_{0} \ln\left[\frac{(x_{O2}^{e})^{a+b/4-c/2}}{(x_{CO2}^{e})^{a} \cdot (x_{H2O}^{e})^{b/2}}\right]$$

Obs.1: the first term in the right side corresponds to the reaction's total Gibbs free energy variation... Therefore, the more spontaneous the greater the chemical exergy ...

Obs.2: To bring all calculations to a common energy reference the Gibbs free energies can be calculated according to the following

$$g^{\phi}(T_0, P_0) = g^{\phi}_{\text{formação}} + \left[g(T_0, P_0) - g(T_{\text{ref}}, P_{\text{ref}})\right]$$

$$e_{F}^{ch} = -\Delta g + RT_{0} \ln \left[\frac{(x_{O2}^{e})^{a+b/4-c/2}}{(x_{CO2}^{e})^{a} \cdot (x_{H2O}^{e})^{b/2}} \right]$$

$$\left[\mathsf{C}_{8}\mathsf{H}_{18(\mathsf{liq})} + 12.5 \cdot \mathsf{O}_{2} + 47 \cdot \mathsf{N}_{2}\right]_{25^{\circ}\mathsf{C},1\mathsf{bar}} \rightarrow \left[8 \cdot \mathsf{CO}_{2} + 9 \cdot \mathsf{H}_{2}\mathsf{O}_{(\mathsf{gas})} + 47 \cdot \mathsf{N}_{2}\right]_{890\mathsf{K},1\mathsf{bar}}$$

Model do Environment

Temperature	$T_{\rm o} = 298.15 {\rm K}$							
Pressure	Po	$P_{\rm o} = 1 \rm{atm}$						
Composition	(i)	Atmospheric air saturated with H_2O at T_o and P_o , having the following composition:						
		Air constituents	Mole fraction					
		N ₂	0.7567					
		O_2	0.2035					
		H_2O	0.0303					
		Ar	0.0091					
		CO ₂	0.0003					
		H_2	0.0001					
	(ii)	The following condensed phases at $T_{\rm o}$ and $P_{\rm o}$: Water (H ₂ O)						
		Limestone (CaCO ₃)						
		Gypsum (CaSO ₄ \cdot 2H ₂ O)						

Source: Adapted from Gaggioli and Petit (1977).

$$\begin{split} \left[C_{8}H_{18(\text{liq})} + 12.5 \cdot O_{2} + 47 \cdot N_{2}\right]_{25^{\circ}\text{C,Ibar}} \rightarrow & \left[8 \cdot \text{CO}_{2} + 9 \cdot \text{H}_{2}\text{O}_{(\text{gas})} + 47 \cdot N_{2}\right]_{890\text{K,Ibar}} \\ 1^{\text{ra}} \text{Lei} \rightarrow & Q_{\text{vc}} - W_{\text{vc}} = n_{\text{F}} \cdot \left(\sum_{\text{prod}} h_{\text{k}} - \sum_{\text{reag}} h_{\text{k}}\right) \\ & \overset{\text{atmospheric air}}{@ 25^{\circ}\text{C, 1bar}} \overset{\text{atmospheric air}}{@ 25^{\circ}\text{C, 1bar}} \end{split}$$

496 HP 370 kW

combustion gases @ 890K, 1bar

$$\begin{bmatrix} C_8 H_{18(\text{liq})} + 12.5 \cdot O_2 + 47 \cdot N_2 \end{bmatrix}_{25^\circ \text{C,1bar}} \rightarrow \begin{bmatrix} 8 \cdot \text{CO}_2 + 9 \cdot \text{H}_2 O_{(\text{gas})} + 47 \cdot N_2 \end{bmatrix}_{890\text{K,1bar}}$$

$$1^{\text{ra}} \text{Lei} \rightarrow \quad Q_{\text{vc}} - W_{\text{vc}} = n_{\text{F}} \cdot \left(\sum_{\text{prod}} h_k - \sum_{\text{reag}} h_k \right)$$

$$\underset{\text{atmospheric air}}{\text{atmospheric air}}$$

$$\frac{Q_{vc} - W_{vc}}{n_{F}} = \left[8 \cdot (h_{f}^{0} + \Delta h)_{CO2} + 9 \cdot (h_{f}^{0} + \Delta h)_{H2O(g)} + 47 \cdot (h_{f}^{0} + \Delta h)_{N2}\right] + \dots$$

$$\dots - \left[1 \cdot (h_{f}^{0} + \Delta h)_{C8H18(liq)} + 12.5 \cdot (h_{f}^{0} + \Delta h)_{O2} + 47 \cdot (h_{f}^{0} + \Delta h)_{N2}\right]$$

$$496 \text{ HP}$$

$$370 \text{ kW}$$

$$390K, 1bar$$

 \sim

$$\frac{Q_{vc} - W_{vc}}{n_{F}} = \left[8 \cdot (h_{f}^{0} + \Delta h)_{CO2} + 9 \cdot (h_{f}^{0} + \Delta h)_{H2O(g)} + 47 \cdot (h_{f}^{0} + \Delta h)_{N2}\right]_{890K,1bar} + \dots$$

$$= 0 = 0 = 0 = 0 = 0$$

$$= 0 = 0 = 0$$

$$= 0 = 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$= 0$$

Entalpias de formação

$$\begin{split} h^{0}_{f,C8H18(liq)} &= -249.910 \text{kJ/mol} \\ h^{0}_{f,C02(g)} &= -393.520 \text{kJ/mol} \\ h^{0}_{f,H2O(g)} &= -241.820 \text{kJ/mol} \end{split}$$

Entalpias sensíveis

$$P_{CO2} = 8/(8+9+47) \cdot 1 = 0,125$$
 bar → $h_{CO2}(890K) = 49.811$ kJ/mol
→ $h_{CO2}(298K) = 22.293$ kJ/mol

 $P_{N2} = 47/(8+9+47) \cdot 1 = 0,734 \text{ bar} \rightarrow h_{N2}(890\text{K}) = 26.573 \text{ kJ/mol}$

 $\rightarrow h_{N2}(298K) = 8.661kJ/mol$

 $P_{H2O} = 9/(8+9+47) \cdot 1 = 0,141 \text{ bar} \rightarrow h_{H2O}(890\text{ K}) = 65.472 \text{ kJ/mol}$

 $\rightarrow h_{H2O}(298K) = 45.871 kJ/mol$

 $\rightarrow h_{H2O}(298K) = 1.877kJ/mol$

$$\frac{Q_{vc} - W_{vc}}{n_{F}} = \left[8 \cdot (h_{f}^{0} + \Delta h)_{CO2} + 9 \cdot (h_{f}^{0} + \Delta h)_{H2O(g)} + 47 \cdot (h_{f}^{0} + \Delta h)_{N2}\right]_{890K,1bar} + \dots$$

$$= 0 \qquad = 0 \qquad =$$

$$\frac{\mathsf{Q}_{\mathsf{vC}} - 370}{\frac{1.25}{60} \cdot \frac{1}{0.11422}} = \left[8 \cdot \left(-393.52 + 49.81 - 22.29\right) + 9 \cdot \left(-241.82 + 65.472 - 45.871\right) + 47 \cdot \left(0 + 26.57 - 8.66\right)\right] + 249.91$$

$$Q_{vc} = -329.73 kW$$

 $h_{co2}(890K) = 49.811kJ/mol$ $h_{co2}(298K) = 22.293kJ/mol$ $h_{N2}(890K) = 26.573kJ/mol$ $h_{N2}(298K) = 8.661kJ/mol$ $h_{H20}(890K) = 67.439kJ/mol$ $h_{H20}(298K) = 45.871kJ/mol$

 $Q_{fornec} = 370 + 329.726 + 298.088 = 997.814 \, kW$

	Heating	Heating Values				
Substance	Higher, HHV (kJ/kg)	Lower, LHV (kJ/kg)				
Butane	49,500	45,720				
Pentane	49,010	45,350				
Octane	48,260	44,790				
Octane	47,900	44,430				
Benzene	42,270	40,580				

$$e_{F}^{ch} = \left[g_{F} + \left(\alpha + \frac{b}{4} - \frac{c}{2}\right) \cdot g_{O2} - \alpha \cdot g_{CO2} - \frac{b}{2} \cdot g_{H2O}\right]_{(P_{0}, T_{0})} + RT_{0} \ln\left[\frac{(x_{O2}^{e})^{\alpha + b/4 - c/2}}{(x_{CO2}^{e})^{\alpha} \cdot (x_{H2O}^{e})^{b/2}}\right]$$

$$e_{F}^{ch} = \left[g_{F} + 12.5 \cdot g_{O2} - 8 \cdot g_{CO2} - 9 \cdot g_{H2O}\right]_{(P_{0}, T_{0})} + RT_{0} \ln\left[\frac{(x_{O2}^{e})^{12.5}}{(x_{CO2}^{e})^{8} \cdot (x_{H2O}^{e})^{9}}\right]$$

$$x_{N2}^{e} = 0.7567 \text{ molar}$$

 $x_{O2}^{e} = 0.2035 \text{ molar}$
 $x_{CO2}^{e} = 0.0003 \text{ molar}$
 $x_{H2O}^{e} = 0.0312 \text{ molar}$
 $M \text{to variável...}$

$$g_{F}^{\phi=0} = 6.610 \text{kJ/mol}$$

 $g_{O2}^{\phi=0} = 0 \text{kJ/mol}$
 $g_{CO2}^{\phi=0} = -394.38 \text{kJ/mol}$
 $g_{H2O}^{\phi=0} = -228.59 \text{kJ/mol}$

 $e_{F}^{ch} = 5407.843 \text{kJ/mol}$

 $e_{F}^{ch} = 5407.843 \text{kJ/mol}$

$$W_{F}^{ch} = 5407.843 \frac{kJ}{mol} \times 1.25 \frac{kg}{60s} \times \frac{1}{0.11422 kg/mol}$$

 $W_{F}^{ch} = 986.372 \, kW$

 $\eta_{2^{\circ}\text{Lei}} = \frac{\text{shaft mechanical power}}{\text{fuel exergy content}}$

$$\eta_{2^{\circ}\text{Lei}} = \frac{370}{986.372} = 37.5\%$$

mass density \rightarrow lighter

smalle

Propellent fuel: PBAN-APCP

liaht

Pesquisar na Web e no Windows

🔨 👪 ⊅) 📮 POR 13/06/2016

Próxima Aula...

Análise exergética de uma caldeira de oxicombustão de biomassa...

TABLE A-25	Thermochemical	Properties of	Selected	Substances at	298K and 1	atm
------------	----------------	---------------	----------	---------------	------------	-----

							Heating Values			
	Substance	Formula	Molar Mass, M (kg/kmol)	Enthalpy of Formation, \overline{h}_{f}° (kI/kmol)	Gibbs Function of Formation,	Absolute Entropy, 3° (k1/kmol : K)	Higher, HHV (kI/kg)	Lower, LHV (kI/kg)		
$\frac{Q_{vc}}{n_F} - \frac{W_{vc}}{n_F} = \left[8 \cdot (h_f^0 + \Delta h)_{CO2}\right]$	Carbon Hydrogen Nitrogen Oxygen Carbon monoxide Carbon dioxide	C(s) $H_2(g)$ $N_2(g)$ $O_2(g)$ $CO_2(g)$	12.01 2.016 28.01 32.00 28.01 44.01	0 0 0 -110,530 -393,520	0 0 0 0 -137,150 -394,380	5.74 130.57 191.50 205.03 197.54 213.69	32,770 141,780 — — —	32,770 119,950 	1	
V	Water	H ₂ O(g)	18.02	-241,820	-228,590	188.72	_	—	1	
	Water Hydrogen peroxide Ammonia Oxygen Hydrogen	H ₂ O ₂ (g) NH ₃ (g) O(g) H(g)	18.02 34.02 17.03 16.00 1.008	-285,830 -136,310 -46,190 249,170 218,000	-237,180 -105,600 -16,590 231,770 203,290	69.95 232.63 192.33 160.95 114.61			C,1ba	/alues
$h_{f,C8H18(liq)}^{0} = -249.910 \text{ kJ/mol}$ $h_{f,C02(q)}^{0} = -393.520 \text{ kJ/mol}$	Nitrogen Hydroxyl Methane Acetylene	$\begin{array}{c} N(g)\\ OH(g)\\ CH_4(g)\\ C_2H_2(g) \end{array}$	14.01 17.01 16.04 26.04	472,680 39,460 -74,850 226,730	455,510 34,280 -50,790 209,170	153.19 183.75 186.16 200.85	 55,510 49,910	 50,020 48,220	HHV (kJ/kg) 32,770 141,780 — —	LHV (kJ/kg) 32,770 119,950
$h_{f,H2O(g)}^{0} = -241.820 \text{kJ/mol}$	Ethylene Ethane Propylene Propane	$\begin{array}{c} C_2 H_2(g) \\ C_2 H_6(g) \\ C_3 H_6(g) \\ C_3 H_8(g) \end{array}$	28.05 30.07 42.08 44.09	52,280 -84,680 20,410 -103,850	68,120 -32,890 62,720 -23,490	219.83 229.49 266.94 269.91	50,300 51,870 48,920 50,350	47,160 47,480 45,780 46,360		-
B	Butane Pentane Octane	$C_4H_{10}(g)$ $C_5H_{12}(g)$ $C_8H_{18}(g)$	58.12 72.15 114.22	-126,150 -146,440 -208,450	-15,710 -8,200 17,320	310.03 348.40 463.67	49,500 49,010 48,260	45,720 45,350 44,790	 55,510 49,910 50,300	 50,020 48,220 47,160
E	Benzene	$C_8H_{18}(1)$ $C_6H_6(g)$	78.11	82,930	129,660	269.20	42,270	44,430	51,870 48,920 50,350	47,480 45,780 46,360
N N E E	Methyl alcohol Methyl alcohol Ethyl alcohol Ethyl alcohol Source: Based on JANA	CH ₃ OH(g) CH ₃ OH(l) C ₂ H ₅ OH(g) C ₂ H ₅ OH(l) F Thermochemic	32.04 32.04 46.07 46.07	-200,890 -238,810 -235,310 -277,690	- 162,140 - 166,290 - 168,570 174,890	239.70 126.80 282.59 160.70	23,850 22,670 30,590 29,670	21,110 19,920 27,720 26,800	49,500 49,010 48,260 47,900 42,270 23,850 22,670 30,590 20,670	45,720 45,350 44,790 44,430 40,580 21,110 19,920 27,720 27,720

10000000

Source: Based on JANAF Thermochemical Tables, NSRDS-NBS-37, 1971; Selected Values of Chemical Thermodynamic Properties, NBS Tech. Note 270-3, 1968; and API Research Project 44, Carnegie Press, 1953. Heating values calculated.

Note 270-3, 1968; and API Research Project 44, Carnegie Press, 1953. Heating values calculated.

Properties, NBS Tech.