PMR3404 – Controle I Projeto de Laboratório

BALL ON WHEEL

1. Descrição

O sistema consiste numa roda, de inércia não desprezível e acionada por um motor DC, sobre a qual se deve equilibrar uma bola. Um sensor de posição mede o deslocamento da bola em relação ao eixo vertical. O objetivo do sistema de controle é manter a bola no topo da roda. Assume-se que não há escorregamento entre as partes.

2. Modelo matemático

A Figura 1 ilustra o sistema. A bola possui massa m, momento de inércia ϑ e raio r. A Roda possui momento de inércia Θ e raio R.

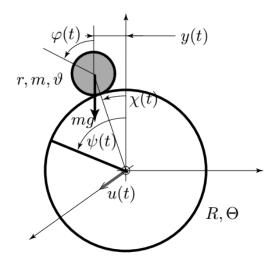


Figura 1 - Foto e esquema do sistema Ball on Wheel

O torque na roda é dado por $\tau(t)$. A posição angular da roda relativa ao eixo vertical é dada por $\psi(t)$, a posição angular da bola em torno do centro da roda é descrita por $\chi(t)$ e o deslocamento linear em relação ao eixo vertical, considerando que não há escorregamento, é dado por:

$$y(t) = (R + r)\sin(\chi(t))$$

2.1. Equações de movimento

As equações de movimento são dadas por

$$\begin{cases} \ddot{\psi}(t) = [(mr^2 + \vartheta)u(t) + mgR\vartheta\sin\bigl(\chi(t)\bigr)]/\Gamma \\ \ddot{\chi}(t) = [\vartheta Ru(t) + (\vartheta r^2 + \vartheta R^2)mg\sin\bigl(\chi(t)\bigr)]/[\Gamma(r+R)] \end{cases}$$

Onde

$$\Gamma = \Theta\vartheta + m(\vartheta R^2 + \Theta r^2)$$

e g é a constante gravitacional.

2.2. Dinâmica do Motor

O motor possui inércia desprezível e está acoplado à roda por meio de um redutor de razão n.

O torque u(t) é, portanto, obtido por $u(t) = n\tau_m$, onde

$$\tau_m = K_t i(t)$$

É o torque no motor e K_t é a constante de torque do mesmo.

A corrente do motor é dada pela equação diferencial do circuito

$$V(t) = L_m \frac{di}{dt} + R_m i(t) + K_v \dot{\psi}_m$$

Onde V(t) é a tensão de entrada, L_m e R_m são a indutância e resistência de enrolamento, respectivamente e K_v é a constante contra-eletromotriz do sistema.

2.3. Parâmetros

Parâmetro	Valor
Momento de Inércia da roda Θ	$0.0280 \ kg.m^2$
Raio da roda R	0.16 m
Massa da bola m	0.0480 kg
Momento de Inércia da Bola $artheta$	$2.54 \times 10^{-5} \ kg. m^2$
Raio da bola r	0.0296 m
Constante de torque K_t	0.1604 N.m/A
Constante c.e.m. K_v	0.1186 V. s/rad
Resistência R_m	12 Ω
Indutância L_m	1.16 mH
Corrrente máxima no motor	200 A

3. Requisitos de desempenho

O sistema de controle deve levar e manter a bola em equilíbrio sobre a roda com as seguintes características em malha fechada:

- Erro de regime igual a zero para uma condição inicial diferente da desejada e para qualquer perturbação variando na forma de degrau;
- Máximo sobressinal menor do que 10% para uma condição inicial diferente da desejada e para qualquer perturbação variando na forma de degrau;
- Tempo de assentamento de 2% compatível com a dinâmica do sistema para uma condição inicial diferente da desejada e para qualquer perturbação variando na forma de degrau (estabeleça claramente o valor);
- Margem de ganho maior do que 10 dB;
- Margem de fase maior do que 45°;
- Rejeição completa de qualquer perturbação constante.
- Esforço de controle compatível com a corrente máxima no atuador.

Dica: Pode ser necessário o uso de um controlador em cascata para a estabilização do sistema. Por quê? Neste caso considere uma segunda variável de estado, além da posição da bola, como medida.