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Abstract Innate immunity is based in pre-existing

elements of the immune system that directly interact

with all types of microbes leading to their destruction

or growth inhibition. Several elements of this early

defense mechanism act in concert to control initial

pathogen growth and have profound effect on the

adaptative immune response that further develops.

Although most studies in paracoccidioidomycosis

have been dedicated to understand cellular and

humoral immune responses, innate immunity remains

poorly defined. Hence, the main purpose of this

review is to present and discuss some mechanisms of

innate immunity developed by resistant and suscep-

tible mice to Paracoccidioides brasiliensis infection,

trying to understand how this initial host-pathogen

interface interferes with the protective or deleterious

adaptative immune response that will dictate disease

outcome. An analysis of some mechanisms and

mediators of innate immunity such as the activation

of complement proteins, the microbicidal activity of

natural killer cells and phagocytes, the production of

inflammatory eicosanoids, cytokines, and chemokines

among others, is presented trying to show the

important role played by innate immunity in the host

response to P. brasiliensis infection.
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Introduction

Innate immunity has been defined as the first phase of

immune response and is based in pre-existing

elements of the immune system that directly interact

with all types of microbes leading to their destruction

or growth inhibition. Innate immunity, which is not

clonally specific for a particular pathogen and does

not generate specific memory, is mediated by phys-

ical barriers, chemical elements, and cell components

of the immune system. The adaptative immunity,

involving more slowly developing, long-lived, and

highly antigen-specific responses are mediated by

cell-mediated immunity and antibody production.

Several elements of innate immunity act in concert to

control initial pathogen growth and have profound

effect on the adaptative immune response that further

develops. Furthermore, most effector mechanisms of

innate immunity are identical to those of adaptative

immunity that are activated at later phases of immune

response.
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Several mechanisms of innate immunity such as

the activation of complement proteins, the microbi-

cidal activity of natural killer (NK) cells and

phagocytes, the production of inflammatory cytokines

and chemokines among others, have been shown to

play an important role in the early host response to

pathogens [1]. Besides their intrinsic complexities,

innate immunity mechanisms present important

peculiarities which depend on the site they take

place [2]. The innate immune response against

Paracoccidioides brasiliensis, Coccidioides immitis,

Blastomyces dermatitides, and Histoplasma capsula-

tum, primary fungal pathogens which infect hosts

through the respiratory tract, occurs in the lungs. The

lung response to infection is initiated by the secretion

of several antimicrobial proteins by the pulmonary

epithelium and the phagocytic activity of resident

alveolar macrophages. The cell-wall-degrading

enzyme lyzozyme, the iron-chelating protein lacto-

ferrin and the membrane-permeabilizing members of

the defensin, cathelicidin, and pentraxin families are

the initial antimicrobial proteins secreted in the

alveolar lining layer of the pulmonary epithelium.

Innate immunity recognition of microorganism is

mediated by germ-line encoded receptors (‘‘pattern

recognition receptors, PRR’’) which interact with

conserved pathogen structures, the so-called ‘‘patho-

gen associated molecular patterns’’ or ‘‘PAMP’’

[3–5]. The initial macrophage-pathogen interaction

results in internalization by the activated cell which

can kill the organism through the action of reactive

oxygen species and lytic enzymes or extracellular

microbial containment. In addition, the secretion of

chemokines and cytokines orchestrates the expression

of cell adhesion and chemotactic molecules which

further control the influx and activation of inflamma-

tory cells to the site of infection [1–5].

Although most studies in human PCM have been

dedicated to understand cellular and humoral immune

responses, innate immunity remains poorly defined.

This is easily understood when one reminds that PCM

infection and disease in human beings are recognized

at a later and undefined period after initial infection,

making difficult to evoke the early events which

resulted in controlled infection or overt disease. In

this aspect, experimental models are powerful tools to

study the initial events that govern hosts-P. brasili-

ensis interactions. Thus, the main purpose of this

review is to present and discuss some mechanisms of

innate immunity to P. brasiliensis infection, trying to

understand how this initial host-pathogen interface

interferes with the protective or deleterious adapta-

tive immune response that will dictate disease

outcome. This review does not intend to be a

comprehensive revision of the PCM literature that

has been reported elsewhere [6–10], but to present a

personal view, mainly based in the murine model of

genetic resistance and susceptibility to P. brasiliensis,

of how innate immunity can influence PCM severity

and the adaptative immune response to this pathogen.

The isogenic murine model of resistance/

susceptibility of paracoccidioidomycosis mimics

the human disease

Our laboratory established a genetically controlled

murine model of paracoccidioidomycosis (PCM),

which allowed us to investigate several parameters of

host-parasite interactions. Most of these studies were

recently reviewed [10–13] and clearly showed the

diverging immune responses mounted by genetically

susceptible (B10.A) and resistant (A/Sn or A/J) mice to

P. brasiliensis infection. One important characteristic of

our model is the similarity with the human disease,

B10.A mice mimicking the progressive, severe forms of

the disease and A/Sn mice showing similar features of

the regressive or localized forms of the infection

(Fig. 1). As in the human disease, our experimental

model demonstrated that resistance is associated with

immune responses that favor cellular immunity and

activation of phagocytes, whereas susceptibility is

associated with impairment of cellular immune

responses and preferential activation of B cells [10–12].

After an intra-tracheal (i.t.) infection, the suscep-

tibility and resistance patterns observed following i.p.

infection were maintained, as reflected by the high

mortality rates of B10.A mice and the regressive

disease developed by the A/J strain. The susceptible

mice were not able to restrain the infection to the

lungs and, 2 months after infection, dissemination to

liver and spleen was seen, characterizing a chronic,

progressive and disseminated form of the disease; in

the resistant mice, on the other hand, no organ

224 Mycopathologia (2008) 165:223–236

123



dissemination occurred and a pulmonary-restricted

chronic disease was observed. Unexpectedly, early in

the i.t. infection (2nd and 4th weeks), A/J mice

presented higher pulmonary CFU counts than B10.A

mice suggesting that susceptible mice developed a

more efficient innate immunity than resistant animals.

The adaptative immunity of resistant mice appears to

compensate their ineffective innate immunity

(Fig. 2). Accordingly, from week 8 of infection

onward, positive DTH responses, marked control of

fungal burdens, secretion of pulmonary type 1 and

type 2 cytokines and preferential production of IgG2a

antibodies were seen, leading to a regressive pattern

of disease. On the contrary, the anergy of DTH

reactions, the preferential synthesis of IgG1 and

IgG2b antibodies and the progressively increased

fungal burdens of susceptible mice resulted in severe

disseminated disease leading to decreased survival

times [14, 15].

Innate immunity

Genetic control of susceptibility

Clinical studies suggested that susceptibility to P.

brasiliensis is dependent on several factors, including

genetic background, and host’s hormonal function

[4–7]. A fungal receptor for estrogen was identified

and appears to block the conversion of conidia or

mycelium to the infecting yeast form [16]. This

finding was further explored in an animal model of

infection demonstrating the enhanced resistance of

female animals [17, 18] and may explain the unusual

susceptibility of male individuals of endemic areas

[6, 8, 19].

Genetic studies performed by our group have

shown the existence of an autosomal dominant gene

(Pbr gene), which control P. brasiliensis resistance

[20] and appears to be similar to the Nramp gene, that

control resistance to Mycobacterium sp, Leishmania

sp, and Salmonella sp infection [21]. Further studies

with Nramp1 congenic macrophages (B10R and

B10S expressing or not the Nramp1 protein, respec-

tively) showed that B10R macrophages, in

comparison with B10S cells, expressed higher levels

of mannose receptors, presented higher phagocytic

ability and increased inhibitory effect on the conidia

to yeast conversion [22].

Complement system and chemokines

P. brasiliensis cells are able to activate the alternative

pathway of complement and yeast cells-adherent C3b

Fig. 1 Main features of the isogenic murine model of

resistance and susceptibility to Paracoccidioides brasiliensis
infection

Fig. 2 At the onset of infection, susceptible (B10.A) mice

show a better control of pulmonary fungal loads than resistant

(A/J) mice. A/J and B10.A mice were i.t. infected with one

million P. brasiliensis yeast cells. The graph on the left shows

the recovery of viable fungal cell from lungs (colony forming

unit counts, CFU), and the graph on the right the delayed

hypersensitivity (DTH) responses measured during 16 weeks

of infection
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molecules can contribute to fungi phagocytosis by

macrophages [23–25]. On the other hand, chemokin-

es which play a major role in regulating the migration

of specific leukocytes subsets in both the acute and

chronic inflammatory processes [26], were shown to

control mononuclear cell recruitment to the lungs of

P. brasiliensis-infected C57BL/6 mice [27]. Unpub-

lished results from our laboratory suggest that

increased and sustained expression of IP-10, RAN-

TES and the chemokine receptor CXCR3 is

associated with the resistant behavior of A/Sn mice

(C. Arruda and V. L. G. Calich, unpublished obser-

vations). This is in accordance with the sustained T

cell response mounted by resistant mice at the

acquired phase of the immune response [14, 15].

Lipid mediators (Eicosanoids) and P. brasiliensis

lipids

During an inflammatory reaction, the enzymatic

oxidation of aracdonic acid (AA) by cyclooxigenase

produces prostaglandins, thromboxanes, and prosta-

cyclins, whereas the 5-LO is an enzyme that catalyzes

the oxidation of AA for the synthesis of leukotrienes

(LT). The importance of LT as cellular activators and

chemotactic factors for neutrophils and eosinophils is

very well established, however, little is known about

the function of these lipid mediators in the host

defense against infectious agents [28, 29].

As the role of LT in pulmonary PCM was never

investigated, we asked whether they would have a

regulatory function in the severity of PCM of

resistant (A/J) and susceptible (B10.A) mice and in

the fungicidal and secretory ability of their macro-

phages. Our results showed that in vivo and in vitro

P. brasiliensis infection induces LT synthesis. Com-

pared with A/J mice, levels of pulmonary LT were

higher in B10.A animals and increases in the course

of infection. To evaluate the importance of LT in

PCM, an inhibitor of LT synthesis (MK-0591) and an

antagonist of LT receptor (montelukast) were studied

in P. brasiliensis infection. In vitro, LT inhibitors

significantly reduced the recovery of P. brasiliensis

yeasts from normal and IFN-c primed macrophages.

At 48 h of in vivo infection, montelukast treatment of

B10.A mice induced diminished fungal loads,

impaired influx of PMN leukocytes, and increased

number of monocytes in the lungs of P. brasiliensis-

infected mice. Furthermore, in susceptible mice

montelukast treatment led to increased levels of

pulmonary IL-10 concomitant with diminished

amounts of IL-12, TNF-a, and GM-CSF. In contrast,

at the chronic phase of the disease, LT inhibition did

not alter the fungal loads of B10.A and A/J mice. In

conclusion, our results showed for the first time that

LT are important mediators of the acute inflammatory

reaction induced by P. brasiliensis infection affecting

fungal recovery, cellular influx, and cytokines syn-

thesis by susceptible mice [30, L. R. R. Ribeiro and

V. L. G. Calich, unpublished observations]. Impor-

tantly, our findings with LT inhibition appear to

demonstrate that the activation of innate immunity

can result in increased ingestion and survival of

P. brasiliensis yeasts which can evolve to a more

severe disease.

Several lines of evidence suggest that prostag-

landins production has a deleterious role for

P. brasiliensis-infected hosts. In murine PCM, at

early steps of infection, secretion of PGE2 was shown

to have an immunossupressive activity by inhibiting

IL-12 production and up-regulating IL-4 and IL-10

synthesis [31]. In addition, studies with normal and

IFN-c activated human macrophages demonstrated

that prostaglandins secretion inhibited their fungi-

cidal ability which depends on the levels of hydrogen

peroxide produced [32, 33]. Interestingly, recent

studies showed that virulent and low virulence strains

of P. brasiliensis are able to synthesize prostaglan-

dins by a cyclooxigenase-dependent pathway and that

these lipid mediators are required for P. brasiliensis

survival [33].

Besides the importance of hosts lipid mediators

such as the eicosanoids in innate immunity, other

lipid components of pathogen membranes or walls

have also been shown to play a role in the host-

parasite interaction [34, 35]. Studies on the influence

of P. brasiliensis lipid fractions in the fungicidal and

secretory activities of B10.A macrophages were

developed in our laboratories. Although all P. brasil-

iensis lipid fractions are potent inducers of NO

synthesis, they can inhibit or enhance the fungicidal

ability of macrophages. The previous in vitro treat-

ment of macrophages by F1 (phospholipids + neutral

lipids) and F2 (short chain glycolipids) fractions

resulted in increased phagocytic activity of cells, and

recovery of higher numbers of viable yeasts from

infected macrophages, despite the presence of high
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NO levels. On the other hand, fractions 3a (glyco-

sylphosphatidylinositol-anchored glycoproteins) and

F3b (long chain glycolipids) caused an opposite

behavior; they inhibited the phagocytic ability of

macrophages leading to decreased recovery of viable

yeasts. As a whole, secretion of IL-10, IL-12, MCP-1,

and GM-CSF induced by P. brasiliensis infection was

inhibited by the previous pre-incubation with all lipid

fractions [36, F. V. Loures, I. Almeida and V. L. G.

Calich, unpublished data]. The different behavior

of the studied lipid fractions could be attributed to

the different physicochemical structures of these

components which would interact with macropha-

ges membranes through different PRR, and the

subsequent balance of pro- and anti-inflammatory

cytokines and chemokines secreted. Indeed, a further

characterization of these lipid fractions will permit

us to better understand the innate host response to

P. brasiliensis infection.

Toll Like and other macrophage receptors

In mammalian cells, the Toll-Like Receptors (TLR)

are transmembrane proteins, which interact with

invariant molecular structures from pathogens

(PAMP) and are involved in the activation of the

innate immune system. Several typical pathogen

components such as lipopolysaccharides, flagelin,

peptidoglycans, DNA motifs, among others, are

recognized by different TLR [37–42]. Early TLR

activation results in the production of several inflam-

matory mediators and the final balance among pro-

and anti-inflammatory components will regulate the

type of adaptative immune response [37–42]. The

TLR 4 is the key receptor that recognizes bacterial

lipopolysaccharides, whereas TLR 2 is involved in

the interaction with bacterial peptidoglycans and

lipoproteins [38, 39]. TLR have been implicated in

the resistance of mammalian hosts to several micro-

organisms [42–44] including fungal pathogens such

as Candida albicans, Aspergillus fumigatus, and

Cryptococcus neoformans [5]. Interestingly, our pre-

vious studies with P. brasiliensis infection showed

that the LPS-resistant, TLR 4 deficient, C3H/HeJ

strain is more resistant to i.p. infection than the

congenic LPS-susceptible, TLR 4 normal, C3HeB/

FeJ strain [45]. Our recent in vitro studies with TLR

4 normal (C3HeB/FeJ) and deficient (C3H/HeJ)

macrophages have demonstrated that this receptor

interacts with P. brasiliensis cells resulting in mac-

rophage activation as shown by increased synthesis of

nitric oxide, IL-12, MCP-1, and enhanced phagocytic

activity; this activation, however, was associated with

augmented recovery of viable yeast cells from

infected macrophages. In the acute phase of pulmo-

nary infection, the presence of TLR 4 induces a more

severe disease, with increased numbers of viable

yeasts in the lungs associated with elevated synthesis

of NO and IL-12. Moreover, even in the chronic

phase, higher fungal burdens were seen in the lungs

of TLR-4-normal mice, associated with increased

levels of pulmonary IL-12 and serum antibodies (IgM

and IgG). Thus, the early macrophage activation

induced by TLR 4 usage is not able to control

P. brasiliensis infection [36, F. V. Loures and V. L.

G. Calich, unpublished observations]. As LPS unre-

sponsiveness of C3H/HeJ mice was linked to a point

mutation in the TLR 4 gene, it is tempting to suggest

that recognition of P. brasiliensis components (LPS

like?) by TLR 4 has a not yet described contribution

to the control of PCM. We have also preliminary

in vitro and in vivo studies with TLR 2 knockout

mice in a C57Bl/6 background demonstrating a more

severe infection in TLR-normal hosts or cells.

Altogether, our findings with TLR-deficient animals

are unusual since PRR are most commonly used by

phagocytes to recognize molecular patterns of patho-

gens, and their interaction usually results in cell

activation, enhanced secretion of pro-inflammatory

cytokines and chemokines, and increased microbi-

cidal activity. In our model, the increase production

of nitric oxide and IL-12 by TLR-normal macro-

phages was not sufficient to control fungal growth

and subsequent disease severity (F. V. Loures and V.

L. G. Calich, unpublished results). These receptors

appear to be used by P. brasiliensis yeast cells to gain

access into macrophages and to escape from other

fungicidal or fungistatic mechanisms of innate

immunity.

Some reports have described the importance of

mannose receptors in P. brasiliensis ingestion by

phagocytic cells. Phagocytosis of yeasts by adherent

peritoneal macrophages of susceptible and resistant

mice was inhibited by gp-43, a P. brasiliensis

glycoprotein most recognized by patients antibodies,

as well as by Saccharomyces cerevisiae derived

a-mannan. Gp 43 was also shown to inhibit NO
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production and killing ability of cytokine-stimulated

macrophages [46]. Immature dendritic cells of resis-

tant mice appear to use mannose receptors to

internalize P. brasiliensis yeasts [47]. In addition,

comparative studies with Nramp1 gene congenic

macrophages (B10R and B10S) have demonstrated

that B10R cells were better inhibitors of conidia to

yeast conversion and expressed more mannose

receptors than B10S macrophages, whereas both cell

lines expressed similar levels of complement receptor

3 (C3R) [20]. As described below, CR3 was also

shown to play an important function in P. brasiliensis

adherence and ingestion by phagocytic cells [23, 24].

Polymorphonuclear leukocytes and NK cells

Differently from macrophages, murine PMN leuko-

cytes are able to kill P. brasiliensis yeasts through the

oxidative metabolism [48, 49]. In an air-pouch model

of infection and compared with PMN leukocytes

from susceptible mice, cells from A/J mice presented

superior fungicidal ability associated with their

enhanced oxidative burst [50]. The antifungal activity

of murine and human PMN leukocytes was shown to

be enhanced by IFN-c, GM-CSF, or IL-1b, but not by

TNF-a or IL-8 [51]. In contrast, TNF-a was shown to

better enhance P. brasiliensis killing by human

macrophages than IFN-c [52].

Comparing the early influx of inflammatory cells

to the lungs of susceptible and resistant mice, Cano

[53] demonstrated an equivalent mononuclear cell

influx, but a more prominent migration of neutrophil

and eosinophil PMN cells into the lung of suscep-

tible mice. This early PMN influx was also seen

early in the infection of BALB/c mice [54].

Furthermore, only in susceptible mice this early

(24 h after infection) PMN influx affects disease

outcome and acquired immunity further established.

Interestingly, the more severe disease of PMN-

depleted susceptible mice was associated with the

increased presence of pulmonary IL-12 and IFN-c
suggesting that the production of pro-inflammatory

mediators not always leads to immunoprotection.

Differently from primary infection, neutrophil deple-

tion did not alter immunoprotection in secondary

paracoccidioidomycosis. As a whole, our data

showed that the genetic pattern of hosts exerts an

important influence on the immunoprotective and

immunoregulatory functions of neutrophils which

appear to be essential in situations devoid of cell-

mediated immunity [55].

The role of NK cell has not been well studied in

P. brasiliensis infection, but the few available

investigations in this area suggest that this lympho-

cyte subpopulation has a complex function in PCM

that varies according to the type of host or site where

these cells were obtained. In the peripheral blood of

PCM patients, NK cells were found in elevated

number but they displayed low cytotoxic activity

[56]. In vitro studies showed a direct inhibitory effect

of murine NK cells on P. brasiliensis growth [57] and

in a hamster model of infection, NK cells were shown

to be activated at the first weeks of infection followed

by an impairment of its activity associated with

depressed cell-mediated immunity [58].

Our findings of illness exacerbation after in vivo

depletion of IL-12 or IFN-c in euthymic and

athymic BALB/c mice [59, 60] suggested that NK

cells would have a protective role in pulmonary

PCM. In vivo depletion of NK cells by anti-Asialo

GM1 polyclonal antibody resulted in a more severe

disease of both mouse strains, but the depletion

effect was more pronounced in the NK-depleted

athymic than euthymic mice. Anti-NK cell treatment

led to increased antibody production by the former

strain but did not modify the humoral immunity of

euthymic animals, indicating that the isotype class

switch in T cell deficient mice is influenced by NK

cells cytokines. In addition, NK cells were shown to

control PMN leukocytes influx to the lungs of

infected mice. Hence, NK cells seem to have a

protective effect in pulmonary PCM and their

function appears to be more prominent in T-cell

deficient than in T-cell sufficient mice [61, R. C.

Valente-Ferreira and VLG Calich, unpublished

data].

Macrophages and nitric oxide

The crucial role of the mononuclear phagocytic

system in the resistance to P. brasiliensis infection

was demonstrated by the fact that reticuloendothelial

system blockade, induced by colloidal carbon inoc-

ulation previous to P. brasiliensis infection (i.p.

route), increased the severity of the disease in both

resistant and susceptible animals [62].
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The infection by P. brasiliensis occurs by inhala-

tion of airborne propagules of the mycelial phase of

the fungus, which reach the lungs, eventually evade

the host defenses and disseminate via the bloodstream

and/or lymphatics to virtually all parts of the body [4,

8, 10, 19]. Alveolar macrophages (AM) are believed

to be important in the initial containment of the

microorganisms through nonspecific or innate

immune mechanisms. AM or dendritic cells (DC)

also phagocytose particles and microbial organisms

and carry them via lymphatics to regional hilar lymph

nodes, where specific immune responses are believed

to be generated.

P. brasiliensis proliferates ex vivo in a variety of

mouse macrophages, including resident peritoneal

alveolar and peripheral blood derived monocytes

until the cells are lysed and killed by a yet unknown

mechanism. However, the immunological activation

of these cells efficiently inhibits fungal growth [48].

When alveolar macrophages were analyzed after

pulmonary infection, absence of hydrogen peroxide

production was observed with cells obtained from

susceptible mice, whereas macrophages from resis-

tant mice produced increased levels of this metabolite

in the course of disease [14]. These different activ-

ities parallel the DTH anergy and the evident DTH

reactivity developed by susceptible and resistant

mice, respectively.

Brummer et al. [48, 63] have demonstrated that

activation of mouse peritoneal macrophages by IFN-c
enhances the fungicidal activity of these cells but

fungal killing is independent of the respiratory burst.

Further investigations showed the fundamental role

of nitric oxide in the fungicidal ability of activated

macrophages, which appear to use an iron-restriction

mechanism to inhibit the transformation of ingested

conidia to yeast cells [64, 65]. We have confirmed the

fundamental role of NO in the murine PCM [64]. In

the course of infection, peritoneal macrophages from

resistant mice secrete low levels of NO associated

with high amounts of TNF-a; the opposite was seen

with glass adherent cells from susceptible mice.

Interestingly, in vitro inhibition of NO production by

aminoguanidine treatment of B10.A macrophages led

to increased production of TNF-a indicating the

inhibitory role of NO on cytokine secretion. More

importantly, the disease of i.p. infected C57BL/6

mice genetically deficient for inducible nitric oxide-

synthase (iNOS KO) and in resistant and susceptible

mice in vivo treated with aminoguanidine and inca-

pable of secreting NO, is more severe [66].

The dual role of NO in murine PCM was further

confirmed in the pulmonary model of infection.

Compared with wild type mice, a lower fungal load

was observed at week 2, although at week 10,

increased number of fungi was detected in the lungs

of mice genetically deficient of inducible NO-

synthase (iNOS KO). The better control of fungal

loads by iNOS KO mice at week 2 of infection

appeared to be TNF-a mediated, since its in vivo

neutralization abolished this difference [67, S. Ber-

nardino and V. L. G. Calich, unpublished results). In

agreement, Gonzales et al. [68] showed that TNF-a-

activated peritoneal macrophages, although not pro-

ducing NO, were able to inhibit the transition of P.

brasiliensis conidia to yeast cells. Interestingly, our

studies also demonstrated that iNOS KO mice,

despite the more intense fungal infection by week

10 of infection, developed better organized granulo-

mas. Thus, the increased secretion of TNF-a, the

increased influx of activated T cells to the lungs, and

the better organized lesions appear to compensate the

genetic deficiency of NO. This was further confirmed

by the equivalent survival times showed by iNOS KO

and WT mice, despite the higher fungal loads in the

former strain [67, S. Bernardino and V. L. G. Calich,

unpublished data).

Recent studies were also performed aimed to

understand the interaction between alveolar macro-

phages from resistant and susceptible mice and

P. brasiliensis. Normal alveolar macrophages of

B10.A mice, in vitro infected with P. brasiliensis

yeasts, can be activated by small doses of exoge-

nously added IFN-c, secrete high levels of IL-12,

nitric oxide and display a very efficient fungal killing

activity. In contrast, macrophages from A/J mice

were poorly activated by low doses of IFN-c, secrete

low amounts of IL-12, NO and present a poor

fungicidal ability concomitant with the production of

high levels of active TGF-b. The fungicidal ability of

B10.A macrophages was modulated by aminoguani-

dine, whereas TGF-b was the main negative regulator

of A/J macrophages. Thus, alveolar macrophages of

susceptible mice seem to be more efficient than those

of resistant mice and interaction of P. brasiliensis

with these cells probably occurs through different

macrophage receptors [69 A. Pina and V. L. G.

Calich, unpublished observations]. These findings
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appear to explain the apparently discrepant result we

had observed when the pulmonary model of infection

was first described: at the beginning of infection

higher number of viable yeast cells were recovered

from lungs of resistant mice as compared with

susceptible ones [14]. Furthermore, IFN-c, the most

efficient macrophage activator was found in higher

levels in the lung homogenates of susceptible mice

[59]. Thus, the innate immunity appears to be much

more efficient in the susceptible strain than in the

resistant one. This hyperactivity is concomitant with

high levels of NO production that is able to restrain

fungal growth but also interferes with acquired

immune responses leading to a subsequent immuno-

suppression of T-cell mediated immunity [66, A. Pina

and V. L. G. Calich, unpublished data].

Dendritic cells and other APCs

T cells have clonal receptors (TCR) educated to see

antigen epitopes presented by major histocompatibil-

ity complex (MHC) molecules of antigen presenting

cells (APC). Several cell types can exert the APC

function such as macrophages, B cells and endothe-

lial cells, but the dendritic cells (DC) are considered

the ‘‘professional APC’’ due to their special ability to

activate T cells. DC are derived from hematopoietic

stem cells in the bone marrow and form a network of

a heterogeneous cell populations. Many DC reside

and traffic through nonlymphoid peripheral tissues,

continuously surveying the environment for invading

microorganisms [70]. During infection, DCs in the

periphery are activated by interaction with microor-

ganisms or inflammatory mediators to increase their

expression of MHC and co-stimulatory molecules

such as CD80, CD86, and CD40. They also modify

their expression of chemokines receptors and adhe-

sion molecules, causing migration from the periphery

to the T cell zone of draining lymph nodes. Activated

DC then display pathogen encoded antigens to naı̈ve

antigen-specific T cells which initiate primary T cell

responses [71, 72]. In the course of maturation, DC

are subject to profound changes. The endocytic

capacity is downmodulated, while there is a marked

up-regulation of MHC class II expression, from an

already high constitutive level [72].

As with other infectious pathologies, some studies

on the importance of different antigen presenting

cells (DC, macrophages, and B cells) in the resistance

to P. brasiliensis infection were reported. It was

shown that gp43, the immunodominant antigen for

humoral immunity in PCM [73], was mainly pre-

sented by macrophages and stimulated a preferential

Th1 cytokine production in resistant mice. In con-

trast, in susceptible mice gp43 was predominantly

presented by B lymphocytes and led to preferential

secretion of Th2 cytokines. In addition, no differ-

ences in T cell reactivity of resistant and susceptible

mice were detected. [74]. Another report from the

same group showed that the s.c. injection of mature

DC, macrophages and B cells primed naı̈ve suscep-

tible and resistant mice and induced T cell

proliferation. In this study, however, macrophages

and B cells from both mouse strains displayed

equivalent stimulatory activity inducing a preferential

secretion of IL-10 and IL-4; DC from resistant

animals, however, when compared with B10.A DC,

stimulated a higher production of IFN-c, equivalent

levels of IL-12 and higher expression of MHC class II

and CD80 molecules. B10.A macrophages were also

shown to secrete high levels of IL-6 while IL-12 was

secreted in similar levels by DC of both strains.

Hence, it was suggested that DC of resistant mice

preferentially drive Th1 development while B cells

and macrophages from both mouse strains appeared

to induce the differentiation of a Th0 or Th2

phenotype [75]. Further studies with resistant [76]

and susceptible mice derived DC [77] demonstrated

an equivalent behavior of gp-43 stimulated DC. Thus,

gp43 treatment as well as P. brasiliensis infection

down-regulated MHC class II, CD80, CD86, CD54,

and CD40 expression as well as IL-12 and TNF-a
secretion by LPS-treated DC. So, no major differ-

ences were reported in the activities of DC obtained

from resistant and susceptible mice, unless they were

previously activated by LPS. The i.v. infusion of DC

previously treated with gp-43 plus LPS, but not with

each of these components individually, increased

pulmonary CFU counts and altered granulomas

morphology of P. brasiliensis-infected mice [77].

We have also preliminary results comparing the

behavior of DC from resistant and susceptible mice.

Bone marrow derived DC were obtained and acti-

vated with LPS, P. brasiliensis yeast cells or a

soluble whole yeast cells antigen. DC from both

mouse strains exhibited MHC class II and co-

stimulatory molecules (CD80, CD86, CD11c,
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CD40) when activated by LPS or fungal yeast cells

although A/J DC presented higher CD11c and

CD86 expression. Compared with A/J cells, B10.A

DC secreted higher levels of IL-12, IL-10, and NO,

whereas the former are more able to produce active

TGF-b. DC of susceptible mice induced a high

proliferative activity of A/J T cells but not of

B10.A lymphocytes while A/J DC stimulated T cell

proliferation of both mouse strains. Thus, T cell

anergy was only detected when B10.A DC were

co-cultivated with homologous lymphocytes indi-

cating that B10.A DC does not lack the ability to

properly present P. brasiliensis antigens and that

B10.A lymphocytes are appropriately activated

when P. brasiliensis antigens were presented by

A/J DCs (A. Pina and V. L. G. Calich, unpublished

results).

Cytokines

As a more detailed review on the role of cytokines

in PCM was reported elsewhere [10, 13], only a

brief analysis of those studies will be presented

here. IFN-c is the most important protective cytokine

to susceptible, intermediate, and resistant mice to

P. brasiliensis infection [59, 78]. TNF-a and IL-12

are also very important protective cytokines [60, 78,

79]. IL-4 has a dual role (protective or disease

promoting) in pulmonary PCM depending on the

genetic pattern of the host [80, 81]. Despite the less

severe disease induced by administration of rIL-12

[79], the strong inflammatory reaction in the lungs

demonstrated the harmful effect of this cytokine. IL-

10 appears to be one important macrophage-deacti-

vating cytokine in pulmonary PCM, and its genetic

absence appears to result in the aseptic cure of

infected mice (Fig. 3) (T. A. Costa and V. L. G.

Calich, unpublished results). Altogether, studies with

cytokine-deficient mice showed that the Th1/Th2

paradigm can be applied to explain fungal growth (or

dissemination) in liver and spleen: IL-4 and IL-10 are

disease-promoting cytokines while IL-12 and IFN-c
are protective ones. However, the control of fungal

growth in the lungs is more complex and both, Th1

(e.g., IL-12) and Th2 cytokines (e.g., IL-4) can have

antagonistic effects. IL-10 is a disease-promoting

cytokine and appears to have a more prominent role

in the control of pulmonary PCM than IL-4.

Summarizing, our studies on innate immunity to

P. brasiliensis infection suggest that a highly efficient

innate immunity can lead to severe paracoccidioid-

omycosis. The following findings appear to support

such inference: at the onset of infection, susceptible

mice display a better control of lung fungal loads; IL-

4 protects susceptible mice from severe infection;

exogenous IL-12 leads to increased lung pathology;

TLR usage leads to increased macrophage activation

associated with increased fungal loads; susceptible

mice secrete higher levels of LT and its inhibition

results in milder pathology; PMN depletion causes

more severe PCM associated with increased secretion

of pro-inflammatory cytokines; early NO secretion

can induce more severe infection. As a whole, it

appears that ‘‘the more reactive the host innate

immunity the more severe is the initial P. brasiliensis

infection.’’

The influence of innate immunity in the resistance

to P. brasiliensis infection

Protective immunity in paracoccidioidomycosis

(PCM) is believed to be mainly mediated by cellular

immunity [82]. In the human disease the Th1/Th2

dichotomy of CD4+ T cells appears to partially

explain the behavior of PCM patients and healthy

infected individuals. So, the most evident Th1

immunity is observed when lymphocytes from

healthy infected subjects or cured patients are in vitro

activated by gp 43 and a clear production of IL-2 and

IFN-c is concomitant with a vigorous lymphoprolif-

erative response [83, 84]. The acute form of the

disease appears to be the Th2 pole of reactivity,

where IL-4, IL-5, and IL-10 are produced and

associated with low T cell proliferation which,

however, can be reverted by in vitro treatment with

rIL-12 and anti-IL-10 antibodies [85]. The severe

form of the chronic disease also appears to present a

Th2 pattern of reactivity. Most individuals of the

chronic form of PCM, however, do not display

polarized Th1/Th2 immune responses and their

hyporesponsiveness appears to be not linked to

imbalanced cytokine synthesis and may be due to

other immunoregulatory mechanisms such as T cell

anergy, T cell deletion by apoptosis or suppressive

activity of natural regulatory T cells [10, 86–88].

Indeed, a recent paper showed a direct correlation
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between the number of natural regulatory T cells in

the lesions and peripheral blood and the severity of

PCM [88]. In human PCM the function of CD8+ T

cells, however, was poorly investigated.

We have some studies that characterized the

function of CD4+ and CD8+( T cells in the immunity

developed by susceptible (B10.A), intermediate

(C57Bl/6) and resistant (A/J) mice after pulmonary

infection with P. brasiliensis yeasts. In susceptible

mice, anti-CD4 treatment did not alter disease

severity and cellular immunity. However, anti-CD8

treatment led to increased fungal loads and DTH

reactivity indicating the antagonistic effects of

CD8a+ cells. In resistant mice, besides a protective

type 1 immunity mediated by CD8a+ T cells,

neutralization studies revealed the concomitant pres-

ence of Th1 and Th2 cells. In addition, deficiency of

whole T and CD8a+ T cells but not of CD4+ T or B

cells in the C57Bl/6 background led to more severe

PCM and increased mortality rates. In conclusion, our

studies demonstrated that in pulmonary PCM: (a)

fungal loads are mainly controlled by CD8a+ T cells;

(b) genetic susceptibility of hosts appears to be

associated with deletion or anergy of CD4+ T cells,

and finally, (c) a balanced type1/type2 immunity is

associated with genetic resistance to P. brasiliensis

infection [10].

The concomitant analysis of innate and adaptative

immunity in murine PCM lead us to propose a

model on the immunopathogenesis of pulmonary

paracoccidioidomycosis. Alveolar macrophages of

susceptible mice are very reactive to P. brasiliensis

components and pro-inflammatory mediators are

secreted by cells involved in the innate immunity

of lungs. The high production of IL-12 stimulates

NK cells to secrete elevated amounts of IFN-c that

induces the secretion of high levels of nitric oxide

and other pro-inflammatory mediators by macro-

phages which develop a very efficient fungicidal

ability. Leukotrienes and the TLR expression appear

to activate macrophages and to contribute with

P. brasiliensis endocytosis. Anti-inflammatory cyto-

kines such as IL-10 and/or TGF-b are secreted in

low levels. Although not extensively studied, equiv-

alent activities were found with B10.A dendritic

cells. This behavior results in a very effective innate

immunity and precocious control of fungal growth

and would result in preferential activation of

Th1 CD4+ cells. The excessive and continuous

production of NO, however, inhibits the initial

development of CD4+ T-cell-immunity by active

induction of T cell anergy or deletion. The elevated

expression of co-stimulatory molecules (MHC class

I, CD40, CD80, for example) by macrophages or

DC could directly activate CD8+ T cells without the

help of CD4+ T lymphocytes [89, 90]. This pattern

of immunity could explain the very efficient mech-

anism of innate immunity resulting, however, in

Fig. 3 Photomicrographs of pulmonary lesions developed by

wild type (WT, upper micrographs) and IL-10-deficient (IL-10

KO, lower micrographs) C57BL/6 mice at week 8 after intra-

tracheal infection with one million fungal cells. WT mice

presented extensive, fungi rich, confluent lesions, occupying

almost all lung parenchyma, whereas in IL-10 KO mice a

diffuse inflammation, with no evident fungal cells, affected

smaller areas of lungs. Left, H&E; right, Groccot stained

lesions (100·)
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poor T-cell mediated immunity (Fig. 4). It would

also explain the DTH anergy, the non-organized

lesions, the high levels of antibodies, and the

progressive and severe disease developed by sus-

ceptible mice.

Alveolar macrophages and DC from resistant mice

respond to P. brasiliensis infection by secreting low

amounts of IL-12, but high levels of TGF-b and TNF-

a. This results in poor NK cell activation, IFN-c
production, NO secretion, and initial inefficient fungal

killing. This activity characterizes the low efficient

natural immunity of resistant mice. However, the

production of cytokines and NO in low levels do not

impair T-cell immunity. So, resistant animals slowly

develop P. brasiliensis specific CD4+ and CD8+ T

lymphocytes, which control fungal growth and orga-

nize lesion morphology (Fig. 5). This model does not

exclude the previously proposed Th1/Th2 model of P.

brasiliensis control. It tries, however, to put together

many results obtained with studies on innate and

adaptative immunity in the murine model of pulmo-

nary infection, which eventually may contribute to

enhance our knowledge on the immunopathogenesis

of human paracoccidioidomycosis.
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8. Brummer E, Castañeda E, Restrepo A. Paracoccidioid-

omycosis: an update. Clin Microbiol Rev 1993;6:89–117.

9. San-Blas G, Niño-Vega G, Iturriaga T. Paracoccidioides
brasiliensis and paracoccidioidmycosis: molecular

approaches to morphogenesis, diagnosis, epidemiology,

taxonomy and genetics. Med Mycol 2002;40:225–42.

10. Calich VLG, Blotta MHSL. Pulmonary paracoccidioid-

omycosis In: Fidel PL, Huffnagle GB, editors. Fungal

immunology: from an organ perspective, New York, NY:

Springer; 2005. p. 201–27.

11. Calich VLG, Singer-Vermes LM, Russo M, Vaz CAC,

Burger E. Immunogenetics in paracoccidioidomycosis. In:

Franco M, Lacaz CS, Restrepo-Moreno A, Del Negro G,

editors. Paracoccidioidomycosis, Boca Raton, Florida:

CRC Press; 1994. p. 151–73.

12. Calich VLG, Vaz CAC, Burger E. Immunity to Paracoc-
cidioides brasiliensis infection. Res Immunol

1998;149:407–16.

13. Calich VL, Kashino SS. Cytokines produced by susceptible

and resistant mice in the course of Paracoccidioides bra-
siliensis infection. Braz J Med Biol Res 1998;31:615–23,

Review.

14. Cano LE, Singer-Vermes LM, Vaz CAC, Russo M, Calich

VLG. Pulmonary paracoccidioidomycosis in resistant and

susceptible mice: relationship among progression of

infection, bronchoalveolar cell activation, cellular immune

response and specific isotype patterns. Infect Immun

1995;63:1777–83.

15. Chiarella AP. Caracterização da função das células TCD4+

e T CD8+ na paracoccidioidomicose pulmonar de camun-
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82. Musatti CC, Peraçoli MTS, Soares AMVC, Reskallah-

Iwasso MT. Cell-mediated immunity in patients with

paracoccidioidomycosis. In: Franco M, Lacaz CS, Restre-

po A, Del Negro G, editors. Paracoccidioidomycosis.

Bocca Raton, Florida: CRC Press; 2004. p. 175–86.

83. Mamoni RLR, Nouer AMS, Oliveira SA, Musatti CC,

Rossi CL, Camargo ZP, et al. Enhanced production of

specific IgG4, IgA and TGF-b in sera from patients with

the juvenile form of paracoccidioidomycosis. Med Mycol

2002;40:1–7.

84. Benard G, Romano CC, Cacere CR, Juvenale M, Mendes-

Giannini MJ, Duarte AJ. Imbalance of IL-2, IFN-gamma

and IL-10 secretion in the immunosuppression associated

with human paracoccidioidomycosis. Cytokine

2001;13:248–52.

85. Romano CC, Mendes-Giannini MJ, Duarte AJ, Benard G.

The role of interleukin-10 in the differential expression of

interleukin-12p70 and its beta2 receptor on patients with

active or treated paracoccidioidomycosis and healthy

infected subjects. Clin Immunol 2005;114:86–94.

86. Cacere CR, Romano CC, Mendes Giannini MJ, Duarte AJ,

Benard G. The role of apoptosis in the antigen-specific T

cell hyporesponsiveness of Paracoccidioidomycosis

patients. Clin Immunol 2002;105:215–22.

87. Campanelli AP, Martins GA, Souto JT, Pereira MS, Li-

vonesi MC, Martinez R, et al. Fas-Fas ligand (CD95-

CD95L) and cytotoxic T lymphocyte antigen-4 engage-

ment mediate T cell unresponsivess in patients with

paracoccidioidomycosis. J Infect Dis 2003;187:1496–505.

88. Cavassani KA, Campanelli AP, Moreira AP, Vancin JO,

Mamede RC, Martinez R, et al. Systemic and local char-

acterization of regulatory T cells in a chronic fungal

infection in humans. J Immunol 2006;177:5811–8.

89. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire

antigen from apoptotic cells and induce class I-restricted

CTLs. Nature 1998;392:86–9.

90. Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic

cell can be a temporal bridge between a CD4+ T-helper and

a T-killer cell. Nature 1998;393:474–8.

236 Mycopathologia (2008) 165:223–236

123


	Innate immunity to Paracoccidioides brasiliensis infection
	Abstract
	Introduction
	The isogenic murine model of resistance/susceptibility of paracoccidioidomycosis mimics the human disease
	Innate immunity 
	Genetic control of susceptibility
	Complement system and chemokines
	Lipid mediators (Eicosanoids) and P. brasiliensis lipids
	Toll Like and other macrophage receptors
	Polymorphonuclear leukocytes and NK cells
	Macrophages and nitric oxide
	Dendritic cells and other APCs
	Cytokines

	The influence of innate immunity in the resistance to P. brasiliensis infection
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


