PMR2415 – Microprocessadores em Automação e Robótica

 $2^{\underline{a}}$ Prova – 20/06/2015

A prova é com consulta permitida aos data sheets dos componentes e à apostila da matéria. Pode ser consultada documentação em meio eletrônico em computador ou tablet, sem conexão com a rede.

Não é permitida a consulta às anotações de aula, anotações na documentação permitida, relatórios e Internet.

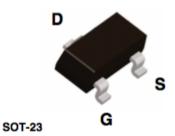
Projetar o hardware e os itens solicitados do software para um sistema de controle de luminosidade de um LED de potência por uma interface RS232 e um PIC16F886. Neste sistema a luminosidade do LED é variada com um sinal de PWM. O valor do duty cycle é recebido na forma de um byte pela interface serial RS232 possibilitando 255 níveis de luminosidade diferentes entre apagado (0% de duty cycle de PWM) e totalmente aceso (100% de duty cycle de PWM).

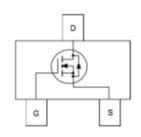
Para tanto está disponível o seguinte material:

- Microcontrolador PIC 16F886
- Oscilador a cristal de 12 MHz
- LED de potência branco
- Transistor MOSFET enhancement mode canal-n BSS138
- Transistor bipolar NPN BC547
- Transceiver RS232 MAX233
- \bullet Resistores diversos de 1/4W com 5% de tolerância

Seguem algumas informações sobre os componentes:

PIC. O microcontrolador PIC 16F886 deve ser utilizado com clock de 12MHz, gerado pelo oscilador fornecido, e alimentado com +5V.


Oscilador a cristal de 12 MHz. Semelhante ao utilizado nas atividades de laboratório, com o mesmo encapsulamento, mas com frequência diferente. As informações necessárias para uso deste componente estão na Apostila de Laboratório.


LED de potência. O LED de potência de cor branca apresenta uma queda de tensão de 3,2V quando polarizado diretamente e emite luz com intensidade máxima com corrente de 100 mA [1].

Transistor MOSFET enhancement mode canaln BSS138. O símbolo do transistor, seu encapsulamento e valores dos parâmetros necessários para o projeto estão na Figura 1.

Transistor bipolar NPN BC547. Os valores dos parâmetros necessários para o projeto estão na Figura 2. O aluno deve conhecer o símbolo correto de um transistor NPN.

Transceiver RS232 MAX233. O transceiver RS232 converte os níveis de tensão compatíveis com RS232, entre ±5V, no mínimo e ±30V, no

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain-Source Voltage	50	V
V _{GSS}	Gate-Source Voltage	±20	V
I _D	Drain Current - Continuous (Note 1)	0.22	Α
	- Pulsed	0.88	
Po	Maximum Power Dissipation (Note 1)	0.36	w
	Derate Above 25°C	2.8	mW/°C
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300	°C

Electrical Characteristics T _A = 25°C unless otherwise noted									
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units			
On Characteristics (Note 2)									
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	8.0	1.3	1.5	V			
ΔVGS(th) ΔTJ	Gate Threshold Voltage Temperature Coefficient	I _D = 1 mA,Referenced to 25°C		-2		mV/°C			
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, \qquad I_D = 0.22 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \qquad I_D = 0.22 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 0.22 \text{ A}, T_J = 125^{\circ}\text{C}$		0.7 1.0 1.1	3.5 6.0 5.8	Ω			
I _{D(on)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	0.2			Α			
g _{FS}	Forward Transconductance	V _{DS} = 10V, I _D = 0.22 A	0.12	0.5		S			

Figura 1: Informações sobre o transistor BSS138 (extraído de [2])

Symbol		Parameter	Conditions	Min.	Тур.	Max.	Unit	
Ісво	Collector Cut-Off Current		V _{CB} = 30 V, I _E = 0			15	nA	
h _{FE}	DC Current Gain		V _{CE} = 5 V, I _C = 2 mA	110		800		
V _{CE} (sat)	Collector-Emitter Saturation Voltage		I _C = 10 mA, I _B = 0.5 mA		90	250	mV	
			I _C = 100 mA, I _B = 5 mA		250	600		
V _{BE} (sat)	Base-Emitter Saturation Voltage		I _C = 10 mA, I _B = 0.5 mA		700		mV	
			I _C = 100 mA, I _B = 5 mA	-/	900			
V _{BE} (on)	Base-Emitter On Voltage		V _{CE} = 5 V, I _C = 2 mA	580	660	700		
			V _{CE} = 5 V, I _C = 10 mA			720	mV	
f _T	Current Gain Bandwidth Product		V _{CE} = 5 V, I _C = 10 mA, f = 100 MHz		300		MHz	
C _{ob}	Output Capacitance		V _{CB} = 10 V, I _E = 0, f = 1 MHz		3.5	6.0	pF	
C _{ib}	Input Capacitance		V _{EB} = 0.5 V, I _C = 0, f = 1 MHz		9		pF	
NF	Noise Figure	BC546 / BC547 / BC548	V _{CE} = 5 V, I _C = 200 μA,		2.0	10.0	dB	
		BC549 / BC550	$f = 1 \text{ kHz}, R_G = 2 \text{ k}\Omega$		1.2	4.0		
		BC549	V _{CE} = 5 V, I _C = 200 μA,		1.4	4.0		
		BC550	$R_G = 2 k\Omega$, $f = 30 \text{ to } 15000 \text{ MHz}$		1.4	3.0		

Figura 2: Informações sobre o transistor BC547 (extraído de [3])

máximo, nas entradas $R1_{IN}$ e $R2_{IN}$ para níveis de tensão compatíveis com TTL e CMOS nas saídas $R1_{OUT}$ e $R2_{OUT}$, e converte os níveis de tensão compatíveis com TTL e CMOS nas entradas $T1_{IN}$ e $T2_{IN}$ para a tensão de $\pm 8V$ nas saídas $T1_{OUT}$ e $T2_{OUT}$ compatíveis com RS232. A Figura 3 mostra a pinagem do encapsulamento DIP e o circuito interno com os seus sinais de interface e com o componente externo e as ligações necessárias para o seu funcionamento.

Projeto de Hardware

Em relação ao projeto de hardware, pede-se:

- (3,0) Fazer o diagrama esquemático simplificado¹ do hardware do sistema completo, indicando quais os pinos e os sinais correspondentes de cada componente estão sendo usados.
- 2. (1,5) Escolher entre o transistor MOS-FET enhancement mode canal-n e o bipolar NPN como o driver do LED de potência. O circuito deve ser desenhado com o símbolo correto e os resistores utilizados devem ser calculados de acordo com o tipo de transistor escolhido. Devem se indicados quais os parâmetros extraídos das Figuras 1 ou 2 foram utilizados para os cálculos.
- 3. (0,5) Calcule a potência dissipada em cada resistor para ter certeza que os resistores disponíveis podem ser usados sem problemas.

Projeto de Software

Em relação ao projeto de software, pede-se:

- (1,0) Escrever o trecho de programa para inicializar o canal serial para operar em 115.200 baud com o menor erro possível. Apresentar os cálculos para chegar nos valores de SPBRGH e SPBRG.
- 2. (1,0) Calcular a resolução em bits para o PWM com frequência de 15 kHz.

- 3. Num circuito montado e funcionando, foi observada a forma de onda da Figura 4 em algum ponto do circuito. Pede-se o seguinte:
 - a) (1,0) Em que ponto do circuito foi observada esta forma de onda e explique como chegou a esta conclusão
 - b) (1,0) A que caracter da Tabela AS-CII corresponde o valor binário contido no sinal da forma de onda observada. Explique com base nos tempos medidos na figura.
 - c) (1,0) A que porcentagem do duty cycle do PWM corresponde o valor contido na forma de onda e mostre o trecho de programa para ajustar o duty cycle para este valor.

Todos os trechos de programa devem ser escritos em Linguagem C considerando que o compilador é o MPLAB XC8. Todas as configurações devem ser feitas por bit com o devido comentário explicando o que está sendo configurado, para tanto podem ser utilizadas as definições contidas no header pic16f886.h. Trechos de código sem os devidos comentários explicativos não serão considerados na correção. O uso adequado da Linguagem C será levado em consideração na correção.

No caso de especificações vagas ou não explicitadas no enunciado, assuma valores e configurações necessários e especifique o motivo da assunção colocando as devidas justificativas para as decisões tomadas.

Referências

- [1] OSRAM: Advanced Power TOLED Plus LUWG5GP; data sheet.
- [2] Fairchild Semiconductor: BSS138 N-Channel Logic Lever Enhancement Mode Field Effect Transistor; data sheet.
- [3] Fairchild Semiconductor: BC546 / BC547 / BC548 / BC549 / BC550 NPN Epitaxial Silicon Transistor; data sheet.
- [4] Maxim: +5V-Powered, Multichannel RS-232 Drivers/Receivers; data sheet.

¹Não é necessário desenhar o PIC completo, represente somente os sinais e pinos utilizados.

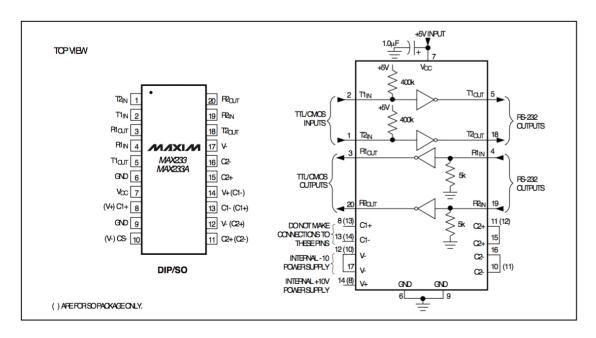


Figura 3: Transceiver MAX233 (extraído de [4])

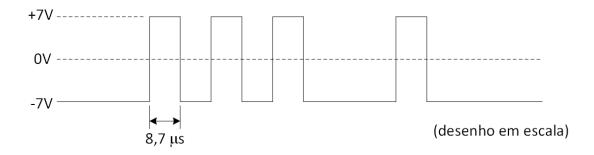


Figura 4: Forma de onda observada com o osciloscópio em algum ponto do circuito