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Formal methods, whereby a system is described and/or analyzed using precise mathematical techniques, is a well
-established and yet, under-used approach for developing software systems. One of the reasons for this is that project
deadlines often impose an unsatisfactory development strategy in which code is produced on an ad-hoc basis
without proper thought about the requirements and design of the piece of software in mind. The result is a large,
often poorly documented and un-modular monolith of code, which does not lend itself to formal analysis. Because
of their complexity, formal methods work best when code is well structured, e.g., when they are applied at the
modeling level. UML is a modeling language that is easily learned by system developers and, more importantly, an
industry standard, which supports communication between the various project stakeholders. The increased
popularity of UML provides a real opportunity for formal methods to be used on a daily basis within the software
lifecycle. Unfortunately, the lack of preciseness of UML means that many formal techniques cannot be applied
directly. If formal methods are to be given the place they deserve within UML, a more precise description of UML
must be developed. This article surveys recent attempts to provide such a description, as well as techniques for
analyzing UML models formally.

INTRODUCTION
The Unified Modeling Language (UML) (Object Man-

agement Group, 1999; Booch, Jacobson, and Rumbaugh,
1998) provides a collection of standard notations for model-
ing almost any kind of computer artifact. UML supports a
highly iterative, distributed software development process, in
which each stage of the software lifecycle (e.g., requirements
capture/analysis, initial and detailed design) can be specified
using a combination of particular UML notations. The fact
that UML is an industry standard promotes communication
and understanding between different project stakeholders.
When used within a commercial tool (e.g., Rhapsody (I-
Logix Inc, 1999), Rational Rose (Rational Software Corpora-
tion, 1999) ) that supports stub code generation from models,
UML can alleviate many of the traditional problems with
organizing a complex software development project. Although
a powerful and flexible approach, there currently exist a num-
ber of gaps in the support provided by UML and commercial
tools. First and foremost, the consistency checks provided by
current tools are limited to very simple syntactic checks, such
as consistency of naming across models. A greatly improved
process would be obtained if tools were augmented with

deeper semantic analyses of UML models. Unfortunately,
although many of these techniques already exist, having been
developed under the banner of Formal Methods, they cannot
be applied directly to UML. UML is, in fact, grossly imprecise.
There is as yet no standard formal semantics for any part of
UML, and this makes the development of semantic tool sup-
port an onerous task.

This article gives an overview of current attempts to
provide an additional degree of formality to UML and also of
attempts to apply existing Formal Methods analyses to UML
models. Space prevents the presentation of too much detail,
so the description is at a more introductory level. Our starting
point is the UML definition document itself (Object Manage-
ment Group, 1999)  which actually includes a section on UML
semantics. Unfortunately, this semantics is by no means
formal but essentially provides merely a collection of rules or
English text describing a subset of the necessary semantics.

To motivate the need for a formal semantics of UML,
consider Figure 1, which gives a simple sequence diagram
describing a trace in an automated teller machine (ATM).
Sequence diagrams, derived in part from their close neighbor
Message Sequence Charts (MSCs) (ITU-T, 1996), are a way of
visualizing interactions (in the form of message sending and
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receipt) between different objects in the system. They can be
used either in the early stages of development as a way of
expressing requirements, or in later stages as a way of visual-
izing traces (e.g., error traces) of a design or actual code. It is
in their use as requirements specifications that their inherent
ambiguities are most worrying. Misunderstandings at this
stage of development can easily lead to costly errors in code
that might not be discovered until final testing.

The simplicity of sequence diagrams makes them suit-
able for expressing requirements as they can be easily under-
stood by customers, requirements engineers and software
developers alike. Unfortunately, the lack of semantic content
in sequence diagrams makes them ambiguous and therefore
difficult to interpret. For example, is the intended semantics
of Figure 1 that the interaction may take place within the
system, or that it must take place? UML provides no standard
interpretation. Expressions in square brackets denote condi-
tions, but it is not clear from the Standard whether a condition
should only apply to the next message or to all subsequent
messages - in the figure, does the [card inserted] condition
apply only to the ‘Cancel’ message, or to all following
messages? It is these kinds of ambiguities that could lead to
costly software errors. In practice, each stakeholder would
probably impose his or her own (possibly ambiguous in itself)
interpretation of the sequence diagrams. When these are
passed to a design modeler, the designer may introduce yet
another interpretation. The result is a loss of traceability
between software phases and a high degree of unintended
behaviors in the final system.

Further problems with interpretation occur when inte-
grating multiple diagrams. In the case of integrating a collec-
tion of sequence diagrams, it is not specified, for example,
whether two sequence diagrams can be interleaved or must
form completely separate interactions. This problem is expe-
rienced more generally when combining diagrams of differ-
ent types (e.g., sequence diagrams and state diagrams).

UML Semantics

The Standard Semantics
Version 1.3 of the UML Specification (Object Manage-

ment Group, 1999) contains a section on UML Semantics,
which is intended as a reference point for vendors developing
tools for UML. The semantics is only semi-formal, however,
and ultimately provides merely a set of guidelines for tool
developers to follow in order to seek UML compliance. The
abstract syntax of each modeling notation (class diagrams,
use case diagrams, sequence diagrams, state diagrams, activ-
ity diagrams, etc.) is given as a model in a subset of UML
consisting of a UML diagram with textual annotations. The
static semantics of each notation is given as a set of well-
formedness rules expressed in the Object Constraint Lan-
guage (OCL) (Warmer and Kleppe, 1999)  and English. The
use of OCL gives a misleading air of formality to this part of
the semantics. OCL is a side-effect free, declarative language
for expressing constraints, in the form of invariant conditions
that must always hold. Constraints can be placed on classes
and types in a model, used as pre- and post-conditions on
methods, and be used to specify guards. However, as we shall
see, OCL does not have complete formal rigor, and hence its
use to express well-formedness rules is a little unfortunate.
The dynamic semantics in the UML Specification is given as
English text.

The official semantics is based on the four-layer archi-
tecture of UML, consisting of layers: user objects, model,
metamodel and meta-metamodel. The semantics is primarily
concerned with the metamodel layer. Table 1 reproduces the
four-layer architecture from the UML Specification.

Each layer is further divided into packages (Founda-
tion, Core and Behavioral Elements). The Core package
defines the semantics of basic concepts (e.g., classes, inher-
itance) and the Behavioral Elements package deals with other
notations (e.g., sequence diagrams, state diagrams). Each
feature of UML is introduced with an English language
description followed by its well-formedness rules as OCL
constraints and its dynamic semantics as English text. To
illustrate the inadequacy of the semantics, consider the speci-
fication for sequence diagrams. Sequence diagrams are a
particular type of collaboration (collaboration diagrams are
another type). Collaborations are stated to consist of a number
of interactions, where an interaction specifies the communi-
cation between instances performing a specific task. Interac-
tions in turn consist of messages sent between instances,
where each message has, amongst other things, an activator (a
message which invokes the behavior causing the dispatching
of the message) and a set of predecessors, or messages which
must have been completed before the current message can be
executed. The use of predecessors could be utilized for
resolving ambiguities—the predecessors give us a partial
ordering on the messages, akin to that which appears in a

 Figure 1: Interaction with an ATM
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sequence diagram. The well-formedness rules in fact give
additional details about predecessors, such as “A message
cannot be the predecessor of itself ”, expressed in OCL as:

not self.allPredecessors-> includes (self)
and “The predecessors must have the same activator as the
Message”:

self.allPredecessors-> forAll (p | p.activator = self.activator)
However, the semantics still says nothing about how to

combine multiple sequence diagrams, or about the existential
or universal nature of a sequence diagram. As such, the
Standard gives a framework in which to express semantic
constraints, but is incomplete.

Formalizing the Semantics
There is a large body of research on formalizing object-

oriented systems and graphical notations associated with
them. Most of this work has concentrated on the static aspects
of the system (e.g., class diagrams). A number of different
formalisms exist for the basic concepts of class diagrams,
e.g., (Bourdeau and Cheng, 1995; Overgaard, 1998; Wieringa,
1998). A full explanation of these is beyond the scope of this
paper. Less work has been done on modeling the semantics of
the dynamic aspects of systems (i.e., sequence diagrams, state
diagrams etc.) but some research is appearing (e.g., Jackson,
1999; Overgaard, 1999; Araujo, 1998).

The Precise UML Group
A group of researchers, affiliated with the UML Stan-

dardization effort, have recognized the impreciseness of the
official UML semantics and have formed the Precise UML
Group (pUML) (pUML, 2000) to investigate ways of devel-
oping UML as a formal modeling language. The approach of
the pUML is to define a core semantics for essential
concepts of the language and then to define the rest of the
semantics, in a denotational manner, by mapping into this
core semantics. For example, the meaning of a sequence
diagram might be understandable in terms of a subset of
the behavioral semantics of the core. This approach is
consistent with the standard semantics of the metamodel,

and indeed, the intention is to build on the current informal
semantics, rather than integrating many varied and disparate
semantics. Whilst this is a noble effort, it is inevitably a huge
undertaking, and so thus far, only small portions of UML have
been worked on (e.g., see (Evans, France, and Lano, 1999)  for
a discussion of semantics for generalization and packages).

To give a small flavor of the work of the pUML, consider
part of the task of making generalization precise, taken from
(Evans, France, and Lano, 1999)  and (Bruel and France, 1998).
In the UML document, the more generic term for a class is a
classifier. The metamodel fragment for relating a classifier to
its instances is given in Figure 2. This is given along with
English language and OCL annotations. The pUML addition
to the semantics essentially adds further OCL constraints
corresponding to the English text.

Page 2-36 of Object Management Group (1999)  states
that a set of generalizations is disjoint in the sense that an
instance of the parent classifier may be an instance of no more
than one of the children. This is formalized by pUML with the
following OCL expression:

context c : Class inv
c.specialization.child ->

forall(i : Classifier | forall j : Classifier |
i <> j implies i.instance ->

intersection(j.instance) -> isEmpty)
which says that for any two children, i and j, of a class, the set
of instances of i and j are disjoint.

Other Relevant Semantic Efforts
The pUML work has so far concentrated on basic

concepts like objects and inheritance which unfortunately do
not deal with how sequence diagrams, state diagrams etc., are

Table 1: UML Four Layer Architecture

Layer Description Example
Meta-metamodel The infrastructure for a metamodeling MetaClass, MetaAttribute, MetaOperation

architecture. Defines the language for
specifying metamodels.

Metamodel An instance of a meta-metamodel. Defines Class, Attribute, Operation, Component
the language for specifying a model.

Model An instance of a metamodel. Defines a lang- StockShare, askPrice, sellLimitOrder,
uage to describe an information domain. StockQuoteServer

User objects An instance of a model. Defines a specific <Acme_SW_Share_98789>, 654.66,
(user data) information domain. sell_limit_order, <Stock_Quote_Svr_32123>

Figure 2: Metamodel fragment for Classifier and Instance
relationship.
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meant to be interpreted. Formal semantics already exist for
variants of some of the UML notations. State diagrams are a
typical example. State diagrams are derived from Harel’s
statecharts (Harel, 1987)  and a large number of semantics
have been developed for various versions of statecharts  (see
von der Beek, 1994)  for a comparison of many of these. None
of these can be directly applied to UML state diagrams.
Sequence diagrams are another good example. They are de-
rived from (amongst other things) the Message Sequent Chart
(MSC) notation (ITU-T, 1996a)  for which a formal standard
semantics based on process algebras already exists (ITU-T,
1996b). As Damm and Harel (1999)  points out, however, this
semantics still leaves open a number of fundamental ques-
tions. In an attempt to overcome this, Harel has produced a
formal semantics for his own version of MSCs (Damm and
Harel, 1999) . He defines Live Sequence Charts (LSCs) as a
conservative extension of MSCs, the main addition being the
ability to specify a temperature (hot or cold) on both the
vertical timelines in the chart and on the messages. Hot
timelines indicate interactions that must take place, whereas
cold timelines indicate possible interactions. Similarly, hot
messages must be sent (or be received) whereas cold ones
might be sent/received. The motivation behind this, is that
developers actually use MSCs differently depending on the
stage of development. Early in the software lifecycle, the
designer is more interested in possible behaviors whereas,
later on, the emphasis is usually on specifying more precisely
exactly what behaviors will occur and when. Another nota-
tion similar to UML sequence diagrams is Timed Sequence
Diagrams, a formal semantics of which, based on trace
theory, is presented in Facchi (1995) .

It remains an open question if it is possible to integrate
existing semantics such as these with the metamodel seman-
tics pursued by the pUML group.

Object Constraint Language
The Object Constraint Language (OCL) is a side-effect

free, declarative, constraint language included in UML both
to allow users to express additional constraints that could not
be expressed in the existing notations, but also to facilitate
specification in a formal, yet comprehensible way. It was
designed to bring the advantages of formality and yet be
readable enough for use by software developers. The specifi-
cation of OCL itself, however, is largely given by an English
language description which is often ambiguous or inconsis-
tent. As an example of this, consider the following OCL
expression (taken from Richters and Gogolla, 1998):

context rs : RentalStation inv
rs.employee->iterate(p: Person;

names : String = “” | names.concat(p.lastname))
This query is intended to build a list of names of

employees of a car rental station  (Object Management Group
(1999) prescribes no statement about the order of evaluation
if the structure being iterated over is a set or a bag, hence

evaluations may yield different results caused by different
iteration sequences.

Richters and Gogolla (1998) presents a set-based se-
mantics of OCL (not currently accepted as a UML standard)
and overcomes the problem above by defining a deterministic
evaluation semantics. For iteration over sequences, Richters
and Gogolla  take  the elements in the order of the sequence (as
in the UML Standard). For sets or bags, iteration must satisfy
a precondition, which states that the operation which com-
bines expressions at each stage of the iteration (in this case,
concat) is associative and commutative. If this precondition
fails, then the result is dependent on the order of execution
and so the set or bag should be converted to a sequence first.

Vaziri and Jackson (1999) point out a number of short-
comings of OCL. It has been shown (Mandel and Cengarle,
1999)  that OCL is, in terms of its expressiveness, not equiva-
lent to the relational calculus (an example is given of an
operation that cannot be encoded in the relational calculus
but can be expressed in OCL).

Tool Support
Despite the current lack of a precise semantics, there

have been a number of attempts to provide sophisticated tool
support for UML. In this paper, we concentrate on those
approaches that are already well established in the Formal
Methods community.

The Different Guises of Model Checking
The term model checking has been used in a variety of

different contexts with different meanings. This ranges from
its use as meaning the checking of simple syntactic con-
straints (e.g., in the Rhapsody tool, which offers this capabil-
ity) to its use in the Formal Methods community (McMillan,
1993; Holzmann, 1997) to describe a technique for exhaus-
tively searching through all possible execution paths of a
system, usually with the intention of detecting a system state
that does not satisfy an invariant property, expressed in
temporal logic.

Model checking, in the latter sense, is now a well-
established technique for validating hardware systems, and as
such, has been incorporated into commercial CASE tools.
However, the use of model checking in the software world is
more problematic. Software systems generally tend to be
more complex than hardware, containing more intricate data
structures that may involve hierarchy, making them struc-
tured differently from hardware systems. In addition, soft-
ware is often specified with infinite state descriptions, whereas
model checking can only be applied to finite state systems (as
is the case for hardware).

There are two main types of model checking. In both
cases, the idea is to enumerate each possible state that a
system can be in at any time, and then to check for each of
these states that a temporal logic property holds. If the
property does not hold, a counterexample can be generated
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and displayed to the user (this is done using MSCs in the Spin
model checker (Holzmann, 1997)). Explicit model checking
represents each state explicitly and exploits symmetries for
increased performance. Symbolic model checking, on the
other hand, uses an implicit representation in which a data
structure is used to represent the transition relation as a
boolean formula. In this way, sets of states can be examined
together - those which satisfy particular boolean formulas.
The key to the success of the method is the efficient represen-
tation of states as boolean formulas, and the efficient repre-
sentation of these boolean formulas as Binary Decision Dia-
grams (BDDs).

Despite recent successes in model checking software,
e.g., Havelund, Lowry, and Penix (1997) , all approaches fall
foul of the so-called state space explosion. The sheer com-
plexity of software systems leads to a state space that is too
large (e.g. > 21000 states) to be explored exhaustively. This
means that only very small systems can be analyzed automati-
cally. There exist techniques for dealing with this problem,
most notably the use of abstractions (Lowry and Subramaniam,
1998), which reduce the size of the model by replacing the
model with a simpler but equivalent one. The drawback here
is that coming up with useful abstractions is a highly creative,
and hence non-automatable task. In addition, the equivalence
of the abstracted and original system may need to be proved
formally which generally requires an intimate knowledge of
theorem-proving techniques. Another promising technique
is to modify the model checking algorithms, developed for
hardware, to take into account the structure of the software
system. This idea has the potential to alleviate the state space
explosion problem, but research in this area is very much in
its infancy. Structure can be exploited either by composi-
tional model checking (de Roever, Langmaack, and Pnueli,
1998)  in which a complex system is broken down into
modules, which are checked individually, or by hierarchical
model checking (Alur and Yannakakis, 1998)  in which the
hierarchy in a system is used to direct the search.

Despite these drawbacks, it still seems that incorporat-
ing existing model checking techniques into UML would be
worthwhile. Indeed, the highly structured nature of most
UML models (yielded by the object-oriented style and also
hierarchy in state diagrams) may mean that model checking
is likely to be more successful when applied to UML than to
other languages.

So far, there have been surprisingly few attempts to
apply model checking to UML and all of these have concen-
trated on checking state diagrams. UML State diagrams are a
variant of Harel’s statecharts (Harel, 1987)  which  have
always been an attractive target for model checking software
because they are more abstract than code. Indeed, there has
been a reasonably large body of work on model checking
statecharts (Day, 1993; Mikk, Lakhnech, Siegel, and Holzmann,
1998), including case studies on large, real-world systems
such as the TCAS II system (Traffic Alert and Collision

Avoidance System II) (Chan, Anderson, Beame, and Notkin,
1998) , a complex airborne collision avoidance system used on
most commercial aircraft in the United States. One issue that
has always plagued researchers attempting to analyze
statecharts is the choice of a semantics. Harel did produce an
official semantics for statecharts, as incorporated in iLogix’s
CASE tool STATEMATE (I-Logix Inc, 1996), but this is not a
compositional semantics and so does not support composi-
tional checking of large specifications.

The semantics of UML state diagrams differ signifi-
cantly from Harel’s statecharts. This stems from the fact that
STATEMATE statecharts are function-oriented, whereas
UML state diagrams are object-oriented. As a result, both
Paltor and Lilius (1999) and Harel and Grey (1997) give UML
state diagrams a semantics which includes an event queue for
each object and a run-to-completion algorithm which dis-
patches and executes events on an object’s event queue until
the top state generates a completion event and the state
machine exits. This is in contrast to the STATEMATE se-
mantics in which events reach their destinations instantly.

vUML applies model checking based on the semantics
given in Paltor and Lilius (1999). The key idea of the vUML
tool is that UML state diagrams and an associated collabora-
tion diagram are translated into the PROMELA language
which is the input language for the widely recognized SPIN
model checker (Holzmann, 1997). A collaboration diagram
(see Figure 3) is equivalent to a sequence diagram, but
emphasizes the relationship between objects in an interaction
rather than timing constraints between messages. The col-
laboration diagram is required to specify the instances of
classes present in a particular execution. vUML is also
capable of displaying counterexamples from the SPIN model
checker as UML sequence diagrams. Note that SPIN itself
generates counterexample traces as MSCs, but vUML then
gives a sequence diagram in terms of the original UML
objects and messages, not the internal PROMELA syntax
used in the model checking. As yet, vUML has only been
tested on a small number of examples, including the well-
known Dining Philosophers problem and the verification of a
Production Cell. Although the vUML semantics is not com-
positional, the authors claim that large models can be broken
down into parts and model checked, by using a feature that
non-deterministically generates events not specified in the
current model.

JACK (Gnesi, Latella, and Massink, 1999) is a tool suite
for various formal methods techniques that includes a model
checker for UML state diagrams based on branching time
temporal logic. The main difference between JACK and vUML
is that hierarchy within state diagrams is treated as a first class
citizen in JACK. This means that when translating into the
model checker’s input language, JACK preserves the hierar-
chical structure of the state diagrams, whereas vUML “flat-
tens out” the diagrams. In principle, this preservation of
structure is a necessary step if hierarchical model checking
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algorithms are going to be used for UML in the future. The
structure preservation is done by first translating UML state
diagrams into hierarchical automata (HA) (Mikk, Lakhnech,
and Siegel, 1997)  which are essentially statecharts but
without inter-level transitions,  i.e. transitions with source and
target at different levels in the hierarchy. Inter-level transi-
tions are akin to GOTO statements in imperative programming
and as such, make formal analysis near impossible because
they destroy modularity. The trick in translating to HAs is that
each inter-level transition is “lifted” to the same level by
annotating it with additional information regarding which
sub-state of its target state it will enter upon firing. The
statechart model checker MOCES (Mikk, Lakhnech, Siegel,
and Holzmann, 1998)  uses the same technique for model
checking function-oriented statecharts.

Model Finding
Another technique, which is often also referred to as

model checking, but which is more properly termed model
finding is the enumeration of all possible assignments until a
model is found (i.e., an assignment in which the given
formula is true). A UML specification can be translated into
a formula, and model finding can then be used either for
simulation, in which models of the specification are presented
to the user, or for detecting errors, in which case the model
finder is applied to the negation of the formula and if a model
is found, it is a counterexample. In this way, simulation is
useful in the early stages of development --suggested models
may be surprising  and suggest necessary modifications.
Model checking is useful in the later stages and can be used
to find model counterexamples. Note that model finding does
not carry out a temporal analysis as is the case for model
checking in the previous section, nor does it compute reach-
able states. However, model finding can be an extremely
useful technique for ironing out bugs in software specifica-
tions.

Perhaps the most successful application of model find-
ing so far is the Alcoa system which is based not on UML but
on an alternative object modeling language called Alloy
(Jackson, 1999). Alloy is not as extensive as UML but
essentially consists of a language for expressing object dia-
grams very similar to class diagrams, and a relational lan-
guage similar to OCL, but designed to overcome some of the
drawbacks of OCL mentioned earlier. In particular, Alloy is
intended to be similar in spirit to OCL and the relational
specification language Z (Davies and Woodcock, 1996)  but
more amenable to automatic analysis.

Alcoa is a model finder for Alloy based on an earlier
incarnation Nitpick (Jackson, 1996), but using different un-
derlying technology. Whereas Nitpick looked for all possible
assignments and attempted to reduce the number of possibili-
ties by looking for symmetries, Alcoa translates an Alloy
model into a huge Boolean formula. This Boolean formula
can then be checked for satisfaction using standard SAT
solvers. This translation is only possible because the user
specifies a scope over which model finding is carried out.
This scope states the maximum number of instances of each
particular class that is allowed and reduces any Alloy model
to a finite one. Relations can then be translated into a matrix of
Boolean formulas. For each relational variable, a matrix of
boolean variables is created. Each term is then translated by
composing the translations of its sub-terms. As an example,
if terms p and q are translated into matrices [p] and [q]
respectively, then [p]ij is a boolean formula that is interpreted
as being true when p maps the ith element of its domain type
to the jth element of its range type. Similarly for [q]ij. The
translation of the term p ∩  q is given by

[p ∩ q]ij = [p]ij ∧  [q]ij

Note that all matrices are finite because the scope
imposes finite limits on the number of instances.

Alcoa turns out to be reasonably successful at ironing
out simple errors in the early stages of development.
The author of the tool states that a handful of rela-
tions with a scope of size 3 can be handled easily. Any
larger scope and the tool begins to fade. This limit of
size 3 scope appears at first sight to be extremely
limiting. However, the developers of Alcoa claim that
most problems can be discovered using a very small
scope, and that most errors present in specifications
with a large number of instances are also present if the
number of instances is restricted. Alcoa is still very
much a research prototype and so further experimen-
tation is needed to see if indeed this claim holds.
Alcoa is in many senses similar to the FINDER model
finding tool (Slaney, 1995), although it has been de-
veloped specifically with object models in mind.

Figure 3: A Collaboration Diagram for the Dining Philosophers
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Other Approaches
Model checking and model finding techniques have

found greater acceptance both in general and within UML
than have approaches based on theorem proving. Theorem
provers are very general purpose machines for carrying out
mathematical analysis. In principle, they can take a UML
description as input and automatically or interactively be
used to prove properties about the UML model. In practice,
however, theorem proving is an extremely difficult task to
automate and although there has been some success
(Richardson, Smaill, and Green, 1998), most theorem proving
is highly interactive, making it unsuitable for the average
software engineer. Theorem proving can be successful in a
very restricted domain. The Amphion system  (Lowry, Philpot,
Pressburger, and Underwood, 1994)  uses theorem proving in
a restricted setting (that of space trajectories) to automatically
synthesize Fortran functions. These functions are extracted
from a proof that a specification holds and can be synthesized
using very little or no knowledge about theorem proving. It
may be possible to identify restricted subtasks in analyzing
UML models that theorem proving could be applied to in a
similarly fruitful way. One possibility is to synthesize UML
state diagrams from a collection of sequence diagrams anno-
tated with OCL constraints. Certain OCL expressions corre-
spond to a particular implementation as a statechart — for
example, an OCL expression stating that the order of dispatch
of a set of messages is irrelevant would be implemented as a
statechart differently than an OCL expression enforcing a
particular execution order of messages. Theorem proving
could be used to refine a collection of OCL expressions into
those that correspond to a particular statechart implementa-
tion. In this way, theorem proving would yield an intelligent
synthesis of statecharts from sequence diagrams. First steps
in this direction have already been taken (Whittle and
Schumann, 2000).

Rewriting
A technique that is in many ways similar to theorem

proving is rewriting, in which a rewriting engine applies
rewrite rules to rewrite a term into an equivalent one. Very
efficient rewriting engines now exist, e.g., the Maude system
(Clavel et al., 1999) , and there are signs that such engines are
being applied to UML development. Aleman and Alvarez
(2000)  presents a formalization of UML class diagrams in the
OBJ3 specification language, a precursor to Maude. The aim
of this work is to formalize the UML metamodel which would
hence point out inconsistencies and ambiguities in the current
semantics document. By using OBJ3’s rewriting engine,
UML models can also be checked to satisfy the well-
formedness rules in the semantics document. The idea is to
provide a set of rewrite rules that rewrite a formalization of a
UML class diagram. If there are errors in the class diagram (in
the sense that the well-formedness rules are violated), this
will be shown by rewriting to a term involving a particular

kind of exception.
Although the technique has so far only been used to

check well-formedness rules, the framework allows class dia-
grams to be rewritten into equivalent, perhaps simpler ones. If
a formalization of other UML notations is incorporated, it
could enable a nice way of expressing transformations be-
tween different UML diagrams (such as between sequence
diagrams and statecharts mentioned above).

Transformations on UML Diagrams
Some work on providing deductive transformations

has been done by the pUML group members. The motivation
here has been to support transformational development - the
refinement of abstract models into more concrete models,
using design steps which are known to be correct with respect
to the semantics. This development methodology has for a
long time been investigated within the context of developing
correct implementations of safety-critical systems. The ap-
proach, presented in Lano (1998), is based on a semantics
given in terms of theories in a Real-time Action Logic (RAL).
An RAL theory has the form:

theory name
types local type symbols
attributes time-varying data representing instance or
class variables
actions actions which may affect the data such as opera-
tions, statechart transitions  and methods
axioms logical properties and constraints between the
theory elements

A UML class C  can then be represented as a theory:
theory  ΓC
types  C
attributes  C : ℑ (C)

self : C → C
att1 : C  → T1
...

actions    createC  (c : C) {C}
killC (c : C) {C}
op1 (c : C, c : X1) : Y1
...

axioms
∀  c : C  self(c) = c  ∧  [ createC(c)](c ∈

C)
 [ killC(c)](c ∉  C)

ℑ  is the “set of finite sets of ”, X is the set of existing instances
of X. For an action symbol, α, and predicate P , [α]P is a
predicate meaning “every execution of α establishes P on
termination”.

Other parts of the UML (e.g., associations) can be
formalized similarly. The introduction of the RAL representa-
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tion of UML means that transformations can be defined on
UML and proved to be correct. Lano (1998)  identifies three
kinds of transformations:
• Enhancement transformations which extend a model with new

model elements.
• Reductive transformations which reduce a UML model in the

full language to a model in a sub-language of UML.
• Refinement transformations which support rewriting models

in ways which lead from analysis to design and implemen-
tation.

As an example, Figure 4 shows a refinement based on
composition of compositions. The refinement adds an extra
composition, in the case that A, B and C have no common
objects. The approach to assuring correctness is that each
UML component should satisfy certain properties, e.g., com-
position should be:
• one-many or one-one (a whole can have many parts, but a

part cannot belong to different wholes at the same time);
• deletion propagating - deleting the whole deletes its parts;
• transitive;
• irreflexive.

For a particular transformation, such as that given in
Figure 4, it can be proved using the RAL theories that the
transformation preserves these properties.

This notion of correctness for transformations is very
similar to the one used for assuring correctness of refactorings
of C++ programs in Opdyke (1992). The transformations
make only very minor changes to the model so that the proofs
of correctness are usually trivial. In addition, the notion of
correctness seems to be based on guaranteeing a set of pre-
defined constraints, and hence cannot guarantee full behav-
ioral correctness. UML does at least provide a framework for
expressing such refactoring transformations. The properties
to be checked can often be extracted from the UML specifi-
cation. This is not the case for C++ refactorings, and, as a
result, the refactorings in Opdyke  are often overly con-
strained (so that their proofs remain trivial) to a point where
they cannot be used in many real situations.

An interesting twist on this topic is presented in Evans
(1998)  in which the author proposes that properties of UML
models (specifically class diagrams) be proven using dia-
grammatic transformations. The idea is that to check an
invariant property of a model, the software developer ex-
presses the property as another class diagram. Diagrammatic
transformation rules are then used to transform the class
diagram model into the class diagram property. This proves
the property. All transformations are proved correct in a
similar way to that in the previous paragraph, but using a set-
based semantics expressed in the Z notation. The advantage
of the approach is that no knowledge of complex logical,
formal languages is required as all theorem proving is done
diagrammatically. On the other hand, the class of properties
that can be proved is limited because the properties must be
expressible as a class diagram. Moreover, if the class diagram
contains additional OCL constraints, the soundness of the
transformation rules may no longer hold.

A final system worth mentioning is UMLAUT (Ho,
Jezequel, Le Guennec, and Pennaneac’h, 1999) , a framework
for implementing transformations on UML models, where
transformations are based on pre-defined atomic transforma-
tions.

Conclusion
This paper has presented an overview of some of the

attempts to formalize the semantics of UML and to apply
techniques from Formal Methods to analyze UML models.
Surprisingly, despite the plethora of analysis techniques in
other formalisms such as statecharts (Harel, 1987)  and Petri
Nets (The World of Petri Nets, 2000), there has been relatively
little transfer of these ideas to UML. The author believes that
this is due to the largely informal nature of the UML seman-
tics. As a result, more effort should be directed towards
making the semantics precise. In addition, it is still worthwhile
to investigate the application of formal techniques, even if the
semantics is not fully decided. By taking a pragmatic ap-
proach, tools could support the well-understood part of the
semantics and be designed in such a way that variations in the
rest of the semantics could be quickly integrated. UML pro-
vides a great opportunity for practitioners in Formal Meth-
ods. As well as offering a huge potential user base, the UML
can be seen as a test bed for different techniques. For in-
stance, UML could provide a collection of standard examples
to be used as case studies for the various techniques. The
author believes that more effort should be invested in the
application of Formal Methods to UML.
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