

Evaluating the Effectiveness of a Goal-Oriented Requirements Engineering
Method

Abstract

As an attempt to answer the need for methods and

tools in requirements engineering (RE) which are
domain specific and can address the main RE
objectives (REOs), and the growing interest in the
goal oriented requirements engineering (GORE)
approach that overcomes the inadequacy of the
traditional systems analysis approaches, we
systematically evaluate the KAOS method, and the
Objectiver tool, using the major REOs widely
accepted as being important attributes of
requirements specifications. In addition, we examine
whether KAOS and Objectiver meet their own self-
defined objectives. We use two target problems as a
basis for the evaluation. The result of the target
problems is raw data consisting of error reports and
observations that support the evaluator’s judgment.
The evaluation itself is qualitative, not a statistical
experimental evaluation. Its result will help to
answer the research questions: (i) How well do
KAOS and Objectiver meet the criteria established in
the discipline of RE; and (ii) How well do KAOS and
Objectiver achieve their own self-defined objectives.

1. Introduction

There has been strong evidence that RE needs

proper engineering methods and tools, which are
domain specific and comprehensive, in supporting
major REOs, and that require very detailed tools
associated with them, to produce high quality
requirements, to save time and the effort of rework
on requirements, and to reduce resources, such as the
size of RE teams [1]. Moreover, there has been
growing interest in GORE approach that is based on

the identification of system goals and the
transformation of these goals into requirements; it
addresses concerns of why a certain goal is required,
how it can be achieved and who is responsible for it
in the system and/or the environment [2] [3] [22]. To
address these issues, the research we are undertaking
proposes to evaluate KAOS, a GORE method, and
Objectiver, as associated tool for KAOS, for the
following reasons: (i) the role of goals in RE is
fundamental while they are a main part of use-cases
in object-oriented and goal-oriented approaches;
moreover, the goal notion is increasingly being used
on current RE methods and techniques because there
is a perceived inadequacy of the traditional systems
analysis approaches when they are applied to
complex software systems [2] [3] [5]; (ii) the KAOS
method is the only method of the GORE family that
pays special attention to the use of formal proof for
model analysis; (iii) the Objectiver tool fully supports
the KAOS methodology and is a commercially
supported tool that can be relied on to help in the
evaluation, and has been applied to a number of
industrial problems and case studies already at
Cediti- Belgium; (iv) the RE community is eager not
only to understand KAOS and Objectiver, but also to
be aware of how to improve them to be more
supportive for the RE area and to extend the range of
their success in solving most common RE
complications; and (v) this research is believed to be
the first research that related method-detected errors
to REOs and objectives of the method itself, in order
to give some processes or techniques as a guide to
detect the diversion away from the REOs or their
own objectives and get the development back on
track.

Tom S. E. Maibaum
McMaster University

 Department of Computing and Software
Canada

tom@maibaum.org

Huzam S. F. Al-Subaie
 King’s College London

Department of Computer Science
UK

huzam.al-subaie@kcl.ac.uk

Our research is a systematic study based on the
following:

1. The major REOs accepted by RE researchers
and practitioners as being important attributes of
requirements specifications; these include:
completeness, correctness, non-ambiguity,
pertinence, consistency, and traceability
[11][15].

2. The objectives of KAOS itself, which includes
providing constructive assistance during
requirements engineering activities, such as: (a)
create problem descriptions by using predefined
concepts; (b) analyse the problem through a
systematic technique for eliciting, discovering,
and structuring goals; (c) identify roles and
responsibilities of the stakeholders; (d) provide
formal definition of the requirements of the
most critical parts of the system; and (e)
establish efficient stakeholders communication
[6] [16].

3. The objectives of Objectiver itself which
includes: (i) supporting the KAOS method
semi-formally to identify, model and write
requirements; (ii) enabling a systematic
derivation of requirements documents from
requirements models; and (iii) improving the
validation process, the quality of requirements
documents and stakeholder communication [7].

The evaluation result will help to answer the
research questions: (i) How well do KAOS and
Objectiver meet the criteria established in the
discipline of RE; and (ii) How well do KAOS and
Objectiver achieve their own self-defined objectives.
This paper describes our research, but, due to the
page limitations, it presents only the part of the
research that takes into account the major REOs
using the first target problem and some of the
primary results of the evaluation.

2. The KAOS method

The KAOS (Knowledge Acquisition in autOmated

Specification) methodology has been designed at the
informatics department at UCL (Louvain-La-Neuve)
in the early 1990s, and continues to be extended and
refined [9][23][4]. It provides a multi-view graphical
language for system modelling, a small formalism for
model specification, an optional real-time temporal
logic for model analysis, a systematic method for
model elaboration, and techniques for goal
refinement and operationalizations, conflict
management, agent responsibility assignment, and
obstacle management [30]. The methodology is
supported by various tools such as Objectiver, which
is a semi-formal tool and fully supports the KAOS
methodology; it is a tool specifically designed to
engineer business and technical requirements [29].
Target problem background

3. Target problem background

This target problem is based on local
requirements, in the Department of Computer
Science (DCS) at King’s College London. The DCS
has a requirement for dealing with an administrative
system related to the work of the Postgraduate
Secretary (PGS) in the departmental office. The
problem includes completing the requirements
engineering phase of developing new software, and
to effectively support the PGS in his\her work of
keeping track of postgraduate applicants, from the
time they first apply, to the time they receive the
department’s decision. The procedure is: an applicant
obtains an application form, fills it in, hopefully gets
all necessary documents together, and sends them to
the School Office. At the School Office, they enter
the basic information about the applicant into the
college database and generate an identification

Fig. 1: The strategic goals model of the target problem

number for the application. They then bring it to the
PGS at the departmental office. The PGS puts the
basic information in his Spreadsheet system and
sends it to the PhD tutor. The PhD tutor has a look to
make sure the application form and the academic
documents are complete, and the applicant has met
the academic standards of King’s College. The PhD
tutor then either passes the application form to the
member of staff that the applicant has highlighted to
be his/her potential supervisor or advertises it to all
members of staff. The PhD tutor makes his decision
about whether the application has been rejected or
accepted and who the supervisor is, depending on the
availability of an appropriate supervisor. After that,
the application form comes back to the PGS to log
the PhD tutor’s decision in the system. The PGS then
takes the application back to the School Office, they
log it in their DB and send out a letter to inform the
applicant whether he/she has been offered a place or
rejected. Figure 1 represents the strategic goals model
of the target problem.

4. Evaluation steps

The evaluation is performed in eleven steps,
explained as follows:

1. Selecting the candidate method and tool to be
evaluated: the KAOS method and the Objectiver
tool have been chosen for the reasons discussed
in section 1.

2. Identifying the purpose of the evaluation: The
purpose of the study was to investigate the level
of success of the KAOS method in solving the
most common RE difficulties. In other words,
the purpose is to judge KAOS and Objectiver
regarding the level of support they actually
provide for REOs and their own self defined
objectives.

3. Selecting the type of the evaluation: The
evaluation type in this research is qualitative.
Qualitative evaluation is based on the
knowledge base of the evaluator to assess the
extent to which the method or the tool provides
the expected objectives in a usable and effective
way [18]. The evaluation is not an experimental
study in the sense that it produces a dataset that
can be analysed statistically. It is a subjective
evaluation, which provides qualitative
information about KAOS and Objectiver based
on the evaluator’s observations.

4. Deciding the scope of the evaluation: It is
difficult and very time consuming for an

evaluator to measure and analyse all aspects of
KAOS and Objectiver, in addition to the
complex nature of REOs themselves, chosen as
the criteria for the evaluation. Therefore, it is
worthwhile to focus evaluation on assessing the
area of KAOS requiring most understanding and
improvement. The evaluation in this research
was solely concerned with the issues of the
method and the tool that contribute to
understanding and improving their support for
the major objectives of RE. Management issues,
such as price and marketing, were not included,
nor were teamwork issues, because the target
problems were implemented and evaluated by
one user only.

5. Identifying a list of the main objectives to be
used as criteria: This involves identifying the
REOs, in addition to KAOS’s and Objectiver’s
own specific objectives, and applying KAOS
and Objectiver to a real administrative system.
The main REOs, which are the important
objectives in the context of RE and GORE,
along with their definitions, are explained in
section 8. The specific objectives of KAOS and
Objectiver themselves, along with their
definitions, are briefly explained in section 1.

6. Outlining a measurement system: This concerns
the construction of a measurement system,
providing a subjective scale that can be applied
to each criterion, as explained in section 7.

7. Prioritising the criteria: explained in section 9.
8. Selecting evaluation methodology: explained in

section 5.
9. Analysing the study to produce raw data:

explained in section 6.
10. Producing a set of scores for all the criteria:

explained in section 7.
11. Combining the evaluation results: Once KAOS

and Objectiver have been evaluated and
“scores” for each criterion are obtained, using
an ordinal scale, the results of the two target
problems have to be combined to present an
overall measurement. Classes can be combined
in some way to give the same sort of indication
as the measurement.

5. The evaluation methodology

This study was not planned as a case study, in the
sense defined by [47]. Rather the method emerged
naturally as an empirical method, suitable for the
work performed. The purpose of the study was to

investigate the range of success of the KAOS method
in solving the most common RE difficulties. This
involves using KAOS and Objectiver to address a
target problem and the experience of that is used to
evaluate the effectiveness of the method. The raw
data was collected in three forms: (i) problem reports
generated by KAOS and Objectiver about their
ability to cover REOs and to achieve their own
objectives; (ii) a Log book was used to record
challenges that occurred while dealing with KAOS,
and the actions taken by an engineer to overcome any
methodological or tool difficulties; and (iii) questions
about what data to keep and record, motivated by our
understanding of general requirements criteria and
the observations of KAOS and Objectiver, such as
aspects, which were difficult or impossible to achieve
using KAOS and/or Objectiver, and how the engineer
overcomes any methodological or tool difficulties.
These data are required to evaluate the strengths and
weakness of KAOS and to explain why the KAOS
method and the Objectiver tool are/are not
appropriate for helping to solve the difficulties of RE.

6. Study analysis

 The most important part of the study analysis is

to produce the raw data to support the evaluator’s
judgment about KAOS and Objectiver, in addition to
developing logical and persuasive arguments to aid
the method and the tool improvement. These raw data
can be categorised into the following sets: (i) the set
that contains the problems regarding traceability,
correctness, understandability, or pertinence that are
detected by Objectiver, e.g., results of using query
functions; (ii) the set that contains the problems
regarding traceability, correctness, understandability,
or pertinence that are detected by KAOS, which were
not caught by Objectiver, e.g., problems detected by
using the temporal logic; (iii) the set that contains the
problems regarding traceability, correctness,
understandability, or pertinence that are detected by
the stakeholders during the validation activity and
which were not caught by KAOS/Objectiver, e.g.,
assigning a requirement to an incorrect agent; and
(iv) the set that contains the developer’s immediate
observations based on the general criteria while using
KAOS and Objectiver on the target problems, e.g.,
the absence of information in the requirements on the
Head of the Department because of delegating her/his
duties. A single user worked full time for 24 weeks
on the evaluation and the development of the
requirements of the problem. The user was a novice

when he started and some of the problems
encountered were to do with being a novice, but there
are still substantial problems, which are inherent in
the methods and the tool. We used what we think is a
reasonable and systematic way of eliminating
problems, which are irrelevant or double counting.
This way is to take errors reports of the first target
problem and trace it to any error reports, which are
generated on the second problem. Then, ones, which
do not have corresponding at the end are presumably
not really counted problems because they are
problems were to do with being a novice.

7. Measurements

Measuring the degree of coverage of KAOS in

relation to the RE objectives is too difficult because of
the complexity of the nature of RE. It can therefore
only be done by developing a measurement system
that helps the evaluator to outline how to measure the
degree to which these criteria have been met. In this
research, ordinal scale has been chosen because it is
the suitable scale to measure qualitatively the degree
of support offered by methods/tools [18]. These scales
represent ascending levels of achievement which can
be associated with the KAOS method meeting the
general RE objectives. The alphabetic ranking
represents ranking only and the higher the level the
greater the degree of achievement applied in testing
whether the KAOS method has met the criterion. For
example, an objective that is well covered by KAOS
or Objectiver is “fully achieved” or score A on the
scale for it, and that the objective that is not addressed
at all, is “fail to be achieved” or score E on the scale
for it. Table 1 presents the measurements system used
in this evaluation.

8. RE objectives (REOs)

The REOs are defined as those attributes that need

to be achieved to produce complete, valid, correct,
pertinent, consistent, traceable, unambiguous and
understandable requirements [11] [15].

These objectives have to be accomplished in order
to avoid producing vague, incomplete or wrong
requirements that lead to the development of a poor
quality system which costs a great deal of time, effort
and money to correct.

We produced the hierarchy in Figure 2
corresponding to the major four objectives of RE:
pertinence, correctness, traceability, and
understandability. There is general agreement that

these are the appropriate RE properties to be
addressed, see [11] [15]. It has been justified in
terms of how these REOs are defined in the RE
literature. Validity, completeness, and consistency
need not be considered at the top level because they
will flow from correctness as well as ambiguity,
alternatives, and conflicts which in turn flow from
consistency. It is part of this research to use these
major REOs as criteria for the evaluation of the
KAOS method.

Traceability is a major REO; generally it involves
the relationships between requirements and their
sources to clearly identify the origin of the
requirements in order to manage requirements easily
[34]. In [13] it is the ability to know the origin and
the development of a requirement life, in a forward
and backward direction.

In general, whatever is the definition of
traceability is, depends on what the stakeholder is
trying to trace requirements to. Therefore traceability
might be interpreted into three notions [36]:
• Requirements to sources traceability, which links

the requirement to the pre-existing informal
requirements (information describing the system
from people or documents).

• Requirements to design traceability, which links

requirements to the software engineering process,
used to implement the requirement.

• Requirements to requirements traceability, which
links part of the requirements with other parts of
requirements, which are, in some way, dependent
on them

Correctness is a major REO and always an
important one. Correctness might be defined as the
extent to which the requirements specification fulfils
stakeholders’ needs without any error or loss.

Zowghi and Gervasi have concluded that
correctness can be formally defined as the

combination of consistency and completeness [41].
Furthermore we think correctness involves rather
more than the combination of consistency and
completeness; Correctness is not just about what is
dealt with but it is also about whether the right thing
is done. For requirements to be correct they need to
be complete, in some sense, with no inconsistency
and they should be right; because developers can
have complete and consistent requirements without
having what the stakeholders want. For example, in a
given situation, stakeholders want (x) to happen but
the requirements say (y) happens. Now this is not a
problem of completeness or consistency but of
having the right requirements. So the components of
correctness should be completeness, consistency and
there is another component, which is validity.
Completeness means that every necessary situation is
included and defined in the requirements, but does
not say that in every situation the right requirements
happened. Completeness is a sort of coverage
principle that all situations, which are relevant, are
considered in the requirements specification.
Consistency is more straightforward, that there is no
internal contradiction. A completeness check
guarantees that all the necessary information is
included in the requirements while a validity check
guarantees that all true information is presented in the
requirements. From all of the above, there is
sufficient understanding that a set of requirements
can only be considered to be ‘correct’ when it is
complete, valid and consistent, in explaining the
system to be with its environment. This would be a
satisfactory definition.

Validity is a major REO. Validity is defined as the
extent to which the requirements specification fulfils
stakeholders’ needs without any error. It is very
important because if developers do not capture the
right requirements, they will produce the wrong
system. It includes the review and negotiation
processes with stakeholders to ensure the system
provides the requirements to meet their real needs, in
addition to reaching agreement about valid choices,
which are important issues to be considered during
the requirements elaboration process. Completeness
is to do with not missing cases, thus covering all
necessary requirements, which is not necessarily the
same as matching the customer’s wishes.

Completeness is a major RE objective. It is
defined as the extent to which the requirements
specification fulfils stakeholders’ needs without any
loss. It implies that requirements include everything
needed to develop the software that satisfies the

Fig 2: REO hierarchy

stakeholders [35]. Completeness is considered to be
the most difficult of the requirements objectives to
define and incompleteness of requirements the most
difficult to detect [12]. This is because there is no
simple systematic process for determining when the
stakeholders have told the developers everything that
they need to know about the system [19]. In addition,
it is difficult to establish and measure because it is a
relative measure of quality, rather than an absolute
one, and must be examined with respect to some
external reference point [42]. Furthermore, according
to [26], completeness might be divided into two
notions: (i) internal completeness checks to discover
any overlooked gap in the requirements relating to
what is already (partially) there. For example, if we
have a requirement to say what to do if an applicant
has applied, the requirements certainly need to say
what to do when the application is not complete; and
(ii) external completeness checks to discover any
completely missing information from the
requirements, because of the stakeholders having
forgotten to mention it. For example, if the
requirements talk about accepting the application
only, the internal completeness check may be able to
discover the details of it (by talking about accepting
the application only). But if there is no mention of
rejecting the application, the requirements are not
externally complete since all requirements related to
rejecting the application are completely forgotten.

Consistency is another major RE objective; it
refers to situations where a requirement contains no
internal contradictions. Requirements consistency is
strongly related to removing ambiguity, resolving
conflicts, and evaluating alternatives. In [28], a
variety of possible causes of inconsistencies arising
between stakeholders could be mapped to the
differences in views they hold, languages they speak,
development strategies they deploy, stages of
development they address, or objectives they want to
achieve.

Ambiguity as defined by the Wikipedia
encyclopaedia: “A word, phrase, or sentence is
ambiguous if it has more than one meaning” [38].
Ambiguity is strongly related to misinterpretation of
information that cause the developer and other
stakeholders to have different opinions about its
meaning [43].The resolution of ambiguity issues is
left to the developers to do during the validation
activity. It is to make sure that different stakeholders,
including developers, understand the same
requirement in the same way clearly, without any

multiple beliefs or expectations that could lead to
incorrect or inconsistent conclusions.

A. Fully achieved:
1. The objective completely supported by:

- Providing step-by-step assistance to the
developer.

- Providing explicitly detailed information in the
literature.

2. All aspects of the objective are covered:
- No number of error reports mapped to this

particular objective.
- No number of negative observations mapped

to the objective.
B. Strongly achieved:

1. The objective largely supported by:
- Providing step-by-step assistance to the

developer.
- Providing explicitly detailed information in the

literature.
2. All aspects of the objective are covered but the

full achievement of the objective depends on the
expertise and the talent of the developer:

- Some error reports from the first target
problem mapped to this particular objective
but not from the second one.

- Some negative observations to the objective
from the first target problem mapped to this
particular objective but not from the second
one.

C. Partially achieved:
1. The objective partially supported by:

- Providing some assistance to the developer.
- Providing some information in the literature.

2. Part of aspects of the objective are covered but
the full achievement of objective depends on the
help of another tool or method:

- Lightweight error reports mapped to this
particular objective.

- Lightweight negative observations mapped to
this particular objective.

D. Slightly achieved:
1. The objective supported in very limited degree

by:
- Providing Limited assistance to the

developer.
- The literature does not cater for the objective.

2. Very limited achievement of objective:
- Developer needs to extend the method to

overcome its limitation.
- Heavyweight error reports mapped to this

particular objective.
- Heavyweight negative observations mapped

to this particular objective.
E. Fail to be achieved:

1. The objective unrealised
- The objective is not addressed.

2. The objective totally left out.
- The objective is not referred to in the

literature.

Table 1: Measurements system.

Resolving conflicts is a major RE objective that
should be satisfied in order to achieve requirements
consistency. A conflict typically occurs when one
party makes changes that obstruct the other party's
development [41].

Evaluating alternative models: is a major RE
objective that should be satisfied in order to achieve
requirements consistency. An agreement for valid
models is an important issue to be considered during
the RE process. Evaluating alternative models is
related to consistency in the sense that each
alternative model must be internally consistent, but
there are may not be full consistency between
different models. However, the relation of evaluating
alternative models to validity is regarding a single
model, but not regarding comparison between
models. So the idea of an alternative model is not
related to validity because by definition each of these
models should be correct. It is true that the
alternatives have some elements of correctness,
which has to do with the utility that refers to the
worth of an alternative to its stakeholders [37]. The
utility concept is outside the scope of this research.

Pertinence is a major RE objective and it refers to
the avoidance of redundant requirements.

Understandability is a major RE objective in all
life cycle of the requirements, starting from the
elicitation activity, through the validation activity
where developers desire to discuss requirements with
stakeholders and finally at the production of the final
specifications document. Understandability is
relatively in reverse to complexity [21]. It involves
interpreting and understanding stakeholder
terminology, concepts, viewpoints and goals [27]. It
then transforms this information into specified clear
requirements that can be easily understood by
stakeholders including system designers and
maintenance personnel. There are three parts of
requirements understandability: notation,
organisation, and level of abstraction [39]. Notation
should be straightforward, information should be well
organised, and the level of abstraction should
suppress irrelevant details and focuses on the crucial
parts of the requirements [39].

From the above, understandability can be defined
as the degree to which all stakeholders clearly
recognize the meaning of requirements along with
their definitions.

9. Prioritising the criteria

The aim of prioritising the REOs is to know the
importance of the error reports and observations that
are mapped to the REOs. For example, an error that
is related to completeness is probably more important
than the one related to understandability. However,
no studies in the literature have really tried to make
concrete the relative weight of REOs in RE. It was
difficult to estimate what the importance of REOs
should be, but the literature helped to define the
weight based on what is considered more or less
critical for RE. Weighting the REOs needs special
attention to the interpretation of scores if they are
combined into single numbers. Giving simple
numerical figures to quantify the "importance" of
such properties maybe misleading, because of the
nature of the ordinal scales and subjective
measurements that are used in this evaluation [18].
For instance, a score of 4 is not always twice as good
as a score of 2. (This is a common mistake made in
interpreting ordinal scales.)

From experience, a good method or tool is one that
supports the essential REOs for RE and achieves its
own essential objectives. In this study, the
importance of a REO is decided by considering
whether it is an essential objective or just an
orthogonal one. A REO that is not essential is, by
definition, orthogonal. An objective is essential if the
requirements are not acceptable unless this objective
is satisfied [46]. Orthogonal objective means it would
enhance the requirements, but the requirements are
not unacceptable if this objective is absent.

Correctness, as explained in section 8, is an
essential objective because if the requirements are not
correct, the design of the system will be incorrect too
and programmers will produce the wrong system.

Traceability, as explained in the previous section,
is an important objective, as, when it is used, it can
offer considerable benefits for requirements
management. However, the requirements could be
complete, valid, consistent, pertinent, and
understandable even if they are not traceable. They
maybe take extra time and effort to modify and
maintain.

Understandability is an important objective, but, if
the requirements are hard to understand, they can still
be correct; however, it may be difficult to check that
they are correct. Imagine requirements engineers
having a requirements method, which supports
requirements completeness very well, even though
requirement specifications are not that easy to
understand. For instance, if there is a formal
specification language which will be difficult for

stakeholders to understand the logical notation, but a
checker is available for it, so developers could
formulate queries and ask them to the stakeholders
and get answers back and decide whether they are
correct or not. So understandability seems to us to be
an orthogonal issue.

Pertinence is an important objective but seems to
be an orthogonal issue too because the requirements
engineer can have correct requirements that have
redundancy, and also she/he can have pertinent
requirements, but they are not correct or more
difficult to use.

It can be concluded that the evaluation of the
KAOS method can be based on a correctness
objective but traceability, pertinence and
understandability seem to be orthogonal issues.
Therefore, correctness is the essential objective of the
REOs and needs to have more attention and
concentrations. Consequently, the errors or
limitations that map to correctness have more
importance that affects the requirements’ success.
Traceability, understandability, and pertinence are
orthogonal objectives, which make requirements
easier to manage and to check correctness. Also, it
can be concluded that traceability, pertinence and
understandability have equally important value.

10. Primary results

The following are our primary reports and
observations as a result of using KAOS and
Objectiver on the target problem, which were
produced from the raw data (see section 5):

1. Primary reports and observations mapped to
validity.
Problem 1.1: There is uncertainty about the
correctness of the decomposition process that
transitions the system goal into subgoals.
 The implications related to the problem:
Operationalisation of the leaf goals are not
enough for the developer to ensure validity,
completeness, and understandability.
Nature of the implications: The developer’s
immediate implications based on the general
criteria while using KAOS and Objectiver on the
target problems.
Implications: The validity objective in GORE
means that all goals and their definitions in the
model are correct and relevant to the system [20].
Therefore, KAOS and Objectiver deals with
validity issues by using stakeholders’ own
strategic goals and involving reasoning

techniques for each step of building the goal
model supported by formalisation, besides the
iterative validation process with stakeholders.
However, KAOS and Objectiver advise
developers to operationalise the leaf goals only
and that does not support the developer in
formulating requirements precisely, as well as the
relationship between subgoals. So we had to
develop our own way to extend the method to
operationalise most of the goals in the model, to
increase the completeness, validity and
understandability of the system.
2. Primary reports and implications mapped to
completeness.
Problem 1.2: There are difficulties with internal
completeness check.
The implications related to the problem: There
are difficulties with internal completeness using
temporal logic in KAOS.
Nature of the implications: The developer’s
immediate implications based on the general
criteria while using KAOS and Objectiver on the
target problems.
Implications: KAOS offers a formal temporal
logic when formalisation is necessary to prove
that a goal refinement is correct and complete,
and to detect conflicts [17] [10]. However,
temporal logic cannot be applied at top level or to
soft goals, and this is a problem in the sense that
developers can only talk about completeness
when they have goals, which are formalisable.
Temporal logic becomes applicable only when
developers have a goal which can eventually be
operationalised. Other soft goals, even if they
could be formulated somehow, would not mean
anything particularly useful. Top-level goals,
including functional ones, may not be reliable in
this sense, but they become reliable when
developers make them specific enough that they
can use them as functional goals of the system,
including environmental agents. Therefore, the
completeness notion can only be relevant to the
top-level reliable goals. It seems a crucial
problem for the KAOS method and its vendors
need to provide some means of overcoming this
difficulty.
Problem 2.2: There are difficulties with external
completeness check (see section 8).
The implications related to the problem: KAOS
and Objectiver do not say much about
requirements developers do not have in the goal
model.

Nature of the implications: The developer’s
immediate implications based on the general
criteria while using KAOS and Objectiver on the
target problems.
Implications: There are difficulties with external
completeness check in KAOS related to the
absence of information on the head of the
department because of delegating her/his duties.
KAOS does not help in capturing the chain of
responsibilities. For example: in the target
problems, it is noticeable that the head of the
department is not an agent in the model, because
all his/her departmental duties are delegated to
various people like the PhD Tutor. Therefore s/he
does not appear directly. Similarly, the school
office personnel are not the people who are
technically responsible for achieving the goals
assigned to them. It is the school administrator
and the head of the school who are responsible,
but again, they delegate what they do to the
school personnel. KAOS does not deal with issues
like roles and delegation, and this is another
shortcoming of KAOS. It is worth mentioning as
part of our experience. To solve this matter, the
idea of roles and the delegation of responsibilities,
which is very difficult to model, should be
introduced to KAOS, but for the purpose of these
target problems, it will complicate the study and
the evaluation as well.
3. Primary reports and implications mapped to
pertinence.
Problem 3.1: There are no problems with
detecting some of the irrelative requirements
using KAOS and Objectiver.
The implications related to the problem: KAOS
and Objectiver alert the developer about the
irrelative requirements and the redundant
concepts.
Nature of the implications: Problems regarding
pertinence that are detected by KAOS and
Objectiver.
Implications: In GORE, a requirement is
pertinent if its specification is used in the proof of
at least one goal in the problem domain [40];
requirements are pertinent if they contribute to the
strategic top-level goals, so the semantic net of a
goal model in KAOS connects relevant
requirements to these goals and helps with the
validation activity to eliminate irrelevant
requirements and unnecessary concepts that may
have been elicited at the beginning. Query
checks in Objectiver support pertinence regarding

concepts; for example: it helps to detect concepts
never appearing in a document, concepts never
appearing in a diagram, and concepts without
definition; Objectiver also does not allow the
developer to duplicate the concept in one page
[44].
4. Primary reports and implications mapped to
understandability.
Problem 4.1: There are no problems with
detecting the understandability difficulties using
KAOS and Objectiver.
The implications related to the problem: KAOS
and Objectiver alert the developer about
understandability problems.
Nature of the implications: Problems regarding
understandability that are detected by KAOS and
Objectiver.
Implications: In GORE, goal models and goal
definitions may facilitate the understanding of
requirements. Goal models supports big image
views by structuring complex requirements in a
natural way for high-level readability and
understandability [23]. KAOS used informal
goal definitions in textual form alongside the
graph model to increase understandability. Also
Objectiver adds different colours and shapes to
different concepts, which enables greater
understandability of the requirements.
5. Primary reports and implications mapped to
ambiguity.
Problem 5.1: There are no problems with
detecting the difficulties related to ambiguity
using KAOS and Objectiver.
The implications related to the problem: KAOS
and Objectiver alert the developer about
ambiguity problems.
Nature of the implications: Problems regarding
ambiguity that are detected by KAOS and
Objectiver.
Implications: In KAOS, ambiguity is removed by
using informal goal definitions in a textual form
alongside the graph model and by using formal
specification, which helps to minimise ambiguity
and clarify developer understanding to provide a
basis for consistency. KAOS also helps remove
ambiguity regarding who is really responsible for
executing the final goal, by decomposing the goal
into requirements under the responsibility of a
single agent. As a GORE method, KAOS helps to
reduce the ambiguity issues by separating high
strategic goals from requirements, and allows

stakeholders to answer ‘how’ and ‘why’ questions
about the goals.
6. Primary reports and implications mapped to
the traceability objectives.
Problem 6.1: There are no problems with
requirements to requirements traceability using
KAOS and Objectiver.
The implications related to the problem:
Objectiver and KAOS link the requirements to
other requirements in the model (see section 8).
Nature of the implications: The developer’s
implications based on the general criteria while
using KAOS and Objectiver on the target
problems.
Implications: The notion of requirements to
requirements traceability with KAOS are fully
achieved; because in GORE generally, a
requirement appears because of a final goal that
provides a requirement base [8]; thus, a goal
model connects high-level strategic objectives
and low-level technical requirements through
semantic net navigation. Based on KAOS
definition of traceability, it is ensured by the goal
model to link requirements to goals and the
operation model to link operations to
requirements [29]. However, Objectiver cannot
deal with large indexes and this causes a
traceability problem for Objectiver but not for
KAOS and may also affect the validation and
understandability of the model.
Problem 6.2: The requirements to sources
traceability is not supported by KAOS and
Objectiver.
The implications related to the problem:
Objectiver and KAOS do not link the
requirements to their sources.
Nature of the implications: The developer’s
implications based on the general criteria while
using KAOS and Objectiver on the target
problems.
Implications: We find that KAOS does not
provide any support for the requirements to
sources traceability (see section 8). So KAOS and
Objectiver are failed to achieve this notion of
traceability. Requirements to design traceability
would be outside the scope of this research to test
this particular notion of traceability.
7. Other primary reports and implications.
Problem 7.1: KAOS does not guarantee that the
developers choose the right goal.
The implications related to the problem:
Developers may choose a goal and work on it for

a long time, and at the validation phase realise
that the goal they have chosen was wrong or
merely a single possible solution. After that, they
need to remodel the whole part again and this
requires a lot of time and effort [31] [45].
Nature of the implications: The developer’s
immediate implications based on the general
criteria while using KAOS and Objectiver on the
target problems.
Implications: Whatever the method is, when the
developers have to build the requirements model,
they could face the situation that they make a sub-
optimal initial choice and proceed on that basis
only to find later on that they made, perhaps not
an incorrect choice, but not a sensible choice. So
they have to revise the model in some way and
redo a lot of their work. In some sense this is
unavoidable because developers are not seeing
everything right from the beginning. From this
point of view and the result of the target
problems, KAOS cannot be criticised for not
helping developers choose the right goal; it has
been criticised, though, for not providing enough
support for revising a big model once the
developer has made the discovery that something
has been left out.
Problem 7.2: KAOS gives the freedom to use any
of the information gathering techniques to build
up initial domain knowledge about the problem.
The implications related to the problem: KAOS
starts helping developers when they find some
initial goals to start building the goal model, but
not before that [33].
Nature of the implications: The developer’s
immediate implications based on the general
criteria while using KAOS and Objectiver on the
target problems.
Implications: it is well known that in any
engineering method, the more freedom the user
has, the less effective the method is. Therefore,
since KAOS gives the developer no guidance
about how to deal with building up initial domain
knowledge, it will then be harder to follow the
method. It was considered by the developer as a
shortcoming of KAOS because it requires
information to be structured in a certain way in
order to be more usable, and if it is not structured
in such away, then KAOS is not going to provide
the necessary support. However, we have changed
our ideas after the second target problem, because
we realised that maybe a knowledgeable user of
KAOS would eventually learn how to get the

information in a way which is helpful, while as an
initial users we do not have any experience to rely
upon.
Problem 7.3: KAOS and Objectiver do not
support libraries of goal models.
The implications related to the problem:
Developer cannot reuse fragments he has built
before.
Nature of the implications: The developer’s
immediate implications based on the general
criteria while using KAOS and Objectiver on the
target problems.
Implications: We noticed that knowledgeable
users of KAOS, who build requirements several
times for similar application, may want to reuse
fragments they have built before. For example: if
developers build the goal model for the first target
problem, and during the second one they found
that there is something in common, they want to
reuse part of the first target problem in the second
one. Can they borrow that part from the model in
the first target problem? And does KAOS or
Objectiver then support reuse? The answer is no,
KAOS does not provide support for libraries of
goal models, but Objectiver has this ability as an
export/import function that works on packages. It
works well for single concepts but it is not an
effective function at all for a medium/big part of
the model because of the dangling pointers to link
and reference the exported model to its concepts
defined in the other package. Concept inclusion
and exclusion takes a great deal of time to be
performed, but it is worse for the medium/big part
of the model; the software may hang and need to
be reset.

11. Conclusions

This paper presents our methodology of

evaluation, its rationale and some initial observations
and conclusions. To complete our evaluation of
KAOS and its associated tool, Objectiver, we must
complete the second target problem and then evaluate
the ‘observations’ and the implications generated
over the two target problems we addressed. For this,
it is crucial for the purposes of evaluation to decide
on relative weights to identify the level of importance
the requirements community assigns the REOs, along
with the objectives of KAOS and Objectiver, since
these objectives will have direct influence on the
outcome of the evaluation. Observations and error
reports as a result of the target problems will be

mapped to these objectives. As things stand, we have
some initial conclusions about the effectiveness of
KAOS and Objectiver in meeting requirements
objectives. These suggest that there is much room for
improvement.

12. References

[1] The 10th Anniversary of international IEEE RE
conferences and symposium, http://www.re02.org/,
Germany 2002.
[2] E. Kavakli, “Goal-Oriented Requirements Engineering:
A Unifying Framework”. Requir. Eng. 6(4): 237-251
(2002).
[3] J. Mylopoulos and E. Yu, “Why Goal-Oriented
Requirements Engineering”, 4th REFSQ'98, Italy, 1998.
[4] E. Letier, A. Lamsweerde, “Requirements analysis:
Deriving operational software specifications from system
goals”, Proceedings of the 10th ACM SIGSOFT, ACM
Press, South Carolina, 2002.
[5] A. Lapouchnian, “An Overview of the Current
Research”, Department of Computer Science, University
Of Toronto, 2005.
[6] R. Darimont, E Delor, “Software Quality Starts with the
Modelling of Goal-Oriented Requirements”, 6th
International Conference "Software & Systems Engineering
and their Applications, Paris - 2003.
[7] R Darimont, “Requirements Engineering with
Objectiver from Goal Analysis to Automatically Derived
Requirements Documents”, RE'03, California, USA,2003.
[8] A. Dardenne, S. Fickas and A. van Lamsweerde, “Goal-
Directed Concept Acquisition in Requirements Elicitation”,
Proc. IWSSD-6, Como, 1991.
 [9] A. Dardenne, A. van Lamsweerde and S. Fickas, "Goal
Directed Requirements Acquisition," Science of Computer
Programming, vol. 20, 1993.
[10] R. Darimont, “Process Support for Requirements
Elaboration”, PhD Thesis, Universite catholique de
Louvain, Dept. Ingenierie Informatique, Louvain-la-Neuve,
Belgium, 1995.
[11] A. Davis, “Software Requirements: Objects, Functions
and States”, Prentice Hall, 1993.
 [12] A. Davis, Software Requirements: Analysis and
Specification, 2nd Edition, Prentice Hall, 1993.
[13] O. Gotel, A. Finkelstein, “An Analysis of the
Requirements Traceability Problem”, Proc. of 1st
International Conference on RE, pages 94-101,1994.
[14] IEEE, “A Compilation of IEEE Standard Computer
Glossaries”, New York, 1990.
[15] IEEE Recommended Practice for Software
Requirements Specifications, IEEE Std. 830-1998.
[16] I. Jureta, “Engineering Requirements for Information
Systems using KAOS and Request frameworks”, FUNDP -
Institution - Belgium .2005.
[17] E. Letier, “Reasoning about Agents in Goal-Oriented
Requirements Engineering”, PhD thesis, Université
catholique de Louvain, Belgium, April 2001.

 [18] B. Kitchenham, "DESMET: A method for evaluating
Software Engineering methods and tools", TR96-09, Dep.
of Computer Science, University of Keele, U.K., 1996.
[19] I. Sommerville and G. Kotonya, “Requirements
engineering with viewpoints”, Software Engineering
Journal, Jan. 1996.
[20] Krogstie, J. “Using Quality Function Deployment In
Software Requirements Specification”, 5th REFSQ'99,
Heidelberg, Germany 1999.
[21] K Laitinen, “Estimating understandability of software
documents”, ACM SIGSOFT, Software Engineering Notes,
Vol. 21, No. 4, July, 1996.
 [22] A. Lamsweerde. “Requirements engineering in the
year 00: A research perspective”, the 22nd ICSE 2000.
[23] A. van Lamsweerde, “Goal-Oriented Requirements
Engineering: A Guided Tour”, IEEE Transactions of
Requirement Engineering, 2001.
[24] A. van Lamsweerde, R. Darimont and E. Letier,
"Managing Conflicts in Goal-Driven Requirements
Engineering", IEEE Trans. on Software Engineering, 1998.
[25] A KAOS tutorial, www.objectiver.com , , 2003.
[26] B. Boehm, “Verifying and validating software
requirements and design specifications”, IEEE Software,
1984.
[27] B. Nuseibeh, S.Easterbrook, “Requirements
engineering: a roadmap”, the future of Software
engineering, Limerick, Ireland , 2000.
[28] B. Nuseibeh, “To be and not to be: on managing
inconsistency in software development”, Proceedings of the
8th IWSSD'96, IEEE Computer Society Press, 1996.
[29] Web site of Objectiver, www.objectiver.com, 2003.
[30] Department of Computing Science and Engineering,
Université catholique de Louvain, Belgium,
http://www.info.ucl.ac.be/Research/Areas/SoftwareE/Goal
OrientedRE.php.
[31] G. REGEV, “A Systemic Paradigm for Early IT
System Requirements Based on Regulation Principles: The
Lightswitch Approach”, Ph.D thesis no. 2810, EPFL 2003.
[32] W.N., Robinson, “Integrating Multiple Specifications
Using Domain Goals”, Proc. IWSSD-5, IEEE, 1989.
[33] C. Rolland, N. Prakash: “From conceptual modelling
to requirements engineering”, Ann. Software Eng. 10: 151-
176, 2000.
[34] I. Sommerville, “Software Engineering”, 6th
edition, Addison- Wesley, 2000.
[35] I. Sommerville and G. Kotonya, “Viewpoints for
requirements definition”, Software Engineering Journal
7,1992.
[36] I. Sommerville and G. Kotonya, “Requirements
Engineering Processes and Techniques”, John Wiley &
Sons, 1998.
[37] National Institute Of Standards And Technology,
Guidelines, Information Quality Standards, and
Administrative Mechanism,
www.nist.gov/director/quality_standards.htm, 2002.
[38] Wikipedia encyclopedia, Version 1.2
http://en.wikipedia.org/wiki/Ambiguity, 2002.

[39] Williams, G. Lloyd, Assessment of safety-critical
specifications. IEEE Software, 11(1):51-60,1994.
[40] K. Yue, “What does it mean to say that a specification
is complete?”, Proceedings of IWSSD'87, 1987.
[41] D. Zowghi, V. Gervasi, "On the Interplay Between
Consistency, Completeness, and Correctness in
Requirements Evolution", the Journal of Information and
Software Technology, Volume 45, Issue 14, 2003.
[42] R Carson, "Requirements Completeness: A
Deterministic Approach," 8th Annual International
Symposium on Systems Engineering, Seattle, 1998.
 [43] F Cioch, “Measuring software misinterpretation.
Journal of Systems and Software”, 14(2): 85-95,1991.
[44] R. Darimont, “Requirements Engineering with
Objectiver: from Goal Analysis to Automatically Derived
Requirements Documents”, RE02, 2000.
[45] J. You, “Goal-Oriented Requirements Engineering:
Promising or Falling”, Department of Computer Science,
University of Toronto, 2004.
[46] K. Wiegers, "First Things First: Prioritizing
Requirements" Software Development, Vol. 7, No. 10, Oct.
1999.
[47] R. Yin, “Case study research: Design and methods”,
2nd ed., Beverly Hills, CA: Sage Publishing (1994).

