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ABSTRACT 

Software engineering is a complex task. But although there is no silver bullet that guarantees accomplishing this task, 

appropriate methods can support the engineer by addressing the characteristics that make it complex. The objective of this 

paper is to evaluate whether and how the goal-oriented requirements engineering method KAOS addresses these 

characteristics of complex tasks and thereby, whether it effectively supports software engineering. For serving this purpose, 

we conduct a literature analysis, which discloses core concepts underlying to the KAOS method, and we apply KAOS in two 

software development projects, which provide insights into KAOS in use. Our results show that KAOS, despite of some 

shortcomings, addresses all characteristics, but that applying it can be work intensive. Consequently, while KAOS supports 

software engineering, provided support must be weigh up against invested work. 

Keywords (Required) 

KAOS, system engineering, task complexity. 

INTRODUCTION 

Software engineering is a complex problem (Benbya and McKelvey, 2006) in which “the hardest single part … is deciding 

precisely what to build. … No other part of the work so cripples the resulting [software] system if it is done wrong. No other 

part is more difficult to rectify later” (Brooks, 1986). But although there is no silver bullet for software engineering, methods 

which support the creation of software have improved in the past (Berry, 2002). 

The purpose of this paper is to evaluate whether and how the goal-oriented requirements engineering (RE) method KAOS 

supports software engineering. For serving this purpose, we derive propositions from the perspective of software engineering 

as complex problem and evaluate them using two software development projects within the financial industry. 

This evaluation of KAOS contributes to researchers in RE and practitioners interested in using KAOS. To researchers in RE, 

we point out with regard to which characteristics of complex problems KAOS supports software engineering and with regard 

to which it requires improvement. To practitioners, who are interested in using KAOS, insights into its effectiveness provide 

information on what to expect from this method and what not to expect. 

The remainder of this paper is as follows. In section two, we briefly present the KAOS method. After that, we depict our 

literature analysis (section three) and derive our propositions (section four). In section five, we describe the empirical case 

studies, which serve as basis to evaluate KAOS (section six). Finally, we present our conclusions in section seven. 

REQUIREMENTS ENGINEERING USING KAOS 

KAOS builds upon the notion of goal orientation (van Lamsweerde, 2004) that is a major stream in the field of RE (Anwer 

and Ikram, 2006). This stream builds upon the premise that “in designing software systems, requirement engineers aim to 

‘improve’ organisational situations which are seen as problematic” (Kavakli and Loucopoulos, 2003). Goals address these 

problems and thereby, set the objectives for changes (Loucopoulos and Kavakli 1995). While goal orientation completely 

covers the process building software, KAOS is one of the most important methods, whose focal points are supporting 

requirement acquisition (Dardenne, van Lamsweerde and Fickas, 1993), specification (Darimont and van Lamsweerde, 

1996), and verification (Ponsard, Massonet, Rifaut, Molderez, van Lamsweerde and Tran Van, 2007). 

In KAOS, the software under construction is captured as an instance of a conceptual meta-model where abstractions such as 

goals, requirements, operations, agents, or entities are semantically linked (van Lamsweerde, Darimont and Massonet, 1995). 

Moreover, KAOS provides a formal assertion layer (Darimont and van Lamsweerde, 1996) for inferring specifications from 
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requirements (van Lamsweerde and Willemet, 1998) and reasoning about goal satisfaction (Letier and van Lamsweerde, 

2004). 

The conceptual meta-model of KAOS comprises four models that are iteratively prepared: (1) a goal model in which goals to 

be achieved by the software are described; (2) an object model in which objects involved in the software are described; (3) an 

agent model in which responsibilities are assigned to agents; and (4) an operation model in which input-output relationships 

among operationalizations of requirements and identified objects are described (Letier and van Lamsweerde, 2002b; van 

Lamsweerde 2001). 

Firstly, goals are acquired by incrementally asking “how” and “why” questions (van Lamsweerde, 2000; Yu and Mylopoulos, 

1998). They are captured in the goal model that is represented as hierarchical graph using AND/OR-decompositions of 

discrete high-level goals down to precise leaf-level requirements (van Lamsweerde et al., 1995). Figure 1 provides an 

exemplary goal model in KAOS. 

 

Figure 1. KAOS goal model 

After the goals are acquired, the object and the agent models are prepared. The object model collects objects, attributes, and 

relationships among them while in the agent model, agents are assigned responsibility for achieving the goals (Letier and van 

Lamsweerde, 2002a). Agents and objects are used when the operation model is prepared. In this last step, operations 

(represented as ovals) that describe the behavior of the system in specific situations are derived from requirements (van 

Lamsweerde and Willemet, 1998). Situations that operations work in are determined by events (arrowed rectangle) that cause 

the operation and entities (rectangles) that serve as information input. Each operation must be performed by an agent 

(hexagon). Figure 2 provides an example of an operation model. 

 

Figure 2. KAOS operation model 

When KAOS models are prepared, the formal assertion layer that is written in a real-time temporal logical way (Koymans, 

1992) can be used to formally assure that goals are correctly refined into sub-goals, requirements, and operations. For 

instance, the goal of the location of a book in a library is found can be defined as follows: 

Goal Achieve[the location of a book in a library is found] 

Concerns Title, Location 

RefinedTo Input, Search, Output 

InformalDefinition The location of a book is found if it is displayed 

FormalDefinition ∀ t: Title, l: Location: Output (l) ∧ SearchedTitle(t) ∧ IsLocationOfBook(l, t) ⇒ ο BookFound(t) 

The goal definition describes what must be done to achieve the goal. The used operator ο is a classical operator for temporal 

referencing and means “in the next state” (see Manna and Pnuel (1992) for an in depth description of temporal logic). Thus, 

finding the location of a book in a library is achieved, if a location (l) is output that is the location of the book with the 

searched title (t). 
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LITERATURE ANALYSIS 

The KAOS method as presented was not spontaneously developed, but evolved as the result of research conducted over a 

period of more than 10 years now. Therefore, we claim that modeling concepts were not randomly added but included for the 

purpose of supporting engineers in building software. This literature analysis aims at disclosing these modeling concepts. 

We conducted the literature analysis by following the framework of Levy and Ellis (2006). Search for relevant literature 

involved three steps, a keyword search, a backward search, and a forward search. We started with a keyword search on the 

term “KAOS” in three major literature databases ACM Digital Library, IEEE Xplore, and Elsevier (ScienceDirect). Based on 

title, abstract, and keywords of the results, we decided on whether we found the source relevant for KAOS. A thereon based 

backward search aimed at disclosing the origin of KAOS (Webster and Watson, 2002). We found 75 publications that 

directly related to the KAOS method. The subsequent forward search builds upon the five most cited publications, which we 

chose, since there is a gap between #5 (324 citations) and subsequently ranked articles (#6: 247 citations, #7: 220 citations) as 

depicted in table 1. We found additional 13 publications with KAOS as their major topic. We conducted another backward 

search to assure that we have not missed any major source or concurrent stream of KAOS-related research. Since we did not 

find any new major author or publication, we consider having reached an appropriate stopping point for our literature 

analysis (Leedy and Ormrod, 2005). 

Authors Year Title Citations Rank 

Dardenne, van Lamsweerde 

and Fickas 

1993 Goal-directed requirements acquisition 1231 1 

van Lamsweerde 2001 Goal-Oriented Requirements Engineering: A Guided Tour 759 2 

van Lamsweerde  2000 Requirements engineering in the year 00: a research 

perspective 

417 3 

van Lamsweerde, Darimont 

and Letier. 

1998 Managing Conflicts in Goal-driven Requirements 

Engineering 

387 4 

van Lamsweerde and Letier  2000 Handling Obstacles in Goal-Oriented Requirements 

Engineering  

324 5 

Darimont and 

van Lamsweerde  

1996 Formal refinement patterns for goal-driven requirements 

elaboration  

247 6 

Table 1. Major KAOS sources (based on citation count) 

We analyzed the literature with regard to which modeling concepts of the KAOS method they describe. Repeated reference 

of the same keywords in the literature, such as refinement or verification, allowed identification of the most important 

concepts. Moreover, we recognized similarities among given reasons on why different concepts were included in KAOS. 

In papers, which concerned topics such as refinement, patterns, or derivation of requirements from goals, the question of 

interest mainly is how to refine goals into requirements and operations. These papers aim at guiding the engineer on coping 

with decomposition of a high-level goal into more detailed requirements and operations. 

Similarities were also found among papers, which for example mention verification, validation, or scenarios. These do not 

answer the question of how a goal can be decomposed but they provide techniques for reasoning about whether 

decompositions satisfy superordinate goals. Most of these papers employ the formal method of KAOS including temporal 

logic. 

The third identified class comprises papers mentioning keywords, such as inconsistencies, obstacles, or conflicts. These are 

concerned with providing support on how to cope with situations when refinements do not satisfy superordinate goals, 

because they conflict with satisfaction of other goals. 

Table 2 illustrates these three classes of the KAOS method. 
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Class Modeling concepts 

Hierarchical decomposition Refinement, patterns, architecture, operationalization, derivation, acquisition,  

Goal-based reasoning Verification, validation, interaction analysis, formal method, correctness, scenario, 

temporal logic, animation, model checking, runtime behavior 

Obstacle management Inconsistency, obstacle, conflict, divergence 

Table 2. Core concepts of the KAOS method. 

THEORETICAL PERSPECTIVE 

This evaluation of KAOS is based on whether the identified modeling concepts are appropriate for coping with the complex 

problem of software engineering. The theoretical context for this evaluation is given by the perspective of task complexity of 

which Gill and Hicks (2006) provide a comprehensive literature review. 

Complex tasks exhibit specific characteristics that make them complex. According to Campbell (1988) these are (a) the 

presence of multiple ways of solving the problem, (b) the presence of uncertain links among ways and outcomes (c), the 

presence of multiple desired outcomes that must be achieved, and (c) the presence of conflicting interdependence among the 

outcomes. Table 3 summarizes these characteristics of task complexity. For successfully performing complex tasks, the task-

doer has to cope with these characteristics. Although using a tool cannot change these characteristics, which are inherently 

associated with the given task, it can dramatically impact the performance when the task is carried out by the task-doer (Gill 

and Hicks, 2006). Therefore, by appropriately addressing these characteristics, a method can support the task-doer to perform 

the task effectively. 

Complexity characteristics Short description 

Multiple ways In complex tasks, there is not a singular way of how the task must be done, but there are 

multiple ways, which may or may not result in the desired outcome. Multiple ways 

increase complexity, since the task-doer must decide, which way to follow. 

Uncertain linkages A task is complex, if the linkage between a way and its outcome is ambiguous. As a result, 

the way of achieving the goal cannot be planned upfront, because information does not 

become available until the task is performed. 

Multiple outcomes Complex tasks have multiple outcomes that require attention. Typically, each outcome 

entails a separate information processing stream, which increases the amount of 

information that has to be processed concurrently. 

Conflicting interdependence 

among outcomes 

A task is complex if achieving one desired outcome conflicts with achieving another 

desired outcome. As a consequence, ways that achieve both outcomes are less obvious and 

thus more difficult to find. 

Table 3. Complexity drivers (according to Campbell 1988) 

KAOS addresses the complexity characteristic of multiple ways by employing the concept of problem decomposition 

(Simon, 1996) for refining discrete high-level goals down to precise leaf-level requirements (van Lamsweerde et al., 1995). 

Decomposition is a suited technique for reducing the dimensions of a problem and thereby decreasing the number of ways 

that have to be considered (Marengoa and Dosi, 2005). For example, refinement of the goal of finding the location of a book 

into input, search, and output as shown in figure 1 allows the engineer to separately concentrate on satisfying each sub-goal 

while excluding the dimensions related to the other sub-goals. When designing the input interface, the engineer does not need 

to consider how the search works. However, when refining goals, it has to be verified that the composition of sub-goals 

satisfies the higher-level goal (Dardenne, Fickas and van Lamsweerde, 1991; De Landtsheer, Letier and van Lamsweerde, 

2004). Therefore, we state proposition 1: KAOS addresses the complexity characteristic of multiple ways. 

Goal-based reasoning addresses the complexity characteristic of uncertain linkages, since it provides information on the 

outcome of respective goal refinements. This information is valuable for decisions on whether to continue with the current 

refinement or to select another one, which might better satisfy the higher-level goal. Since verification using the formal 

assertion layer is work intensive, KAOS provides refinement patterns that can be applied to refine specific types of goals, 

such as Achieve X, or Maintain X (Darimont and van Lamsweerde, 1996; Letier and van Lamsweerde, 2002b). Patterns are 

pre-verified refinement strategies, whose usage represents an economic way of assuring that the refinement of a goal is valid. 

Therefore, we state proposition 2: KAOS addresses the complexity characteristic of uncertain linkages. 
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To some extent, goal-based reasoning also addresses the complexity characteristic of multiple outcomes. Since a goal model 

is not limited to a singular top-level goal, it can be verified whether decomposed sub-goals satisfy multiple goals. However, 

since satisfaction of each goal must be separately verified, resulting work is even higher. Proposition 3: KAOS addresses the 

complexity characteristic of multiple outcomes. 

The KAOS method addresses the complexity characteristic of conflicting interdependence among tasks by explicitly 

including obstacles into the models (van Lamsweerde, Darimont and Letier, 1998; van Lamsweerde and Letier, 1998). 

Thereby, inconsistencies and conflicts can be made explicit and the engineer can verify potential resolutions of the obstacle 

(van Lamsweerde and Letier, 2000). However, applying the KAOS method does not prevent from inconsistencies. In fact, 

systematic techniques are requested that generate better designs which do not end up in inconsistencies (Letier and van 

Lamsweerde, 2004). Nevertheless, we state proposition 4: KAOS addresses the complexity characteristic of conflicting 

interdependence among outcomes 

CASE STUDIES 

Our empirical evaluation of KAOS builds upon two case studies, which we conducted in software development projects 

within the information technology division of a large financial institution. We followed the guidelines of Kitchenham and 

Pickard (1995) for conducting multiple case research for method and tool evaluation. In the cases, we prepared KAOS 

models concurrently to the requirement engineer, who did not use a formal RE method but adhered to the default process 

used in the institution. This process generally followed the waterfall model (Royce 1970). Based on functions as requested by 

the internal customer, that is the Germany-based retail customer division, the engineer elaborated requirements and derived 

design specifications. Both, requirements and specifications were written in natural language and collected in respective 

documents. Besides the engineer, other stakeholders, such as project manager, technical specialists, and test analysts were 

involved, who reviewed and commented the documents. 

Data was collected as follows. While the engineer, who was the same in both projects, analyzed the problem and designed the 

software, we prepared KAOS models based on the same information that was available to the engineer. While the engineer 

already worked in this environment for several years, one researcher served as on-site expert and was already involved in 

several other projects within this environment. Information parity in the projects was ensured by interrogations with the 

engineer, attendance at meetings, access to e-mails, and access to documents. Despite of situations, in which major decisions 

about the design were made, insights we gathered from the KAOS models were not returned to the engineer. These situations 

were particularly beneficial for the analysis, since they disclosed whether the engineer had any problems in designing the 

software, which could have been mitigated by using KAOS. Information exchange started with an inquiry of the engineer’s 

opinion on the situation, any preferences with regard to the system design, and the suggested next steps. After having 

recorded this data, we returned information provided by the KAOS models. We particularly paid attention to gaps between 

the exchanged information and whether information we returned led to any change of the engineer’s mind regarding the 

previously inquired opinion, preferences, or suggestion. These gaps served as basis for identifying differences between the 

default case and application of the KAOS method. 

In the first project, an existing front-end system was integrated with a recently built payment processing system. Before, 

payment order entering was already offered at the front-end, but these orders were transferred to a legacy processing system. 

The reason for this re-engineering project was the intended deactivation of the legacy system. 

There were two important situations in this project, in which stakeholders controversially discussed which of alternative 

system designs had to be used. First, the engineer designed a web-service interface between the front-end and the processing 

system, whereas the technical analyst responsible for the processing system insisted on using a routing system. Second, a 

problem occurred about how to check bank codes for correctness already on the front-end. While the engineer favored 

download of bank code data, the vendor responsible for the development suggested an online interface to check bank codes 

on demand. 

In both situations, decision documents prepared by the engineer were simple Power Point slides with yes/no statements about 

goal satisfaction, whereas the KAOS models provided logical reason whether goals about the software under construction 

were satisfied in the discussed alternatives. In the first situation, evaluation of goal satisfaction using KAOS matched with the 

engineer’s perception for all four discussed goals. In the second situation, the engineer was doubtful about satisfaction of one 

out of three goals, whereas the KAOS models provided clear information on satisfaction of all goals. 

However, in both situations, not only goals concerning the software under construction, such as functional or architectural 

goals, were discussed, but also resulting project effort was an important factor. In fact, project effort was the decisive factor 

in the first situation, in which an architectural goal was consciously left unsatisfied, because it would have generated too 
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much effort. While the engineer was able to roughly estimate resulting effort, the KAOS models did not provide this 

information. 

In the second project, a server system had to be extended with a function that allows the selective deactivation of connected 

terminals. Since these terminals are programmed for highest possible availability, they autonomously re-activate. The 

challenge in this project was the purposeful adjustment of the terminal re-activation routines. While it had to be assured that a 

terminal did not autonomously re-activate once it had been deactivated, it was as critical that reliability of the activation 

routines remained unaffected in default cases, in which terminals were supposed to re-activate. 

The most critical situation in this project occurred, when a major flaw in an assumption about the existing re-activation 

routines was discovered. Up to this point, both the requirement specifications written by the engineer and the KAOS model 

suggested a well-formed design. But at the time when the engineer refined this assumption, it turned out that the re-activation 

routines worked slightly but essentially different than assumed. The KAOS models did not disclose this flaw either, since it 

resided inside an assumption. 

After the flaw had been discovered, KAOS obstacle management techniques allowed resolving the flaw with additional 

adjustments at the re-activation routines. However, the engineer rejected this resolution, since associated changes would have 

been fundamental and thus, potentially affecting the reliability of the re-activation routines. The problem was solved by using 

a different approach, which involved another set of high-level requirements. Consequently, large parts of the requirements 

specifications and the KAOS models had to be rewritten. 

RESULTS 

Observations support our introductive claim that engineering software requirements is a complex problem. The engineer did 

not spend most of the time for proceeding in a well defined task, but rather had to search for a solution in an obscure 

environment, where there was no obvious way to achieve the goal. In fact, in both projects, the system could have been built 

in different ways, which resulted in discussions among stakeholders. While the engineer accounted for these ways by 

preparing decision documents, KAOS supported concurrent consideration of alternatives by using OR-relationships. But 

although concurrent consideration of different alternatives results in additional work for preparing the models, it addresses 

the complexity characteristic of multiple ways, wherefore we find support for proposition 1. 

The projects also exhibited the second complexity characteristic of uncertain linkages. For instance, while the engineer was 

doubtful about satisfaction of a goal in the first case, the KAOS models provided clear information on satisfaction of all 

goals. Moreover, decision documents used in the projects were generally limited to yes/no statements, whereas KAOS 

models provided detailed and verified proof of goal satisfaction. Thus, we find support for proposition 2: KAOS addresses 

the complexity characteristic of uncertain linkages. 

In our cases, multiple outcomes were requested by stakeholders. These included but were not limited to goals that the 

software under construction had to achieve. Stakeholders were also concerned about the resulting effort for building the 

software, which is reasonable, since software engineering “is not just about solving problems [but] about solving problems 

with economical use of resources, including money” (Shaw, 1990). KAOS models, however, represent the software under 

construction (van Lamsweerde, 2001) and thus are unable to represent goals about resulting effort, which is not a result of the 

software but a result of the process of building the software (Abdel-Hamid and Madnick, 1991). We therefore find limited 

support for proposition 3: KAOS addresses the complexity characteristic of multiple outcomes. 

Finally, in the second case, a wrong assumption had been made in the requirements specifications, which resulted in an 

unworkable situation that had to be reworked when the flaw was discovered. Since the flaw resided within an assumption, it 

was not discovered using KAOS either. Nevertheless, KAOS obstacle management techniques helped mitigating the 

discovered problem and suggested a solution, which however was not pursued by the engineer. Under the premise that even 

KAOS models are only as good as information put into them, we find support for proposition 4: KAOS addresses the 

complexity characteristic of conflicting interdependence among outcomes. 

We find KAOS addressing each characteristic of a complex task. However, we also identified a shortcoming of the KAOS 

method with regard to addressing multiple outcomes. Table 4 summarizes the results of our evaluation of whether and how 

KAOS addresses the characteristics of a complex task. Indeed, while KAOS addresses all characteristics, work has to be 

spent for using it. While preparation of the semantic models is effortless, applying the formal assertion layer is very work 

intensive. Moreover, when modeling obstacles, scenarios, and various alternatives, the resulting work rapidly increases, even 

if only semantic models are prepared. 
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Complexity characteristics Modeling concepts used in KAOS Observations in the cases 

Multiple paths - Hierarchical decomposition - OR-relationships. Concurrent consideration 

and discussion of alternative solutions to the 

problem 

Uncertain linkages - Goal-based reasoning (verification) 

- Hierarchical decomposition (OR-

relationships) 

- Satisfaction of all goals were verified by using 

KAOS, whereas the engineer had no 

information about satisfaction of one out of 

seven goals 

Multiple outcomes - Goal-based reasoning (concurrent 

verification of high-level goals) 

- Goals about the software under construction 

were considered 

- Resulting effort could not be assessed using 

KAOS, but it was an important factor in the 

cases 

Conflicting interdependence 

among outcomes 

- Obstacle management (resolving 

inconsistencies) 

- KAOS supported finding a resolution for the 

wrong assumption 

Table 4. How KAOS addresses complexity factors 

CONCLUSIONS 

This paper provides an evaluation of the RE method KAOS. It builds upon a literature analysis and two case studies in which 

the KAOS method is compared to not using a formal RE method. Our results show that KAOS employs useful concepts for 

accomplishing the complex task of software engineering, but that using this method becomes laborious if all of its provided 

functions are used. Thus, any improvement reducing the work effort required for preparing the models would be most 

beneficial to the KAOS method. 

Moreover, we have identified a shortcoming of KAOS. The goal-based reasoning in KAOS is limited to goals about the 

software under construction. It does not account for other important factors, such as the effort required for building the 

engineered software. Moreover, any KAOS model is only as good as the input that is used for preparing it. Thus, although 

KAOS supports the engineer in solving the complex task of software engineering, it is no silver bullet whose application 

guarantees success. Whether and to which extent KAOS is used remains the decision of the engineer, who has to weigh up 

gained support against invested work. 

This evaluation of KAOS contributes to researchers in RE and practitioners interested in using KAOS. To researchers in RE, 

we provide insights into the characteristics of complex problems that KAOS addresses and with regard to which it requires 

improvement. To practitioners, we provide insights into what to expect from using KAOS and what not to expect. These 

insights are the basis for a reasoned decision about whether to use KAOS or not. 

While we consider the synthesis of both literature-based identification of the KAOS modeling concepts and empirical 

evaluation of their appropriateness as the major strength of this evaluation of KAOS, this work itself has some limitations. 

Firstly, in our literature analysis, we focused on the major concepts underlying to KAOS. While this focus discloses the core 

of the KAOS method, it might not account for all extensions that have recently been made to KAOS. In fact, when regarding 

the authors of KAOS-related literature, we see that particularly in the last few years the number of different authors rapidly 

increased, whereas before, KAOS was mainly addressed by the group of persons who were involved in its development. With 

an increasing number of researchers interested in KAOS, we expect more concepts to become integrated into it. An analysis 

of recent improvements of the KAOS method may disclose new fields of its application. 

Secondly, our empirical analysis is limited to two software development projects within the same financial institution. There 

may be other problems in software engineering in other organizations in which KAOS is more or less useful. However, since 

we investigated software engineering in two different contexts, a multi-stakeholder re-engineering project and a single-

stakeholder software enhancement project, we are confident that the empirical insights are a valuable source for this 

evaluation of the KAOS method. 
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