
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2010 Proceedings Americas Conference on Information Systems
(AMCIS)

8-2010

Evaluation of the Goal-Oriented Requirements
Engineering Method KAOS
Frank Zickert
University of Frankfurt, mail@frankzickert.de

Follow this and additional works at: http://aisel.aisnet.org/amcis2010

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Zickert, Frank, "Evaluation of the Goal-Oriented Requirements Engineering Method KAOS" (2010). AMCIS 2010 Proceedings. 177.
http://aisel.aisnet.org/amcis2010/177

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2010%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2010?utm_source=aisel.aisnet.org%2Famcis2010%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2010%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2010%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2010?utm_source=aisel.aisnet.org%2Famcis2010%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2010/177?utm_source=aisel.aisnet.org%2Famcis2010%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 1

Evaluation of the Goal-Oriented Requirements Engineering
Method KAOS

Frank Zickert

University of Frankfurt

mail@frankzickert.de

Roman Beck

University of Frankfurt

rbeck@wiwi.uni-frankfurt.de

ABSTRACT

Software engineering is a complex task. But although there is no silver bullet that guarantees accomplishing this task,

appropriate methods can support the engineer by addressing the characteristics that make it complex. The objective of this

paper is to evaluate whether and how the goal-oriented requirements engineering method KAOS addresses these

characteristics of complex tasks and thereby, whether it effectively supports software engineering. For serving this purpose,

we conduct a literature analysis, which discloses core concepts underlying to the KAOS method, and we apply KAOS in two

software development projects, which provide insights into KAOS in use. Our results show that KAOS, despite of some

shortcomings, addresses all characteristics, but that applying it can be work intensive. Consequently, while KAOS supports

software engineering, provided support must be weigh up against invested work.

Keywords (Required)

KAOS, system engineering, task complexity.

INTRODUCTION

Software engineering is a complex problem (Benbya and McKelvey, 2006) in which “the hardest single part … is deciding

precisely what to build. … No other part of the work so cripples the resulting [software] system if it is done wrong. No other

part is more difficult to rectify later” (Brooks, 1986). But although there is no silver bullet for software engineering, methods

which support the creation of software have improved in the past (Berry, 2002).

The purpose of this paper is to evaluate whether and how the goal-oriented requirements engineering (RE) method KAOS

supports software engineering. For serving this purpose, we derive propositions from the perspective of software engineering

as complex problem and evaluate them using two software development projects within the financial industry.

This evaluation of KAOS contributes to researchers in RE and practitioners interested in using KAOS. To researchers in RE,

we point out with regard to which characteristics of complex problems KAOS supports software engineering and with regard

to which it requires improvement. To practitioners, who are interested in using KAOS, insights into its effectiveness provide

information on what to expect from this method and what not to expect.

The remainder of this paper is as follows. In section two, we briefly present the KAOS method. After that, we depict our

literature analysis (section three) and derive our propositions (section four). In section five, we describe the empirical case

studies, which serve as basis to evaluate KAOS (section six). Finally, we present our conclusions in section seven.

REQUIREMENTS ENGINEERING USING KAOS

KAOS builds upon the notion of goal orientation (van Lamsweerde, 2004) that is a major stream in the field of RE (Anwer

and Ikram, 2006). This stream builds upon the premise that “in designing software systems, requirement engineers aim to

‘improve’ organisational situations which are seen as problematic” (Kavakli and Loucopoulos, 2003). Goals address these

problems and thereby, set the objectives for changes (Loucopoulos and Kavakli 1995). While goal orientation completely

covers the process building software, KAOS is one of the most important methods, whose focal points are supporting

requirement acquisition (Dardenne, van Lamsweerde and Fickas, 1993), specification (Darimont and van Lamsweerde,

1996), and verification (Ponsard, Massonet, Rifaut, Molderez, van Lamsweerde and Tran Van, 2007).

In KAOS, the software under construction is captured as an instance of a conceptual meta-model where abstractions such as

goals, requirements, operations, agents, or entities are semantically linked (van Lamsweerde, Darimont and Massonet, 1995).

Moreover, KAOS provides a formal assertion layer (Darimont and van Lamsweerde, 1996) for inferring specifications from

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 2

requirements (van Lamsweerde and Willemet, 1998) and reasoning about goal satisfaction (Letier and van Lamsweerde,

2004).

The conceptual meta-model of KAOS comprises four models that are iteratively prepared: (1) a goal model in which goals to

be achieved by the software are described; (2) an object model in which objects involved in the software are described; (3) an

agent model in which responsibilities are assigned to agents; and (4) an operation model in which input-output relationships

among operationalizations of requirements and identified objects are described (Letier and van Lamsweerde, 2002b; van

Lamsweerde 2001).

Firstly, goals are acquired by incrementally asking “how” and “why” questions (van Lamsweerde, 2000; Yu and Mylopoulos,

1998). They are captured in the goal model that is represented as hierarchical graph using AND/OR-decompositions of

discrete high-level goals down to precise leaf-level requirements (van Lamsweerde et al., 1995). Figure 1 provides an

exemplary goal model in KAOS.

Figure 1. KAOS goal model

After the goals are acquired, the object and the agent models are prepared. The object model collects objects, attributes, and

relationships among them while in the agent model, agents are assigned responsibility for achieving the goals (Letier and van

Lamsweerde, 2002a). Agents and objects are used when the operation model is prepared. In this last step, operations

(represented as ovals) that describe the behavior of the system in specific situations are derived from requirements (van

Lamsweerde and Willemet, 1998). Situations that operations work in are determined by events (arrowed rectangle) that cause

the operation and entities (rectangles) that serve as information input. Each operation must be performed by an agent

(hexagon). Figure 2 provides an example of an operation model.

Figure 2. KAOS operation model

When KAOS models are prepared, the formal assertion layer that is written in a real-time temporal logical way (Koymans,

1992) can be used to formally assure that goals are correctly refined into sub-goals, requirements, and operations. For

instance, the goal of the location of a book in a library is found can be defined as follows:

Goal Achieve[the location of a book in a library is found]

Concerns Title, Location

RefinedTo Input, Search, Output

InformalDefinition The location of a book is found if it is displayed

FormalDefinition ∀ t: Title, l: Location: Output (l) ∧ SearchedTitle(t) ∧ IsLocationOfBook(l, t) ⇒ ο BookFound(t)

The goal definition describes what must be done to achieve the goal. The used operator ο is a classical operator for temporal

referencing and means “in the next state” (see Manna and Pnuel (1992) for an in depth description of temporal logic). Thus,

finding the location of a book in a library is achieved, if a location (l) is output that is the location of the book with the

searched title (t).

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 3

LITERATURE ANALYSIS

The KAOS method as presented was not spontaneously developed, but evolved as the result of research conducted over a

period of more than 10 years now. Therefore, we claim that modeling concepts were not randomly added but included for the

purpose of supporting engineers in building software. This literature analysis aims at disclosing these modeling concepts.

We conducted the literature analysis by following the framework of Levy and Ellis (2006). Search for relevant literature

involved three steps, a keyword search, a backward search, and a forward search. We started with a keyword search on the

term “KAOS” in three major literature databases ACM Digital Library, IEEE Xplore, and Elsevier (ScienceDirect). Based on

title, abstract, and keywords of the results, we decided on whether we found the source relevant for KAOS. A thereon based

backward search aimed at disclosing the origin of KAOS (Webster and Watson, 2002). We found 75 publications that

directly related to the KAOS method. The subsequent forward search builds upon the five most cited publications, which we

chose, since there is a gap between #5 (324 citations) and subsequently ranked articles (#6: 247 citations, #7: 220 citations) as

depicted in table 1. We found additional 13 publications with KAOS as their major topic. We conducted another backward

search to assure that we have not missed any major source or concurrent stream of KAOS-related research. Since we did not

find any new major author or publication, we consider having reached an appropriate stopping point for our literature

analysis (Leedy and Ormrod, 2005).

Authors Year Title Citations Rank

Dardenne, van Lamsweerde

and Fickas

1993 Goal-directed requirements acquisition 1231 1

van Lamsweerde 2001 Goal-Oriented Requirements Engineering: A Guided Tour 759 2

van Lamsweerde 2000 Requirements engineering in the year 00: a research

perspective

417 3

van Lamsweerde, Darimont

and Letier.

1998 Managing Conflicts in Goal-driven Requirements

Engineering

387 4

van Lamsweerde and Letier 2000 Handling Obstacles in Goal-Oriented Requirements

Engineering

324 5

Darimont and

van Lamsweerde

1996 Formal refinement patterns for goal-driven requirements

elaboration

247 6

Table 1. Major KAOS sources (based on citation count)

We analyzed the literature with regard to which modeling concepts of the KAOS method they describe. Repeated reference

of the same keywords in the literature, such as refinement or verification, allowed identification of the most important

concepts. Moreover, we recognized similarities among given reasons on why different concepts were included in KAOS.

In papers, which concerned topics such as refinement, patterns, or derivation of requirements from goals, the question of

interest mainly is how to refine goals into requirements and operations. These papers aim at guiding the engineer on coping

with decomposition of a high-level goal into more detailed requirements and operations.

Similarities were also found among papers, which for example mention verification, validation, or scenarios. These do not

answer the question of how a goal can be decomposed but they provide techniques for reasoning about whether

decompositions satisfy superordinate goals. Most of these papers employ the formal method of KAOS including temporal

logic.

The third identified class comprises papers mentioning keywords, such as inconsistencies, obstacles, or conflicts. These are

concerned with providing support on how to cope with situations when refinements do not satisfy superordinate goals,

because they conflict with satisfaction of other goals.

Table 2 illustrates these three classes of the KAOS method.

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 4

Class Modeling concepts

Hierarchical decomposition Refinement, patterns, architecture, operationalization, derivation, acquisition,

Goal-based reasoning Verification, validation, interaction analysis, formal method, correctness, scenario,

temporal logic, animation, model checking, runtime behavior

Obstacle management Inconsistency, obstacle, conflict, divergence

Table 2. Core concepts of the KAOS method.

THEORETICAL PERSPECTIVE

This evaluation of KAOS is based on whether the identified modeling concepts are appropriate for coping with the complex

problem of software engineering. The theoretical context for this evaluation is given by the perspective of task complexity of

which Gill and Hicks (2006) provide a comprehensive literature review.

Complex tasks exhibit specific characteristics that make them complex. According to Campbell (1988) these are (a) the

presence of multiple ways of solving the problem, (b) the presence of uncertain links among ways and outcomes (c), the

presence of multiple desired outcomes that must be achieved, and (c) the presence of conflicting interdependence among the

outcomes. Table 3 summarizes these characteristics of task complexity. For successfully performing complex tasks, the task-

doer has to cope with these characteristics. Although using a tool cannot change these characteristics, which are inherently

associated with the given task, it can dramatically impact the performance when the task is carried out by the task-doer (Gill

and Hicks, 2006). Therefore, by appropriately addressing these characteristics, a method can support the task-doer to perform

the task effectively.

Complexity characteristics Short description

Multiple ways In complex tasks, there is not a singular way of how the task must be done, but there are

multiple ways, which may or may not result in the desired outcome. Multiple ways

increase complexity, since the task-doer must decide, which way to follow.

Uncertain linkages A task is complex, if the linkage between a way and its outcome is ambiguous. As a result,

the way of achieving the goal cannot be planned upfront, because information does not

become available until the task is performed.

Multiple outcomes Complex tasks have multiple outcomes that require attention. Typically, each outcome

entails a separate information processing stream, which increases the amount of

information that has to be processed concurrently.

Conflicting interdependence

among outcomes

A task is complex if achieving one desired outcome conflicts with achieving another

desired outcome. As a consequence, ways that achieve both outcomes are less obvious and

thus more difficult to find.

Table 3. Complexity drivers (according to Campbell 1988)

KAOS addresses the complexity characteristic of multiple ways by employing the concept of problem decomposition

(Simon, 1996) for refining discrete high-level goals down to precise leaf-level requirements (van Lamsweerde et al., 1995).

Decomposition is a suited technique for reducing the dimensions of a problem and thereby decreasing the number of ways

that have to be considered (Marengoa and Dosi, 2005). For example, refinement of the goal of finding the location of a book

into input, search, and output as shown in figure 1 allows the engineer to separately concentrate on satisfying each sub-goal

while excluding the dimensions related to the other sub-goals. When designing the input interface, the engineer does not need

to consider how the search works. However, when refining goals, it has to be verified that the composition of sub-goals

satisfies the higher-level goal (Dardenne, Fickas and van Lamsweerde, 1991; De Landtsheer, Letier and van Lamsweerde,

2004). Therefore, we state proposition 1: KAOS addresses the complexity characteristic of multiple ways.

Goal-based reasoning addresses the complexity characteristic of uncertain linkages, since it provides information on the

outcome of respective goal refinements. This information is valuable for decisions on whether to continue with the current

refinement or to select another one, which might better satisfy the higher-level goal. Since verification using the formal

assertion layer is work intensive, KAOS provides refinement patterns that can be applied to refine specific types of goals,

such as Achieve X, or Maintain X (Darimont and van Lamsweerde, 1996; Letier and van Lamsweerde, 2002b). Patterns are

pre-verified refinement strategies, whose usage represents an economic way of assuring that the refinement of a goal is valid.

Therefore, we state proposition 2: KAOS addresses the complexity characteristic of uncertain linkages.

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 5

To some extent, goal-based reasoning also addresses the complexity characteristic of multiple outcomes. Since a goal model

is not limited to a singular top-level goal, it can be verified whether decomposed sub-goals satisfy multiple goals. However,

since satisfaction of each goal must be separately verified, resulting work is even higher. Proposition 3: KAOS addresses the

complexity characteristic of multiple outcomes.

The KAOS method addresses the complexity characteristic of conflicting interdependence among tasks by explicitly

including obstacles into the models (van Lamsweerde, Darimont and Letier, 1998; van Lamsweerde and Letier, 1998).

Thereby, inconsistencies and conflicts can be made explicit and the engineer can verify potential resolutions of the obstacle

(van Lamsweerde and Letier, 2000). However, applying the KAOS method does not prevent from inconsistencies. In fact,

systematic techniques are requested that generate better designs which do not end up in inconsistencies (Letier and van

Lamsweerde, 2004). Nevertheless, we state proposition 4: KAOS addresses the complexity characteristic of conflicting

interdependence among outcomes

CASE STUDIES

Our empirical evaluation of KAOS builds upon two case studies, which we conducted in software development projects

within the information technology division of a large financial institution. We followed the guidelines of Kitchenham and

Pickard (1995) for conducting multiple case research for method and tool evaluation. In the cases, we prepared KAOS

models concurrently to the requirement engineer, who did not use a formal RE method but adhered to the default process

used in the institution. This process generally followed the waterfall model (Royce 1970). Based on functions as requested by

the internal customer, that is the Germany-based retail customer division, the engineer elaborated requirements and derived

design specifications. Both, requirements and specifications were written in natural language and collected in respective

documents. Besides the engineer, other stakeholders, such as project manager, technical specialists, and test analysts were

involved, who reviewed and commented the documents.

Data was collected as follows. While the engineer, who was the same in both projects, analyzed the problem and designed the

software, we prepared KAOS models based on the same information that was available to the engineer. While the engineer

already worked in this environment for several years, one researcher served as on-site expert and was already involved in

several other projects within this environment. Information parity in the projects was ensured by interrogations with the

engineer, attendance at meetings, access to e-mails, and access to documents. Despite of situations, in which major decisions

about the design were made, insights we gathered from the KAOS models were not returned to the engineer. These situations

were particularly beneficial for the analysis, since they disclosed whether the engineer had any problems in designing the

software, which could have been mitigated by using KAOS. Information exchange started with an inquiry of the engineer’s

opinion on the situation, any preferences with regard to the system design, and the suggested next steps. After having

recorded this data, we returned information provided by the KAOS models. We particularly paid attention to gaps between

the exchanged information and whether information we returned led to any change of the engineer’s mind regarding the

previously inquired opinion, preferences, or suggestion. These gaps served as basis for identifying differences between the

default case and application of the KAOS method.

In the first project, an existing front-end system was integrated with a recently built payment processing system. Before,

payment order entering was already offered at the front-end, but these orders were transferred to a legacy processing system.

The reason for this re-engineering project was the intended deactivation of the legacy system.

There were two important situations in this project, in which stakeholders controversially discussed which of alternative

system designs had to be used. First, the engineer designed a web-service interface between the front-end and the processing

system, whereas the technical analyst responsible for the processing system insisted on using a routing system. Second, a

problem occurred about how to check bank codes for correctness already on the front-end. While the engineer favored

download of bank code data, the vendor responsible for the development suggested an online interface to check bank codes

on demand.

In both situations, decision documents prepared by the engineer were simple Power Point slides with yes/no statements about

goal satisfaction, whereas the KAOS models provided logical reason whether goals about the software under construction

were satisfied in the discussed alternatives. In the first situation, evaluation of goal satisfaction using KAOS matched with the

engineer’s perception for all four discussed goals. In the second situation, the engineer was doubtful about satisfaction of one

out of three goals, whereas the KAOS models provided clear information on satisfaction of all goals.

However, in both situations, not only goals concerning the software under construction, such as functional or architectural

goals, were discussed, but also resulting project effort was an important factor. In fact, project effort was the decisive factor

in the first situation, in which an architectural goal was consciously left unsatisfied, because it would have generated too

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 6

much effort. While the engineer was able to roughly estimate resulting effort, the KAOS models did not provide this

information.

In the second project, a server system had to be extended with a function that allows the selective deactivation of connected

terminals. Since these terminals are programmed for highest possible availability, they autonomously re-activate. The

challenge in this project was the purposeful adjustment of the terminal re-activation routines. While it had to be assured that a

terminal did not autonomously re-activate once it had been deactivated, it was as critical that reliability of the activation

routines remained unaffected in default cases, in which terminals were supposed to re-activate.

The most critical situation in this project occurred, when a major flaw in an assumption about the existing re-activation

routines was discovered. Up to this point, both the requirement specifications written by the engineer and the KAOS model

suggested a well-formed design. But at the time when the engineer refined this assumption, it turned out that the re-activation

routines worked slightly but essentially different than assumed. The KAOS models did not disclose this flaw either, since it

resided inside an assumption.

After the flaw had been discovered, KAOS obstacle management techniques allowed resolving the flaw with additional

adjustments at the re-activation routines. However, the engineer rejected this resolution, since associated changes would have

been fundamental and thus, potentially affecting the reliability of the re-activation routines. The problem was solved by using

a different approach, which involved another set of high-level requirements. Consequently, large parts of the requirements

specifications and the KAOS models had to be rewritten.

RESULTS

Observations support our introductive claim that engineering software requirements is a complex problem. The engineer did

not spend most of the time for proceeding in a well defined task, but rather had to search for a solution in an obscure

environment, where there was no obvious way to achieve the goal. In fact, in both projects, the system could have been built

in different ways, which resulted in discussions among stakeholders. While the engineer accounted for these ways by

preparing decision documents, KAOS supported concurrent consideration of alternatives by using OR-relationships. But

although concurrent consideration of different alternatives results in additional work for preparing the models, it addresses

the complexity characteristic of multiple ways, wherefore we find support for proposition 1.

The projects also exhibited the second complexity characteristic of uncertain linkages. For instance, while the engineer was

doubtful about satisfaction of a goal in the first case, the KAOS models provided clear information on satisfaction of all

goals. Moreover, decision documents used in the projects were generally limited to yes/no statements, whereas KAOS

models provided detailed and verified proof of goal satisfaction. Thus, we find support for proposition 2: KAOS addresses

the complexity characteristic of uncertain linkages.

In our cases, multiple outcomes were requested by stakeholders. These included but were not limited to goals that the

software under construction had to achieve. Stakeholders were also concerned about the resulting effort for building the

software, which is reasonable, since software engineering “is not just about solving problems [but] about solving problems

with economical use of resources, including money” (Shaw, 1990). KAOS models, however, represent the software under

construction (van Lamsweerde, 2001) and thus are unable to represent goals about resulting effort, which is not a result of the

software but a result of the process of building the software (Abdel-Hamid and Madnick, 1991). We therefore find limited

support for proposition 3: KAOS addresses the complexity characteristic of multiple outcomes.

Finally, in the second case, a wrong assumption had been made in the requirements specifications, which resulted in an

unworkable situation that had to be reworked when the flaw was discovered. Since the flaw resided within an assumption, it

was not discovered using KAOS either. Nevertheless, KAOS obstacle management techniques helped mitigating the

discovered problem and suggested a solution, which however was not pursued by the engineer. Under the premise that even

KAOS models are only as good as information put into them, we find support for proposition 4: KAOS addresses the

complexity characteristic of conflicting interdependence among outcomes.

We find KAOS addressing each characteristic of a complex task. However, we also identified a shortcoming of the KAOS

method with regard to addressing multiple outcomes. Table 4 summarizes the results of our evaluation of whether and how

KAOS addresses the characteristics of a complex task. Indeed, while KAOS addresses all characteristics, work has to be

spent for using it. While preparation of the semantic models is effortless, applying the formal assertion layer is very work

intensive. Moreover, when modeling obstacles, scenarios, and various alternatives, the resulting work rapidly increases, even

if only semantic models are prepared.

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 7

Complexity characteristics Modeling concepts used in KAOS Observations in the cases

Multiple paths - Hierarchical decomposition - OR-relationships. Concurrent consideration

and discussion of alternative solutions to the

problem

Uncertain linkages - Goal-based reasoning (verification)

- Hierarchical decomposition (OR-

relationships)

- Satisfaction of all goals were verified by using

KAOS, whereas the engineer had no

information about satisfaction of one out of

seven goals

Multiple outcomes - Goal-based reasoning (concurrent

verification of high-level goals)

- Goals about the software under construction

were considered

- Resulting effort could not be assessed using

KAOS, but it was an important factor in the

cases

Conflicting interdependence

among outcomes

- Obstacle management (resolving

inconsistencies)

- KAOS supported finding a resolution for the

wrong assumption

Table 4. How KAOS addresses complexity factors

CONCLUSIONS

This paper provides an evaluation of the RE method KAOS. It builds upon a literature analysis and two case studies in which

the KAOS method is compared to not using a formal RE method. Our results show that KAOS employs useful concepts for

accomplishing the complex task of software engineering, but that using this method becomes laborious if all of its provided

functions are used. Thus, any improvement reducing the work effort required for preparing the models would be most

beneficial to the KAOS method.

Moreover, we have identified a shortcoming of KAOS. The goal-based reasoning in KAOS is limited to goals about the

software under construction. It does not account for other important factors, such as the effort required for building the

engineered software. Moreover, any KAOS model is only as good as the input that is used for preparing it. Thus, although

KAOS supports the engineer in solving the complex task of software engineering, it is no silver bullet whose application

guarantees success. Whether and to which extent KAOS is used remains the decision of the engineer, who has to weigh up

gained support against invested work.

This evaluation of KAOS contributes to researchers in RE and practitioners interested in using KAOS. To researchers in RE,

we provide insights into the characteristics of complex problems that KAOS addresses and with regard to which it requires

improvement. To practitioners, we provide insights into what to expect from using KAOS and what not to expect. These

insights are the basis for a reasoned decision about whether to use KAOS or not.

While we consider the synthesis of both literature-based identification of the KAOS modeling concepts and empirical

evaluation of their appropriateness as the major strength of this evaluation of KAOS, this work itself has some limitations.

Firstly, in our literature analysis, we focused on the major concepts underlying to KAOS. While this focus discloses the core

of the KAOS method, it might not account for all extensions that have recently been made to KAOS. In fact, when regarding

the authors of KAOS-related literature, we see that particularly in the last few years the number of different authors rapidly

increased, whereas before, KAOS was mainly addressed by the group of persons who were involved in its development. With

an increasing number of researchers interested in KAOS, we expect more concepts to become integrated into it. An analysis

of recent improvements of the KAOS method may disclose new fields of its application.

Secondly, our empirical analysis is limited to two software development projects within the same financial institution. There

may be other problems in software engineering in other organizations in which KAOS is more or less useful. However, since

we investigated software engineering in two different contexts, a multi-stakeholder re-engineering project and a single-

stakeholder software enhancement project, we are confident that the empirical insights are a valuable source for this

evaluation of the KAOS method.

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 8

REFERENCES

1. Abdel-Hamid, T. and Madnick S. (1991) Software project dynamics, Englewood Cliffs, Prentice-Hall.

2. Anwer, S. and Ikram, N. (2006) Goal oriented requirement engineering: A critical study of techniques, Proceedings of

the 13th Asia Pacific Software Engineering Conference, December 6-8, Kanpur, 121-130.

3. Benbya, H. and McKelvey, B. (2006) Toward a complexity theory of information systems development, Information

Technology & People, 19, 1, 12-34.

4. Berry, D. (2002) The inevitable pain of software development: Why there is no silver bullet, Proceedings of the 9th

International Workshop on Radical Innovations of Software and Systems Engineering in the Future, October 7-11,

Venice, Italy, 2002, 50-74.

5. Brooks, F. (1986) No silver bullet, in Kugler, H.-J. (Ed.) Information Processing ’86, Elsevier Science Publishers.

6. Campbell, D. (1988) Task complexity: A review and analysis, The Academy of Management Review, 13, 1, 40-52.

7. Dardenne, A., Fickas, S. and van Lamsweerde, A. (1991) Goal-directed concept acquisition in requirements elicitation,

Proceedings of the 6th international workshop on Software specification and design, Como, Italy, 14-21.

8. Dardenne, A., van Lamsweerde, A. and Fickas, S. (1993) Goal-directed requirements acquisition, Science of Computer

Programming, 20, 1, 3-50.

9. Darimont, R. and van Lamsweerde, A. (1996) Formal refinement patterns for goal-driven requirements elaboration,

Proceedings of the 4th ACM SIGSOFT symposium on Foundations of software engineering, 21, 6, 179-190.

10. De Landtsheer, R., Letier, E. and van Lamsweerde, A. (2004) Deriving tabular event-based specifications from goal-

oriented requirements models, Requirements Engineering, 9, 2, 104-120.

11. Gill, T. and Hicks, R. (2006) Task complexity and informing science: A synthesis, Informing Science Journal, 9, 1-30.

12. Kavakli, E. and Loucopoulos, P. (2003) Goal Driven Requirements Engineering: Evaluation of Current Methods,

Proceedings of the 8th CAiSE/IFIP Workshop on Evaluation of Modeling Methods in Systems Analysis and Design,

EMMSAD 2003.

13. Kitchenham, B. and Pickard, L. (1995) Case studies for method and tool evaluation, IEEE Software, 12, 4, 52-62.

14. Koymans, R. (1992) Specifying message passing and time-critical systems with temporal logic, Lecture Notes in

Computer Science, 651, Springer-Verlag, Berlin, Germany.

15. Leedy, P., and Ormrod, J. (2005) Practical research: Planning and design, Prentice Hall, Upper Saddle River, NJ.

16. Letier, E. and van Lamsweerde, A. (2002a) Agent-Based Tactics for Goal-Oriented Requirements Elaboration,

Proceedings of the 24th international conference on Software Engineering, Orlando, Florida, 83-93.

17. Letier, E. and van Lamsweerde, A. (2002b) Deriving operational software specifications from system goals, SIGSOFT

Software Engineering Notes, 27, 6, 119-128.

18. Letier, E. and van Lamsweerde, A. (2004) Reasoning about partial goal satisfaction for requirements and design

engineering, Proceedings of the 12th ACM SIGSOFT twelfth international symposium on Foundations of software

engineering, Newport Beach, CA, 53-62.

19. Levy, Y. and Ellis, T. (2006) A systems approach to conduct an effective literature review, Support of Information

Systems Research, 9, 181-212.

20. Loucopoulos, P. and Kavakli, E. (1995) Enterprise Modelling and the Teleological Approach to Requirements

Engineering, International Journal of Intelligent and Cooperative Information Systems, 4, 45-79.

21. Manna, Z. and Pnuel, A. (1992) The temporal logic of reactive and concurrent systems, Springer-Verlag, Berlin,

Germany.

22. Marengoa, L. and Dosi, G. (2005) Division of labor, organizational coordination and market mechanisms in collective

problem-solving, Journal of Economic Behavior & Organization, 58, 303-326.

23. Ponsard, C., Massonet, P., Rifaut, A., Molderez, J., van Lamsweerde, A. and Tran Van, H. (2007) Early verification and

validation of mission critical systems, Formal Methods in System Design, 30, 3, 233-247.

24. Royce, W. (1970) Managing the development of large software systems, Proceedings of IEEE Wescon, 1-9.

25. Shaw, M. (1990) Prospect for an engineering discipline of software, IEEE Software, 7, 15-24.

26. Simon, H. (1996) The sciences of the artificial, MIT Press, Cambridge, MA.

Zickert et al. Evaluation of the goal-oriented requirements engineering method KAOS

Proceedings of the Sixteenth Americas Conference on Information Systems, Lima, Peru, August 12-15, 2010. 9

27. van Lamsweerde, A. (2000) Requirements engineering in the year 00: a research perspective, Proceedings of the 22nd

international conference on Software Engineering, Limerick, Ireland, 5-19.

28. van Lamsweerde, A. (2001) Goal-oriented requirements engineering: A guided tour, Proceedings of the 5th IEEE

International Symposium on Requirements Engineering, Toronto, Canada, 249-263.

29. van Lamsweerde, A. (2004) Goal-oriented requirements engineering: A roundtrip from research to practice, 12th IEEE

International Requirements Engineering Conference, September 6-10, Kyoto, Japan, 4-7.

30. van Lamsweerde, A., Darimont, R. and Letier, E. (1998) Managing conflicts in goal-driven requirements engineering,

IEEE Transactions on Software Engineering, 24, 908-926.

31. van Lamsweerde, A. Darimont, R. and Massonet, P. (1995) Goal-directed elaboration of requirements for a meeting

scheduler: problems and lessons learnt, Proceedings of the 2nd IEEE International Symposium on Requirements

Engineering, March 27-29, 194-203.

32. van Lamsweerde, A. and Letier, E. (1998) Integrating obstacles in goal-driven requirements engineering, Proceedings of

the 20th international conference on Software Engineering, Kyoto, Japan, 53-62.

33. van Lamsweerde, A. and Letier, E. (2000) Handling obstacles in goal-oriented requirements engineering, IEEE

Transactions on Software Engineering, 26, 10, 978-1005.

34. van Lamsweerde, A. and Willemet, L. (1998) Inferring declarative requirements specifications from operational

scenarios, IEEE Transactions on Software Engineering, 24, 12, 1089-1114.

35. Webster, J., and Watson, R. (2002) Analyzing the past to prepare for the future: Writing a literature review, MIS

Quarterly, 26, 2, 13-23.

36. Yu, E. and Mylopoulos, J. (1998) Why goal-oriented requirements engineering, Proceedings of the 4th International

Workshop on Requirements Engineering: Foundations of Software Quality, June 8-9, Pisa, Italy.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-2010

	Evaluation of the Goal-Oriented Requirements Engineering Method KAOS
	Frank Zickert
	Recommended Citation

	Microsoft Word - $ASQ7758601_File000001_126713855.doc

