Detecção de falhas usando Redes Neurais

RUBEN DARIO BENITES PEREZ JOAQUIN EDUARDO FIGUEROA BARRAZA LUIS FELIPE GUARDA BRAUNING VICTOR RAFAEL LIMA SOUZA

ESCOLA POLITÉCNICA – UNIVERSIDADE DE SÃO PAULO PSI5886 – Princípios de Neurocomputação PROF. DR. EMÍLIO DEL MORAL HERNANDEZ DEZEMBRO DE 2018

Membros da equipe

Luis Felipe Guarda Brauning

Ruben Dario Benites Perez

Joaquin Eduardo Figueroa Barraza

Victor Rafael Lima Souza

Conteúdo

- Introdução
- Dados: MFPT
- Ferramenta: Deep Learning Studio
- Metodologia/Implementação
- Resultados
- Conclusões

Introdução

- CBM (Condition Based Maintenance) [1,2]
 - o Detectar iminência de falha (antes de sua ocorrência)
 - Manutenção preventiva, apenas se necessário
 - Ensaio não-destrutivo
 - Obtenção de dados durante operação
- Uso de redes tipo MLP para classificação do estado dos rolamentos [3,4,5,6]:
 - o Sem falhas
 - Falha na pista externa
 - Falha na pista interna).
- Dados de entrada [7,8,9]:
 - medições de vibração (aceleração)

Dados: MFPT

- Society for Machinery Failure Prevention Technology.
- Dados de vibração em rolamentos (aceleração):
 - Data Set da Society for Machinery Failure Prevention Technology [9]
- Três tipos de condições
 - Rolamentos sem falhas
 - Com falha na pista externa
 - Com falha na pista interna
- Dados de entradas:
 - Blocos de 640 frames do dataset [9]

Fonte: Catálogo de revendedor [10]

Dados: MFPT

Aparato de teste. Fonte: [11]

Fonte: (Autores, 2018), utilizando dados de [9]

Deep Learning Studio [12]

- Software para criação de modelos de Machine Learning e Deep Learning.
- Não precisa de muito conhecimento de programação.
- Fácil manipulação da rede e os parâmetros dela.
- Compatibilidade com Tensorflow e Keras.
- Possibilidade de trabalhar com CPU e GPU.

Fonte: Autores, 2018

Tutorial Deep Learning Studio

	Deep Deep Learning	ng Studio					ሳ	ruben.benites 🗸
	Projects	MY PRC	DJECTS			SAMP	LE PROJECTS	
	Datasets				1	Ð		
₹	Deployments			[2]	×	~		
	Environments				~	·		
Þ	File Browser		MNIST Handwritten Digits C	Ø	×	~		
	Notebook							
2	Forum							
Ľ	Videos							
	Support							

Cognition	Deep Learning Studio	i -	Neuro	Comp					U ruben.benites 🗸
*	Data	Model	Нуре	rParameters	Tr	aining		Results	Inference/Deploy
0))) I←	MFPT_R_train Caltech101 cifar-10	- private - public - public	Memory t a time	Training 4846	Validation 1211 Data	Test ★ 0	A V		Click on column buttons to configure column specific preprocessing options
	- imdb	- public							
	iris Kaggle_IDC_Cancer	- public - public	data			target			
	Data Type:		Array	*		Numeric	*		
	Input or Output:		InputPort0	-		InputPort0	-		
		0.0319;-0.0742;-0.04	447;0.0154;-0.0347;	-0.0321;0.1615	;-0.0046;-0	2			
		-0.0106;-0.0340;-0.0	158;-0.0265;-0.058	1;-0.1382;0.136	2;0.1119;-0	0			
		-0.0725;-0.0959;-0.0	325;-0.1265;-0.081	2;-0.0592;0.184	0;0.1690;-0	1			
		-0.0245;-0.0085;-0.0	292;-0.0416;-0.052	3;-0.0857;0.226	4;0.0868;-0	1			
		-0.0140;-0.0374;0.0	191;-0.0312;-0.0091	;-0.1038;0.1940);0.1273;-0	1			
		-0.0101;-0.0359;0.0	619;-0.0083;-0.0649	;-0.0320;0.2589	9;0.0896;-0	0			
		0.1983;0.0226;-0.03	56;-0.2040;-0.1351;	-0.1169;0.2152	;-0.0545;-0	2			
		-0.0323;0.0785;-0.0	309;-0.0261;-0.0122	2;-0.0946;0.1176	5;0.0325;-0	1		v	

Fonte: Autores, 2018

Fonte: Autores, 2018

×

₹

▦

2

Þ

 \mathbf{M}

NeuroComp

Data	Model	HyperParameters	Training	Results	Inference/Deploy
		C Show Advanced Parameters	~		
		Number of Epoch			
		10	-	÷	
		Batch Size			
		32	ł	•	
		Loss Function			
		categorical_crossentropy		<u>•</u>	
		Optimizer			
		Adadelta		•	
		Ir			
		1			
		Float >= 0. learning rate. it is re epsilon	commended to leave it at the default valu	Je.	
		1e-08			
		decay	Float >= 0. fuzz facto	pr.	
		0			
		rho	:>= 0. learning rate decay over each updat	te.	
		0.95			
			Float >=	0.	

Fonte: Autores, 2018

ruben.benites 🗸

Fonte: Autores, 2018

Metodologia e Implementação

- Análise de arquiteturas e hiperparâmetros para uma MLP
- Estudo da influência de diferentes fatores:
 - o Número de camadas
 - Número de neurônios por camada
 - o Dropout
 - Função de ativação
 - o Otimizador
 - Taxa de aprendizado
- Uso do software Deep Learning Studio [12].

Numero de camadas e neurônios

7 Arquiteturas iniciais

5 Rodadas de simulações

Numero de camadas	Numero de neurônios por camada
	256
1	512
	1024
C	521-1024
Z	1024-512
2	256-512-1024
3	1024-512-256

• Primeira rodada de simulações:

- Todas as 7 MLPs
- Função de ativação: ReLu
- Sem Dropout
- o Otimizador: Adam
- Taxa de aprendizado: 1e-3

Melhores resultados

destacados em amarelo:

Camadas	Neurônios	Validation Accuracy
	256	0,759
1	512	0,805
	1024	0,813
2	512-1024	0,745
2	1024-512	0,7549
2	256-512-1024	0,739
3	1024-512-256	0,736

- Segunda rodada de simulações:
 - Melhor MLP para cada número de camadas da rodada anterior
 - Dropout 20% e 50% (total de 6 MLPs)
 - Função de ativação: ReLu
 - Otimizador: Adam
 - Taxa de aprendizado: 1e-3

Melhor resultado

destacado em amarelo:

Arquitetura	DropOut	Validation Accuracy
1024	0,5	0,813
1024-512	0,5	0,726
256-512-1024	0,5	0,64
1024	0,2	0,8215
1024-512	0,2	0,746
256-512-1024	0,2	0,6422

- ➢ ReLu**
- Sigmoid
- > Tanh

- Terceira rodada de simulações:
 - Melhor MLP: 1 camada com 1024 neurônios
 - Sem Dropout
 - Função de ativação: Sigmoide e Tangente Hiperbólica (2 MLPs)
 - Otimizador: Adam
 - Taxa de aprendizado: 1e-3

 Resultados piores que os obtidos com ReLu:

Função	Validation Accuracy
tanh	0,781
sigmoid	0,741

- Quarta rodada de simulações:
 - Melhor MLP: 1 camada com 1024 neurônios
 - Sem Dropout
 - Função de ativação: ReLu
 - Otimizador: SGD
 - Taxa de aprendizado: 1e-3

 Resultados piores que os obtidos com ADAM:

Otimizador	Validation Accuracy
SGD	0,6825

- Quinta rodada de simulações:
 - Melhor MLP: 1 camada com 1024 neurônios
 - Sem Dropout
 - Função de ativação: ReLu
 - Otimizador: ADAM
 - Taxa de aprendizado: 1e-4

 Resultados piores que os obtidos com taxa de 1e-3:

Taxa de aprendizado	Validation Accuracy
1,00E-04	0,8001

Resultados

- Numero de camadas ocultas: 1
- Numero de neurônios: 1024
- Dropout: 0.2
- Otimizador: Adam
- Taxa de aprendizado: 1E-3
- Precisão modelo: 82.15%

Conclusões

- Menor numero de camadas → Melhor precisão
- Maior numero de neurônios → Melhor precisão
- Aplicação de dropout não muda melhor arquitetura.
- ReLu é a melhor função de ativação.
- Otimizador: Adam > SGD
- O desempenho do modelo depende dos dados e do problema.

Referências

- [1] S. Telford, M. I. Mazhar, and I. Howard, "Condition Based Maintenance (CBM) in the Oil and Gas Industry: An Overview of Methods and Techniques," Proc. 2011 Int. Conf. Ind. Eng. Oper. Manag. Kuala Lumpur, Malaysia, January 22 – 24, 2011, pp. 1152–1159, 2011.
- [2] M. C. A. Olde Keizer, S. D. P. Flapper, and R. H. Teunter, "Conditionbased maintenance policies for systems with multiple dependent components: A review," Eur. J. Oper. Res., vol. 261, no. 2, pp. 405–420, 2017.
- [3] S. Khan and T. Yairi, "A review on the application of deep learning in system health management," Mech. Syst. Signal Process., vol. 107, pp. 241–265, 2018.
- [4] H. Shao, H. Jiang, Y. Lin, and X. Li, "A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders," Mech. Syst. Signal Process., vol. 102, pp. 278–297, 2018.

Referências

- [5] C. M. Bishop, Pattern Recognition and Machine Learning, vol. 53, no.
 9. 2013.
- [6] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, "Deep Learning and Its Applications to Machine Health Monitoring: A Survey," vol. 14, no. 8, pp. 1–14, 2016.
- [7] A. Kumar, R. Shankar, and L. S. Thakur, "A big data driven sustainable manufacturing framework for condition-based maintenance prediction," J. Comput. Sci., 2017.
- [8] D. Verstraete, M. Engineering, and M. Engineering, "Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings," pp. 1–29.

Referências

- [9] Society for Machinery Failure Prevention Technology. Data Set. Disponível em <<u>https://mfpt.org/fault-data-sets/</u>>. Acesso em 20.11.2018
- [10] Kugellager Express. Disponível em: <<u>https://www.kugellager-express.de/deep-groove-ball-bearing-6411-open-55x140x33-mm</u>> Acesso em 27.12.2018
- [11] Bearing Data Center. Case Western Reserve University. Equipamento de teste. Disponível em: <<u>https://csegroups.case.edu/bearingdatacenter/pages/apparatusprocedures</u> >. Acesso em 25.11.2018.
- [12] Deep Cognition Deep Learning Studio. Disponível em: <<u>https://deepcognition.ai/</u>>. Acesso em 20.11.2018.

Detecção de falhas usando Redes Neurais

PERGUNTAS?

OBRIGADO!

Dezembro, 2018