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Abstract—Fibromyalgia is the current term for chronic

widespread musculoskeletal pain for which no alternative

cause can be identified. The underlying mechanisms, in

both human and animal studies, for the continued pain in

individuals with fibromyalgia will be explored in this review.

There is a substantial amount of support for alterations of

central nervous system nociceptive processing in people

with fibromyalgia, and that psychological factors such as

stress can enhance the pain experience. Emerging evidence

has begun exploring other potential mechanisms including

a peripheral nervous system component to the generation

of pain and the role of systemic inflammation. We will

explore the data and neurobiology related to the role of

the CNS in nociceptive processing, followed by a short

review of studies examining potential peripheral nervous

system changes and cytokine involvement. We will not only

explore the data from human subjects with fibromyalgia but

will relate this to findings from animal models of fibromyal-

gia. We conclude that fibromyalgia and related disorders are

heterogenous conditions with a complicated pathobiology

with patients falling along a continuum with one end a

purely peripherally driven painful condition and the other

end of the continuum is when pain is purely centrally driven.
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INTRODUCTION

Clinical practitioners commonly see patients with pain and

other somatic symptoms that they cannot adequately

explain based on the degree of damage or inflammation

noted in peripheral tissues (Kroenke and Mangelsdorff,

1989). If nocause is found, these individuals areoftengiven

a diagnostic label that merely connotes that the patient has

pain in a region of the body such as chronic low back pain,

headache, or temporomandibular joint disorder. In other

cases, the label given alludes to an underlying pathologic

abnormality thatmay ormay not be responsible for the indi-

vidual’s pain, such as endometriosis and facet syndrome.

In theworst case scenario, thesepatients are told that there

is nothing wrong with them, advised that the disorder is ‘‘all

in their head,” andgiven a label such as ‘‘somatizer” without

being offered any treatment.

Fibromyalgia (FM) is the current term for chronic

widespread musculoskeletal pain for which no alternative

cause can be identified. Depending on the practitioner a

patient sees, there are a number of related and
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overlapping conditions, which have recently been

referred to as chronic overlapping pain conditions or

functional pain disorders. For example, gastroenter-

ologists often see the very same patients using the terms

functional gastrointestinal disorder, irritable bowel

syndrome (IBS), nonulcer dyspepsia, or esophageal
dysmotility to explain the patients’ symptoms, while

urologists see these patients for pelvic pain and urinary

symptoms using the terms interstitial cystitis, chronic
prostatitis, vulvodynia, and vulvar vestibulitis, and

dentists see patients for temporomandibular joint

syndrome. These chronic overlapping pain conditions are

thought to have similar underlying pathology with

alterations in central nervous system function leading to

augmented nociceptive processing and the development

of central nervous system (CNS)-mediated somatic

symptoms of fatigue, sleep, memory and mood

difficulties. There is a different subset of individuals with

fibromyalgia who have this condition as a co-morbidity

with another disorder known to cause ongoing

nociceptive input, such as autoimmune disorders, sickle

cell disease, or osteoarthritis (Clauw, 2014). This subset

of fibromyalgia, formerly termed secondary fibromyalgia

appears similar phenotypically and mechanistically, but

may also have a strong nociceptive input driving the central

sensitization since the CNS changes appear to improve

when peripheral nociceptive input is removed (Kosek and

Ordeberg, 2000; Gwilym et al., 2010, 2011).

The underlying mechanisms for the continued pain in

individuals with fibromyalgia will be explored in this

review. There is a substantial amount of support for

alterations of central nervous system nociceptive

processing in people with fibromyalgia, and that

psychological factors such as stress can enhance the

pain experience. At present we feel that the central

nervous system mechanisms show the strongest

evidence of true pathogenesis – in that they share

common pathogenic features in both human and animal

models, and respond to treatments aimed at those

particular mechanisms. However, more recently a

number of studies have begun exploring other potential

mechanisms including a peripheral component to the

generation of pain and the role of systemic

inflammation. We will explore the data and neurobiology

related to the role of the CNS in nociceptive processing,

followed by a short review of studies examining potential

peripheral nervous system changes and cytokine

involvement. We will not only explore the data from

human subjects with fibromyalgia but will relate this to

findings from animal models of fibromyalgia.
OVERVIEW OF CENTRAL NERVOUS SYSTEM
ALTERATIONS IN FIBROMYALGIA

Human animals

Individuals with fibromyalgia present with diffuse

hyperalgesia (increased pain to normally painful stimuli)

and/or allodynia (pain to normally nonpainful stimuli).

The widespread nature of the pain is a key clinical

feature in these individuals and a number of other
CNS-mediated symptoms, i.e. fatigue, memory

difficulties, sleep and mood disorders, are frequent

comorbidities. Together, this supports that the CNS is

amplifying pain, and there is a fundamental problem

with augmented pain or sensory processing in the CNS.

These findings of augmented pain and sensory

processing are corroborated by the presence of these

same phenomena in functional neuroimaging studies,

and imbalances in levels of neurotransmitters that affect

pain and sensory transmission in individuals with

fibromyalgia (Schmidt-Wilcke and Clauw, 2011; Harris

and Clauw, 2012; Clauw, 2014). Further similar types of

therapies are efficacious for all of these conditions, includ-

ing both pharmacologic treatments aimed at increasing

antinociceptive neurotransmitters in the central nervous

system, or those that lower levels of pronociceptive exci-

tatory neurotransmitters such as glutamate. A number of

non-pharmacologic treatments, such as exercise, can

also be extremely helpful and alter endogenous

neurotransmission including increasing antinociceptive

neurotransmitters and reducing glutamate (Sluka et al.,

2013; Bobinski et al., 2015). Conversely, individuals with

these conditions typically do not respond well when given

therapies that are effective for acute pain or pain caused

by damage to or inflammation of tissues such as, nons-

teroidal antiinflammatory drugs [NSAIDs], local injections,

or surgical procedures.

Animal models have been developed to mimic and

gain a better understanding of the neurobiology of

chronic widespread pain. The most common and

well-characterized models involve repeated insults to

the muscle. A non-inflammatory pain model is induced

by repeated injections of acid saline (pH 4.0) into the

same gastrocnemius muscle and produces widespread

hyperalgesia of the skin, muscle and viscera without

observable tissue damage or inflammation (Sluka et al.,

2001; Miranda et al., 2004; Yokoyama et al., 2007b;

Sharma et al., 2009). In addition this model is associated

with anxiety-like and depression-like behaviors in a

50–60% of animals after induction of the model (Liu

et al., 2014). A modification of the non-inflammatory

model combines muscle fatigue with repeated acid injec-

tions (pH 5.0) and similarly produces widespread and

long-lasting hyperalgesia without observable tissue dam-

age or inflammation (Yokoyama et al., 2007b; Sluka and

Rasmussen, 2010; Gregory et al., 2013). In the fatigue-

induced pain models female mice have greater, more

widespread, and longer lasting hyperalgesia when com-

pared to male mice (Sluka and Rasmussen, 2010;

Gregory et al., 2013).

Underlying mechanisms in the non-inflammatory

model appear to be centrally mediated since removal of

afferent input from the injected site has no effect on the

contralateral hypersensitivity in the repeated acid

injection model (Sluka et al., 2001). While the hypersensi-

tivity once developed is reversed by blockade of excita-

tory activity spinally or supraspinally (Skyba et al., 2002;

Hoeger-Bement and Sluka, 2003; Tillu et al., 2008; da

Silva et al., 2010a,b). Further the non-inflammatory pain

model shows a similar pharmacological management

profile to clinical treatment of fibromyalgia: reductions in
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pain and hyperalgesia by antidepressants, anticonvul-

sants, opioids, glutamate receptor antagonists, K+ chan-

nel openers, Na+ channel blocker and exercise, but not

NSAIDS (Sluka et al., 2002; Nielsen et al., 2004;

Bement and Sluka, 2005; Miranda et al., 2006;

Yokoyama et al., 2007a; Kim et al., 2009; Sharma et al.,

2010). Thus, the non-inflammatory pain models mimic

the clinical presentation of signs and symptoms observed

in fibromyalgia with widespread hyperalgesia, minimal

muscle tissue damage, alterations in central nociceptive

processing, greater hyperalgesia in females, and are

responsive to the same pharmacological and non-

pharmacological therapies.
AUGMENTED PAIN AND SENSORY
PROCESSING

Although clinical descriptions of individuals with

symptoms consistent with fibromyalgia have been

present for millennia, the first widely recognized

diagnostic criteria for fibromyalgia were published in

1990 (Wolfe et al., 1990). The diagnostic criteria require

individuals present with chronic widespread pain and at

least 11 out of 18 positive tender points located through-

out the body (Wolfe et al., 1990). Early investigators

established the tenderness in fibromyalgia was not con-

fined to tender points, but in fact was diffusely present

(Smythe, 1986; Gerecz-Simon et al., 1989;

Lautenbacher et al., 1994; Kosek et al., 1995). At the

same time, skeletal muscle was largely abandoned as a

source of the pain since imaging, biopsy, and metabolic

studies of muscle were generally unremarkable (Simms

et al., 1994; Wortmann, 1994; Vestergaard-Poulsen

et al., 1995). It was also well understood that other

non-pain symptoms such as fatigue, sleep and mood

problems were extremely common in fibromyalgia, and

were much more likely to all be caused by central rather

than peripheral factors (Yunus et al., 1981; Yunus et al.,

1982; Wolfe et al., 1990, 1995). Alterations in the

hypothalamic pituitary adrenal (HPA) axis and stress

response (see details below), as well as the autonomic

and cardiovascular system, suggest systemic effects that

may enhance or underlie the pain of fibromyalgia

(Crofford, 1996; Clauw and Chrousos, 1997; Pillemer

et al., 1997; Petzke and Clauw, 2000). Thus, there are

significant clinical data that suggest central nervous

system alterations in individuals with fibromyalgia. How-

ever, more recent studies, outlined below, using more

sophisticated analyses of peripheral factors have begun

to see some differences that might contribute to periph-

eral pathology (Shang et al., 2012; Srikuea et al., 2013;

Uceyler et al., 2013).

Since diffuse tenderness was a defining feature of

fibromyalgia more sophisticated quantitative sensory

testing (QST) methods were subsequently used to

determine whether the diffuse tenderness could be due

primarily to either psychological factors or neurobiologic

factors. These studies showed the following: (1)

fibromyalgia patients are more sensitive to pressure

anywhere in their body – tender points merely represent

regions where everyone is more tender (Kosek et al.,
1995; Wolfe, 1997; Petzke et al., 1999a; Graven-Nielsen

et al., 2000), (2) randomly applied pressure pain threshold

are not influenced by levels of distress of the individual,

whereas tender point count is (Petzke et al., 1999b,

2003a,b), (3) fibromyalgia patients were not any more

expectant or hypervigilant than controls, (4) Pressure pain

thresholds at any four points in the body are highly corre-

lated with the average tenderness at all 18 tender points

and control points (Petzke et al., 2001), (5) fibromyalgia

patients also display a decreased threshold to other nox-

ious stimuli, heat, cold, and electrical stimuli (Kosek and

Hansson, 1997; Sorensen et al., 1998; Carli et al., 2002;

Desmeules et al., 2003; Petzke et al., 2003a), and (6)

fibromyalgia patients are more sensitive to other sensory

stimuli such as sound (Gerster and Hadj-Djilani, 1984;

Dohrenbusch et al., 1997; Geisser et al., 2008). Thus,

fibromyalgia and related syndromes might represent

biologic amplification of all sensory stimuli gains, and

terms such as sensory sensitivity syndrome have been

suggested as a unifying pathophysiological theme

(Yunus, 2015).

Imaging studies confirmed altered central neural

processing in nociceptive pathways. Using functional

magnetic resonance imaging (fMRI), a noninvasive brain

imaging technique that assesses changes in relative

concentration of oxygenated to deoxygenated

hemoglobin, neuronal activation associated with a

noxious stimulus is subtracted from neuronal activation

seen during a control condition (often light touch).

Gracely et al. (2002)), initially used fMRI to show that

fibromyalgia patients had greater amounts of neuronal

activation in pain-processing regions of the brain than

control subjects when they were given the same amount

of pressure stimuli (see Fig. 1). These findings, confirmed

in later studies, are consistent with a left shift in stimulus–

response function noted with experimental pain testing

suggesting that most fibromyalgia patients have an

increased gain or ‘‘volume setting” in brain pain-

processing systems (Coghill et al., 2003; Giesecke

et al., 2004; Gracely et al., 2004). In fMRI studies, the

brain regions that most strongly encode for stimulus inten-

sity are the posterior insula and the secondary

somatosensory cortices, and these are the brain regions

where neuronal activation will be most accentuated in

individuals with diffuse hyperalgesia or allodynia (Wager

et al., 2013; Segerdahl et al., 2015). One of the main rea-

sons for subtle differences in fMRI findings in fibromyalgia

or other chronic pain studies is because differing stimuli of

differing intensity are used in the scanning session.

Results would be different if the same stimuli are used

for each participant or normalized to induce a certain level

of pain. Lastly, varying degrees of co-morbidities can also

influence imaging results. fMRI has also proved useful in

determining how comorbid psychological factors influence

pain processing in fibromyalgia. For example, Giesecke

and colleagues found that anterior insula and amygdala

activation were correlated with depressive symptoms,

consistent with these medial and prefrontal brain regions’

being involved in affective or motivational aspects of pain

processing. In contrast, the degree of neuronal activation

in more lateral structures, thought to be involved in the
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Fig. 1. This is the first fMRI study in fibromyalgia. Individuals with fibromyalgia (in red triangle) were given a low-intensity stimulus (shown in top left

panel) and this led to moderate pain (a 0–20 Gracely scale was used to rate pain intensity). Their fMRI BOLD responses were compared to controls

given approximately the same intensity stimulus (blue box) or a higher intensity stimulus that was necessary to cause the same amount of pain

(green circle). There was no significant neuronal activation from this low-intensity stimulus in the controls, but there was in fibromyalgia patients, and

these areas of neuronal activation overlapped significantly with the brain activation pattern of the controls given nearly twice as much pressure,

which was what was needed to cause comparable amounts of pain.
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sensory processing of pain were not associated with

levels of depressive symptoms or the presence or

absence of major depression (Giesecke et al., 2005).

These data are consistent with a plethora of evidence in

the pain field indicating that there are different regions

of the brain responsible for pain processing devoted to

sensory intensity and to affective aspects of pain sensa-

tion, and suggest that the former and latter are largely

independent of each other (Gracely et al., 2004; Lee

and Tracey, 2013; Tracey, 2013; Eippert and Tracey,

2014; Segerdahl et al., 2015).

A more recent advance is the use of fMRI to look at

the extent to which brain regions are connected to each

other. This analysis can be applied to fMRI data

acquired either when individuals are resting, termed

resting state analysis, or when they are performing a

task. The advantage of resting state analysis is that it

does not require giving the participant a stimulus, and

thus it potentially provides a window into measurement

of brain changes associated with chronic, ongoing

spontaneous pain. Napadow and Harris have used this

technique to demonstrate that individuals with

fibromyalgia show increased connectivity between the

default mode network, a network active when the brain

is resting and not performing any specific task, and the

insula, a known pronociceptive region of the brain
(Napadow et al., 2012; Segerdahl et al., 2015). Further-

more, in these studies the degree of increased connectiv-

ity was related to the intensity of ongoing, spontaneous

pain (Napadow et al., 2010). Several other groups have

shown a strong relationship between ongoing sponta-

neous pain, and hyperconnectivity between the insula

and the default mode network in other chronic pain condi-

tions (Letzen et al., 2013; Loggia et al., 2013). Other brain

regions may be hypo-connected in fibromyalgia and other

centralized pain states. For example, during a painful

stimulus connectivity is decreased between key

antinociceptive regions in the brainstem in individuals with

fibromyalgia, suggesting a defect in the normal descend-

ing inhibitory systems in this condition, as suggested by

findings of decreased conditioned pain modulation

(CPM) on QST (Jensen et al., 2012).

In summary, there is enhanced processing in areas in

involved in the sensory and affective processing of pain,

increases in resting state connections with the insula

which is involved in processing nociceptive stimuli, and

decreases in connectivity in antinociceptive regions in

people with fibromyalgia. As you will see below, these

altered processing in central sites are mimicked in

animal models, and are associated with changes in

neurotransmitters and receptors in both humans and

animal models of fibromyalgia.
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EVIDENCE FOR ENHANCED EXCITATION IN
THE CENTRAL NERVOUS SYSTEM

Human studies

A number of studies have examined for enhanced central

nervous system activity using temporal summation,

manifested as an increase in pain to a repeated

stimulation to the same noxious stimuli, which is thought

to be the human-analog of the neuronal phenomenon,

‘‘wind up,” observed in animals (Dickenson and Sullivan,

1987). These findings of temporal summation have been

noted in some fibromyalgia studies but not all (Price et al.,

2002, 2012; Staud et al., 2003; Staud et al., 2008).

There is more consistent evidence that excitatory

CNS neurotransmitters, involved in enhancing wind-up

and central sensitization, are elevated in fibromyalgia

and could play a pathogenic role. Four independent

studies show that patients with fibromyalgia have

approximately threefold higher concentrations of

substance P in the CSF compared with normal controls

(Russell et al., 1996; Russell, 1998; Schwarz et al.,

1999). However, SP antagonists have failed in clinical

trials in chronic pain states, casting questions about how

critical this neurotransmitter is in human pain transmis-

sion. In addition to substance P, elevations in CNS

glutamate levels in fibromyalgia, measured both in the

CSF (Sarchielli et al., 2007) and directly in the brain using

proton spectroscopy (H-MRS) are also found in individu-

als with fibromyalgia (Harris et al., 2009; Fayed et al.,

2010; Harris, 2010). In fact, using proton magnetic reso-

nance spectroscopy, glutamate levels in fibromyalgia

patients are also elevated in key pain-processing areas

of the brain such as the insula and change in response

to changes in both clinical and experimental pain when

patients are successfully treated (Harris et al., 2008;

Harte et al., 2013; Foerster et al., 2015). For example,

pregabalin decreases glutamatergic activity in the insula

and decreases functional connectivity between the default

mode network and insula in individuals with fibromyalgia

(Harris et al., 2013). In this study individuals with the high-

est levels of glutamate in the insula before treatment were

the ones most likely to respond to pregabalin, and

functional neuroimaging parameters purported to be

pathogenic in fibromyalgia, e.g. increased connectivity

between insula and default mode network, improved in

those individuals deriving benefit from pregabalin. There

is also strong evidence that subsets of fibromyalgia

patients respond to drugs known to be

N-methyl-d-aspartate (NMDA) glutamate receptor antag-

onists, which suggests that glutamatergic activity is

increased; unfortunately, these drugs, such as ketamine

or dextromethorphan, or memantine, are often not well

tolerated and thus not always practical for clinical use

(Graven-Nielsen et al., 2000; Staud et al., 2005; Cohen

et al., 2006; Olivan-Blazquez et al., 2014). As an alterna-

tive, a low glutamate diet has also been demonstrated to

reduce symptoms in people with fibromyalgia (Holton

et al., 2012).

Finally, these same excitatory CNS neurotransmitters

are also thought to play critical pathogenic roles in other

co-morbid symptoms seen commonly in fibromyalgia.
For example, when an individual with fibromyalgia

responds favorably to a gabapentinoid drug, they

typically note improvements in many other symptom

domains such as sleep, anxiety, and fatigue, suggesting

that in other brain regions these same neurotransmitter

imbalances lead to these co-morbid symptoms (Baidya

et al., 2011).

Animal studies

Central excitatory mechanisms involving the spinal cord,

brainstem and cortex have also been implicated in the

development of hyperalgesia in animal models of

non-inflammatory muscle pain induced by two injections

of acidic saline. In parallel to the human studies, animal

studies show enhanced release of glutamate in the

spinal cord and rostral ventromedial medulla (RVM) in

the non-inflammatory pain model (Skyba et al., 2005;

Radhakrishnan and Sluka, 2009) (Fig. 2). These studies

show enhanced glutamate release during the second

acidic saline injection, but not the first injection, in both

the spinal cord and the RVM. There are also increased

glutamate levels in the spinal cord after induction of the

model (Skyba et al., 2005). The increased glutamate in

response to the second injection corresponds to the

development of long-lasting widespread hyperalgesia that

occurs only after the second injection. These data

suggest there is increased excitability in the central

nervous system induced by a single low-intensity muscle

insult that sets up the nervous system to respond to the

same stimulus in an exaggerated way to a subsequent

stimulus.

Like people with fibromyalgia, the animal models are

responsive to blockade of NMDA receptors.

Development of hyperalgesia is delayed by blockade of

NMDA-glutamate receptors in the spinal cord during the

second injection but not the first (Skyba et al., 2002), and

reversed by blockade of NMDA glutamate receptors in

the spinal cord and RVM after induction of the model

(Skyba et al., 2002; da Silva et al., 2010a,b) (Fig. 2). The

NR1 subunit of the NMDA receptor plays a critical role in

neuron excitability and is required for formation of the

receptor as well as insertion into the synapse. In the spinal

cord, there is enhanced NR1 expression in spinothalamic

tract cells after induction of the non-inflammatory pain

model (Bement and Sluka, 2007). Over-expression of the

NR1 subunit of the NMDA receptor in the RVM, using an

FIV-expressing the cDNA to NR1, produces widespread

hyperalgesia similar to that observed in the

non-inflammatory pain model. On the other hand, down-

regulation of NR1 in the RVM, using FIV-expressing an

miRNA to NR1, prevents development of hyperalgesia in

the non-inflammatory pain model (Fig. 2). Phosphorylation

of the NR1 subunit can enhance the responsiveness of the

NMDA receptor making it more responsive to glutamate

and more likely to enter the synapse. In the

non-inflammatory pain model, there is enhanced phospho-

rylation of NR1 in the RVM that is modulated by effective

treatment (da Silva et al., 2010a,b; Sluka et al., 2013)

(Fig. 2). Together these data show a role of NMDA gluta-

mate receptors in the central nervous system in initiating

and maintaining widespread hyperalgesia.



Fig. 2. Central mechanisms involved in the non-inflammatory muscle pain model induced by repeated injections of pH 4.0 saline into the

gastrocnemius muscle. (A) The rostral ventromedial medulla (RVM) was examined since it sends projections to the spinal cord to facilitate

nociception. (B) Glutamate release in response to the first and second injection of acidic saline was examined by microdialysis of the RVM. The

graph shows an increase in glutamate in response to the second injection of pH 4.0, but not the first. HPLC trace shows amino acids measured in a

sample microdialysis sample. Reproduced from Radhakrishnan and Sluka (2009). (C) Local anesthetic microinjected into the RVM prior to the

second injection (arrow) prevents the development of muscle hyperalgesia to repeated acid injection 24 h later. Reproduced from Tillu et al. (2008).

(D) Microinjection of the NMDA receptor antagonist of AP5, dose dependently reverses the mechanical hyperalgesia of the paw induced by

repeated acid injection. Reproduced from da Silva et al. (2010a). (E) Repeated injections of acidic saline increase the phosphorylation of the NDMA

receptor, NR1 subunit (p-NR1). Images show the staining for pNR1 in the RVM in animals injected with pH 7.2 and those injected with pH 4.0. The

graph shows a significant increase in the number of positively labeled p-NR1 cells in the RVM. Reproduced from Sluka et al. (2013). (F, G)

Downregulation of the NR1 subunit, using an FIV vector expressing an miRNA to NR1, prevents the development of paw (F) and muscle (G)

hyperalgesia induced by repeated acid injection. Reproduced from da Silva et al. (2010b).
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Changes in intracellular messengers can produce

long-lasting effects by altering excitability of neurons

and enhancing gene transcription. Spinally, there are

increases in the transcription factor CREB

(cAMP-responsive element binding protein) and in

phosphorylation of CREB 24 h after induction of the

non-inflammatory pain model (Hoeger-Bement and

Sluka, 2003). Blockade of the cAMP-intracellular messen-

ger pathway reverses the hyperalgesia in the

non-inflammatory pain model, showing the functional role

of intracellular messengers in maintaining pain-like

behaviors. Further, the intracellular signaling molecule

ERK is phosphorylated in paraventricular thalamus and

the central nucleus of the amygdala in the non-

inflammatory pain model (Chen et al., 2010). The brain-

stem sites may drive some of the cortical changes since

there is enhanced postsynaptic excitatory transmission

from the parabrachial nucleus to the central nucleus of

the amygdala (Cheng et al., 2011). The hyperalgesia

and the increases in phosphorylation of ERK in the amyg-

dala are prevented by intracerebroventricular blockade of

T-type Ca2+ channels (T-channels)(Chen et al., 2010)

suggesting calcium channels may mediate some of these
changes. Thus, animal studies show alterations in central

excitability throughout the nociceptive system from spinal

cord to cortex in chronic widespread pain models.
ALTERATIONS IN CENTRAL INHIBITION ALSO
CONTRIBUTE TO UNDERLYING PATHOLOGY

IN FIBROMYALGIA

Animal and human studies

The central nervous system balances the amount of

excitation and inhibition. Normally there is an equal

balance to the amount of excitability and inhibition and

there is no pain. In people with chronic pain this balance

shifts so that there is enhanced excitation and reduced

inhibition resulting in pain. In healthy humans and

laboratory animals, application of an intense painful

stimulus produces generalized whole-body analgesia.

This analgesic effect, originally termed diffuse noxious
inhibitory control (DNIC) and more recently CPM, is

consistently reduced or even absent in groups of people

with fibromyalgia compared with healthy controls (Kosek

and Hansson, 1997; Julien et al., 2005). This phenomenon
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is also observed in a number of other chronic functional

pain states, including low back pain, TMJ, IBS, and head-

ache (Mayer and Gebhart, 1994; Kosek and Hansson,

1997; Lautenbacher and Rollman, 1997; Julien et al.,

2005; Wilder-Smith and Robert-Yap, 2007; Yarnitsky,

2010). Attenuated CPM is not found in all patients with

fibromyalgia or chronic pain but is considerably more com-

mon in these patients than in control subjects. DNIC (CPM

terminology for animals) activates a unique site in the

brainstem, the subnucleus reticularis dorsalis, but does

not involve other more well-known pain inhibitory sites

such as the PAG and RVM (De Resende et al., 2011). In

animals pharmacologically DNIC uses opioidergic, sero-

tonergic and noradrenergic receptors to produce analge-

sia (Yaksh, 1985; Le Bars and Villanueva, 1988; Roerig

et al., 1988; Le Bars et al., 1992).

In fibromyalgia, the available evidence suggests that

endogenous opioid tone is normal or even increased in

fibromyalgia. Individuals with fibromyalgia and chronic

low back pain have higher levels of CSF enkephalins

than controls (Baraniuk et al., 2004), and in a PET study

showed that of fibromyalgia patients who had never

received an exogenous opioid had reduced baseline

l-opioid receptor binding in multiple pain-processing

regions in the brain (Harris et al., 2007). In recent studies,

individuals with chronic pain conditions such as

osteoarthritis or chronic pelvic pain, that have higher

fibromyalgia scores on the 2011 fibromyalgia Survey Cri-

teria, which does not require performing a tender point

count, have markedly increased opioid consumption in

the immediate perioperative period (Brummett et al.,

2013; Janda et al., 2015). There is even emerging evi-

dence that blocking endogenous opioid release with the

use of low-dose naltrexone might be an effective treat-

ment strategy in some fibromyalgia patients (Younger

and Mackey, 2009). Together these data are consistent

with the hypothesis that there is increased release of

endogenous l-opioid ligands in fibromyalgia leading to

high baseline occupancy of the receptors, rather than a

deficiency of endogenous opioid release, which would

be expected if the decreased CPM has due to low

endogenous opioid tone.

In contrast, there is significant evidence that the

reduced CPM in fibromyalgia may result from decreased

endogenous serotonergic and noradrenergic activity.

The levels of the principal metabolite of norepinephrine,

3-methoxy-4-hydroxyphenethylene, are lower in the

cerebrospinal fluid (CSF) of fibromyalgia patients.

Similarly, patients with fibromyalgia have reduced serum

levels of serotonin and its precursor, tryptophan, as well

as reduced levels of the principal serotonin metabolite,

5-HIAA, in their CSF (Russell et al., 1992). In parallel, ani-

mal studies show, in the brainstem, reduced serotonin

release, enhanced expression of the serotonin trans-

porter, and alterations in serotonin receptors after periph-

eral nerve injury (Bobinski et al., 2015), and enhanced

expression of the serotonin transporter in the brainstem

in the non-inflammatory muscle pain model (Sluka,

unpublished observations). Further, depletion of biogenic

amines in rats, by reserpine, produces long-lasting wide-

spread muscle and cutaneous hyperalgesia in both male
and female rats. There is also an increase in immobility

time in the forced swim test, a test for depression which

a common comorbid symptom of fibromyalgia

(Nagakura et al., 2009).

The best evidence that low levels of these

neurotransmitters is involved in the pathogenesis of

fibromyalgia comes from clinical trials in which nearly any

intervention that simultaneously raises both serotonin

and norepinephrine levels (serotonin-norepinephrine

reuptake inhibitors [SNRIs] such as tricyclics, duloxetine,

milnacipran, tramadol) is efficacious in treating

fibromyalgia and related conditions (Clauw, 2014). QST

studies have shown that individuals with neuropathic pain

with the lowest CPM at baseline were most likely to

respond to duloxetine (Yarnitsky et al., 2012), whereas

neuroimaging studies showed that fibromyalgia patients

with the least baseline connectivity to the PAG were most

likely to respond to milnacipran (Schmidt-Wilcke et al.,

2014). In fact, many analgesic treatments are likely

working in part by restoring descending analgesic activity.

Similarly, individuals with fibromyalgia show enhanced

pain relief with transcutaneous electrical nerve stimulation

(TENS), which activates central inhibitory pathways, and

simultaneously show restoration of CPM (Dailey et al.,

2013). Both sleep and exercise likely work in part via

restoring analgesic activity (Sluka et al., 2013; Bobinski

et al., 2015). In fact, in animals with neuropathic pain,

exercise-induced analgesia is prevented by depletion of

serotonin, and exercise increases serotonin levels,

reduces the serotonin transporter expression, and

increases serotonin receptor expression in the brainstem

(Bobinski et al., 2015). Thus, non-pharmacological

treatments alter central nervous system function by

enhancing central inhibition pathways that are altered in

chronic widespread pain.
STRESS AND PSYCHOLOGICAL FACTORS
ARE INVOLVED IN THE DEVELOPMENT AND

SEVERITY OF FIBROMYALGIA

Human studies

Disparate stressors can trigger the development and

severity of functional pain conditions such as

fibromyalgia. In fact, both human and animal studies

have been examined to determine if stress has a

causative role in the development of chronic pain. In

humans, daily hassles and personally relevant stressors

seem to be more capable of causing symptoms than

major catastrophic events that do not personally impact

the individual. Two studies performed in the United

States just before and after the terrorist attacks of 9/11

illustrate this latter point. In one study, no difference in

pain complaints or other somatic symptoms was seen in

residents of New York and New Jersey who were

surveyed before 9/11 and then surveyed just following

the terrorist attacks on the World Trade Center (Raphael

et al., 2002). In another studyperformed in theWashington,

DC, region near thePentagon(another site of attack) during

the same time period, patients with fibromyalgia had no

worsening of pain or other somatic symptoms following
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the attack, compared to just before the attack (Williams

et al., 2003). On the other hand, changes in baseline func-

tion of the stress response, mainly the autonomic and neu-

roendocrine systems, may occur following a stressor

earlier in life. Early life stressors can predict which

symptom-free individuals without chronic pain are more

likely to develop chronic pain. This has been noted both

in population-based studies and in experiments in which

healthy young adults are deprived of regular sleep or exer-

cise (Glass et al., 2004; Ablin et al., 2013). In fact, people

fibromyalgia and related conditionsmaybemore likely than

non-affected individuals to have experienced physical or

sexual abuse in childhood (McBeth et al., 2001).

Because of this link between exposure to stressors

and the subsequent development of fibromyalgia, the

human stress systems have been extensively studied in

this condition. These studies generally show alterations

of the HPA axis and the sympathetic nervous system in

fibromyalgia and related conditions (Martinez-Lavin and

Hermosillo, 2000; Crofford, 2002). Although these studies

often note either hypoactivity or hyperactivity of both the

HPA axis and sympathetic nervous system in individuals

with fibromyalgia and related conditions, the precise

abnormality varies from study to study. Moreover, these

studies find abnormal HPA or autonomic function in only

a very small percentage of patients, and there is tremen-

dous overlap between patients and control subjects. The

inconsistency of these findings should not be surprising,

since nearly all of these studies were cross-sectional

studies which assumed that if HPA and/or autonomic dys-

function was found in fibromyalgia, it must have caused

the pain and other symptoms. Data now suggest a much

more complicated picture, and suggest that HPA and

autonomic abnormalities might be due to the pain

(McLean et al., 2006). Emerging data suggest that the

picture is a very complicated one, with good evidence

for a role of ‘‘sympathetic overdrive” (especially at night)

in a subset of fibromyalgia patients but not in others

(Light et al., 2009; Tchivileva et al., 2010). It is likely that

some of these neurobiologic alterations are shared with

other syndromes that are known to be associated with

HPA and/or autonomic function such as depression or

PTSD. In fact, this has led some who have superficially

reviewed the neurobiologic data regarding fibromyalgia

to conclude erroneously that this condition shares many

biologic underpinnings with depression.

Animal studies have directly tested if stress can

enhance the response to painful stimuli, and if painful

stimuli can alter the autonomic nervous system.

Induction of stress in animals (swim stress, cold stress)

can itself produce muscle and cutaneous hyperalgesia

that lasts for weeks after the stressor (Quintero et al.,

2000, 2003; Suarez-Roca et al., 2006; Nasu et al., 2010;

Nishiyori et al., 2011). On the other hand, milder stressors

(fatigue, sound stress) that do not produce hyperalgesia

on their own, can enhance and prolong the hyperalgesic

response to a subthreshold or mild noxious stimulus

(Yokoyama et al., 2007b; Khasar et al., 2009; Sluka and

Rasmussen, 2010; Sluka et al., 2012; Gregory et al.,

2013). The hyperalgesia responses can be local to the site

of noxious stimulus, but also widespread affecting the
contralateral limb, or viscera (Yokoyama et al., 2007b;

Green et al., 2011a,b; Gregory et al., 2013), and are more

pronounced in female mice (Sluka and Rasmussen, 2010;

Gregory et al., 2013). Further animals show increases in

the anxiety index on the elevated plus maze suggesting

animals show a co-morbid anxiety (Green et al., 2011b).

On the other hand, induction of chronic widespread pain

in animals can alter autonomic function with decreased

baroreflex sensitivity, increased blood pressure variability

and decreased heart rate variability (Oliveira et al., 2012;

Sabharwal et al., 2015). Together these symptoms of

widespread hyperalgesia (paw, viscera, jaw), and anxiety

mimic clinical symptoms and co-morbidities in fibromyal-

gia who have widespread pain, and a higher incidence of

IBS, temporomandibular disorder, autonomic dysfunction,

and anxiety.

Can lead to increases in plasma cortisone levels

(Nishiyori et al., 2011) or increased activity of cate-

cholamine synthesizing enzymes in the adrenal medulla

(Khasar et al., 2008, 2009) that results in increased

plasma levels of epinephrine for at least 28 days after

the last exposure to sound stress (Khasar et al., 2009)

suggesting that a long-lasting stress-induced alteration in

the animal persists well beyond exposure to the starting

stress factor. Decreasing expression of interleukin-6

receptor (IL-6) on primary afferent neurons prevents the

enhanced response to noxious stimuli (Dina et al.,

2011a) suggesting alterations in cytokines and the HPA

axis may underlie stress-induced enhancement of hyper-

algesia. Animals exposed to stressors also show changes

in the spinal cord in these models with enhanced c-fos

expression in response to formalin, decreased basal and

evoked release of the inhibitory neurotransmitter GABA,

decreases in mu-opioid agonist antinociception enhanced

basal and evoked release of glutamate (Omiya et al.,

2000; Quintero et al., 2003, 2011; Suarez-Roca et al.,

2008), suggesting both enhanced central excitability and

reduced central inhibition. In fact, stress-induced

hyperalgesia is reduced by spinal blockade of substance

P, calcitonin-gene-related peptide (CGRP),

NMDA-glutamate receptors and neurokinin-1 receptors,

all substances implicated in neurotransmission of pain

(Satoh et al., 1992; Kuraishi and Satoh, 1993; Okano

et al., 1995; Sluka et al., 2012). Supraspinally, cold-

stress induces alterations in the serotonergic system with

reductions of both serotonin (5-HT) and 5-hydroxy indo-

leacetic acid (5-HIAA) levels in supraspinal regions such

as hypothalamus, thalamus, midbrain, pons plus medulla

oblongata in repeatedly cold-stressed rats (Hata et al.,

1991). Thus, stress in combination with muscle insult pro-

duces widespread pain, is enhanced in females and alters

central nervous system processing of nociceptive stimuli.
ALTERATIONS IN NOCICEPTORS MAY
UNDERLIE SOME OF THE PATHOLOGY IN

FIBROMYALGIA

Human studies

While there is a general hypothesis that fibromyalgia is a

‘central pain disorder;’ several reports show evidence of

peripheral nerve abnormalities in people with
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fibromyalgia. Specifically several studies report reduced

numbers of epidermal nerve fibers in skin biopsies in

people with fibromyalgia compared to healthy controls

(Oaklander et al., 2013; Uceyler et al., 2013; Caro and

Winter, 2014; Doppler et al., 2015). Individuals with

fibromyalgia also have increased scores on neuropathic

pain questionnaires, alterations in cold and warm

detection thresholds measured by QST, and impaired

pain-evoked responses (Oaklander et al., 2013; Uceyler

et al., 2013). Rice and colleagues compared those with

fibromyalgia to healthy controls and show in skin biopsies

over the hypothenar eminence there is an increased size

and innervation of arteriole venule shunts (AVS) (Albrecht

et al., 2013). Using microneurography, Serra and

colleagues show that mechanically-insensitive C-fibers

show enhanced spontaneous activity and sensitization

to mechanical stimulation (Serra et al., 2014). Further

injection of lidocaine into muscles of people with

fibromyalgia significantly reduced local hyperalgesia at

the site of injection, hyperalgesia outside the site of injec-

tion, and decreased pain by 38% (Staud et al., 2014).

Thus, peripheral factors may underlie some of the pain

experienced by people with fibromyalgia. However, it is

not clear if these factors are the primary cause or

secondary to the condition itself.

While early studies did not see consistent changes in

muscle tissue in individuals with fibromyalgia, more

recent studies have begun to examine the muscle in

more detail. As in earlier studies, there are no

differences in percent of Type I or Type II fiber types, the

mean cross sectional area between groups, or the mean

capillary density, between those with fibromyalgia and

healthy controls (Srikuea et al., 2013). However, individu-

als with fibromyalgia showed fatigue resistance was

strongly correlated with the size of Type I muscle fibers

and hemoglobin oxygenation, and those with the highest

percentage of Type I muscle fibers recovered strength

most effectively, and correlated with capillary density.

The authors suggest these measures might relate to the

fatigue of fibromyalgia. Furthermore there are alterations

in muscle oxygen utilization in individuals with fibromyalgia

(Shang et al., 2012). Interestingly, there are no differences

in performance or muscle fatigue measures in individuals

with fibromyalgia compared to healthy controls, yet these

women self-report enhanced fatigue and increased pain

to a given fatiguing exercise task (Shang et al., 2012;

Dailey et al., 2015). The differences in self-reported fatigue

have generally thought to be of central origin, in part

because this symptom often responds to CNS-acting

drugs, but more recent data suggests that changes in

the muscle tissue itself might contribute to this symptom.
Animal studies

In humans, intramuscular infusion of an acidic solution

(pH 5.2) into the tibialis anterior muscle of the leg

produces local muscle pain at the site of infusion and

referred pain at the ankle (Frey Law et al., 2008). The acid

infusion also results in decreased pressure pain thresh-

olds at the site of infusion and in the referred pain area

at the ankle showing that infusion of acid can produce
primary and secondary hyperalgesia. These data suggest

decreases in pH can contribute to the generation of

referred hyperalgesia and pain. Decreases in pH, protons,

can activate acid sensing ion channels (ASICs) on the

peripheral terminals of nociceptors (for review see

Abdelhamid and Sluka, 2015; Sluka and Gregory,

2015). Indeed ASIC3 is located on sensory neurons, sen-

sory neurons innervating skeletal muscle express more

ASIC3 than those innervating the skin, and 80% of these

ASIC3-positive skeletal muscle afferents co-express the

nociceptive marker CGRP (Price et al., 2001; Molliver

et al., 2005; Walder et al., 2011). As outlined above,

two injections of acidic saline into a single gastrocnemius

muscle produce hyperalgesia not only at the site of injec-

tion but also in the contralateral muscle and viscera. Phar-

macological blockade of ASIC3, with APETx2, at the first

or second injection, prevents the development of the

widespread long-lasting hyperalgesia (Karczewski et al.,

2010; Chen and Chen, 2014; Gregory et al., 2015b), sug-

gesting activation of ASIC3 on nociceptors innervating

muscle is important for development of widespread hyper-

algesia (Fig. 3). Similarly, the hyperalgesia in the

repeated acid model, or the fatigue-induced model,

requires activation of acid sensing ion channel 3 (ASIC3)

since the hyperalgesia does not in ASIC3 knockout mice

(Sluka et al., 2003; Gregory et al., 2015a) (Fig. 3). How-

ever, when an ASIC antagonist is given after the develop-

ment of hyperalgesia, there is no effect on the

hyperalgesia, suggesting that once developed the hyper-

algesia is independent of nociceptor activation by acidic

pH (Karczewski et al., 2010; Gautam et al., 2012). On

the other hand, in the reserpine-model of hyperalgesia

there is increased expression of ASIC3 mRNA in DRG,

the hyperalgesia is reversed by blockade of ASICs sys-

temically with APETx2, and there are enhanced mechan-

ical responsiveness of C-fibers in both the skin and

muscle (Taguchi et al., 2015), suggesting that peripherally

located ASIC3 could modulate widespread hyperalgesia.

In fact the enhanced responsiveness of C-fibers in the

skin is similar to that observed in individuals with

fibromyalgia described above, and thus suggests ASIC3

could modulate the altered peripheral sensitivity.

In the non-inflammatory pain model, hyperalgesia is

enhanced in mice that do not express the substance P

and neurokinin A (tac1�/�), and activation of the NK1

receptor at the time of induction of the model prevented

the long-lasting hyperalgesia. This is likely a result of

inhibition of acid currents and is supported by the fact

that substance P is found in ASIC3-expressing neurons

and inhibits acid-induced currents (Lin et al., 2012). Thus,

by inhibiting substance P, could enhance neuronal

excitability through ASIC3 and enhance pain by working

peripherally on muscle afferents. This is directly in

contrast to its actions in other tissues, and in the central

nervous system and may explain part of the failure of

substance P drugs on pain.

Nerve growth factor (NGF) is another potential

mediator that could be involved in chronic muscle pain.

It is synthesized in skeletal muscle (Amano et al.,

1991), and its synthesis increases when the muscle is

pathologically altered (Wu et al., 2009; Hayashi et al.,



Fig. 3. The fatigue-induced model and the role of local manipulation of ASICs and macrophages. (A) The model is induced by repeated injections of

pH 5.0 saline in combination with electrically induced fatigue of the gastrocnemius muscle. Muscle hyperalgesia is assessed by examining the

withdrawal threshold to force applied by a pair of tweezers. (B) Example of the force output of the muscle during the 6 min fatiguing task. There is

approximately a 50% decrease in force representing muscle fatigue. (C) Muscle withdrawal thresholds after pH 5.0 injections with the fatigue

stimulus show a significant decrease (red) when compared to thresholds before, or to thresholds from those that received pH 5.0 alone (green) or

fatigue alone (blue). (D) There is no decrease in withdrawal thresholds in the fatigue-induced hyperalgesia model in ASIC3 knockout mice (red)

when compared to ASIC1 knockout mice (blue) or wild-type controls (green). (E) Blockade of ASIC3 results in a dose-dependent blockade of the

hyperalgesia induced in the fatigue-induced pain model. (F) The fatigue stimulation increases the number of macrophages in muscle when

compared to naı̈ve animals that do not receive the fatigue stimulation. (G) Removal of macrophages with clodronate liposomes locally in the muscle

prevents the hyperalgesia in the fatigue-induced pain model (red) when compared to control liposomes (blue). Reproduced from Gregory et al.

(2013, 2015b).
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2011). Injection of NGF into the masseter and anterior

tibialis muscle in humans results in a delayed onset of

muscle hyperalgesia, but does not result in spontaneous

pain (Svensson et al., 2003). Similarly, intramuscular

NGF results in development of hyperalgesia in response

to a single injection. This hyperalgesia is abolished by a

systemic block of NMDA glutamate receptors, indicating

a role for glutamate in the effects of NGF. Peripherally,

approximately 60% of nociceptive group IV muscle

afferents in rats are excited by NGF and NGF sensitizes

nociceptors to peripherally applied noxious stimuli

(Hoheisel et al., 2007; Murase et al., 2010; Rukwied

et al., 2010). Interestingly, NGF produces central

sensitization of dorsal horn neurons (Hoheisel et al.,

2007). A prior injection of NGF (1 day before) results in

a much stronger effect from a second NGF injection with

significant increases in the number of neurons responding

with action potentials, increased frequency of firing, and

enhanced response to noxious stimuli. Thus,

NGF-induced input changes the responsiveness of dorsal

horn neurons to electrical stimulation within minutes,

inducing sensitization to both noxious and innocuous

intensities of mechanical stimulation.
ALTERED IMMUNE FUNCTION MIGHT ALSO
CONTRIBUTE TO SOME OF THE PATHOLOGY

IN FIBROMYALGIA

Animal and human studies

Chronic systemic inflammation has been suggested to

underlie the pathology in fibromyalgia and other chronic

pain conditions (Slade et al., 2011; Sturgill et al., 2014;

Mendieta et al., 2016). Immune cells are highly plastic,

can alter levels of cytokines systemically or locally in tis-

sue, and secrete inflammatory or anti-inflammatory

cytokines based on their phenotype. In support, people

with fibromyalgia show enhanced circulating inflammatory

cytokines and enhanced evoked-release of inflammatory

cytokines from circulating immune cells (Bote et al.,

2013a,b, Mendieta et al., 2016). However, the literature

on cytokines in fibromyalgia has been variable with some

studies showing increases, some decreases, and some

unchanged. Based on systematic reviews in people with

fibromyalgia, there are consistent increases in IL-1Ra,

IL-6 and IL-8 in serum (Uceyler et al., 2011), but mixed

results for evoked-release of cytokines from peripheral

blood mononuclear cells (PBMCs) (Menzies and Lyon,

2010). These reviews cite several limitations including
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low sample size, use of a mixed population of PBMCs,

different stimulants to evoke cytokine release, and

different analysis methods.

It is well established that the immune system, and

factors released from immune cells such as cytokines

play a critical role in the generation of both acute and

chronic pain. Evidence for mast cells, neutrophils,

macrophages, dendritic cells and T-cells show their

involvement in a variety of pain conditions (Dawes et al.,

2013). In animals, recent work has shown that resident

macrophages located in muscle contribute to the

development of chronic widespread muscle pain. For

example removal of macrophages at the site of acid injec-

tion, with local injection clodronate liposomes, prevents

the development of exercise-induced hyperalgesia

(Gregory et al., 2015b) (Fig. 3). On the other hand, pro-

inflammatory cytokines, interleukins (IL-1b, IL-6) and

tumor necrosis factor (TNFa), can activate and sensitize

nociceptors, produce pain in human subjects, and

produce hyperalgesia in animals. Furthermore, the inflam-

matory cytokine IL-6 primes the muscle to respond in a

more long-lasting manner to a subsequent insult,

intramuscular prostaglandin-E2 when compared to naive

animals injected with prostaglandin-E2 (Dina et al.,

2008), and the inflammatory cytokines may also underlie

the stress-induced enhancement of muscle pain

described above (Dina et al., 2011b). Another potential

source of such cytokines is adipose tissue, and there

are many studies now beginning to suggest that

widespread or multifocal pain is more common in obese

individuals (Cicuttini and Wluka, 2016), and obese

animals show enhanced nociceptive responses (Rossi

et al., 2013a,b). Thus, pro-inflammatory cytokines might

play a role in the generation and enhancement of chronic

muscle pain including fibromyalgia.
SUMMARY

Although fibromyalgia and other chronic overlapping pain

conditions have historically defied explanation based on

‘‘peripheral” theories of pain, it is now clear that these

disorders have significant alterations in central nervous

system factors leading to augmented pain and sensory

processing. There may also be alterations in the

immune system leading to an enhanced inflammatory

state, and there are a number of other behaviors such

as sleep dysfunction, mood difficulties, and fatigue that

contribute to the pain and dysfunction in individuals with

fibromyalgia. These same findings have been noted in

animal models that lead to diffuse hyperalgesia and

allodynia, and many of these same behaviors, are not

characterized by ongoing peripheral nociceptive input.

Emerging evidence suggests that some of the

pathobiology in fibromyalgia may involve altered

nociceptor sensitivity, and studies in some animal

models of fibromyalgia indeed suggest altered

nociceptor sensitivity is important for the induction of

hyperalgesia and potentially the maintenance. However

other animal models are independent of nociceptor input

and suggest that the central nervous system maintains

the hyperalgesia. We suggest that fibromyalgia is a
heterogenous condition which likely has multiple

potential etiologies. However, there is strong evidence

that there is a central nervous system component to the

pain and associated symptoms that occurs in the

majority of individuals with fibromyalgia.

It is important to not think of fibromyalgia as ‘‘yes” or

‘‘no” but rather as the end of a continuum. This

continuum on the one end is a purely peripherally driven

painful condition and responsive to treatments aimed at

the periphery. The other end of the continuum is when

pain is nearly completely the result of altered central

augmentation. This central augmentation manifests as

enhanced sensitivity to sensory stimuli, widespread

pain, fatigue, sleep dysfunction, among other symptoms.

In fact, many clinical studies suggest that various

individuals with chronic pain, including fibromyalgia, are

at various points in this continuum, and thus some may

have a stronger peripheral than central components,

some mixed peripheral and central components, and

many have stronger central components. The further

individuals are on this continuum – the more pain and

other related symptoms they will experience for a given

amount of nociceptive input.

It is important to understand where individuals with

chronic pain are on this continuum since the most

effective pharmacological treatments for acute

nociceptive pain do not work for centralized pain. Once

centralized, pharmacological and non-pharmacological

treatments aimed at bringing these CNS neurotransmitter

systems into balance, as well as therapies aimed at

co-morbid symptoms need to be used. Therapies that

focus on restoring sleep, and reducing stress and anxiety

are critical to making a significant impact on pain and

function need to be considered for all individuals. It is

important to understand both the peripheral and central

contributions in individuals with chronic pain so that

therapies can be targeted toward both peripheral and

central components, as well as accompanying co-morbid

conditions such as anxiety.
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