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Adaptive evolution has provided us with a unique set of characteristics that define us as humans, including
morphological, physiological and cellular changes. Yet, natural selection provides no assurances that adaptation
is without human health consequences; advantageous mutations will increase in frequency so long as there is a
net gain in fitness. As such, the current incidence of human disease can depend on previous adaptations. Here, I
review genome-wide and gene-specific studies in which adaptive evolution has played a role in shaping human
genetic disease. In addition to the disease consequences of adaptive phenotypes, such as bipedal locomotion and
resistance to certain pathogens, I review evidence that adaptive mutations have influenced the frequency of
linked disease alleles through genetic hitchhiking. Taken together, the links between human adaptation and
disease highlight the importance of their combined influence on functional variation within the human
genome and offer opportunities to discover and characterize such variation.
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1. Introduction

One of the initial motivations for sequencing the chimpanzee
genome was to help define how humans are different from their
primate relatives (Olson and Varki, 2003). Not only are human–
chimpanzee genetic differences relevant to understanding human
adaptations, but they are also relevant to understanding differences
in the prevalence and susceptibility to disease (Varki, 2000; O'Bleness
et al., 2012). While documentation of disease in chimpanzees is scant
erms of the Creative Commons
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in comparison to humans, especially for wild chimpanzees, a number
of diseases are notably more common in humans (Varki, 2012). The
incidence of such diseases cannot only be related to dietary or environ-
mental differences, but can also be related to genetic changes that have
occurred during evolution. For those genetic changes driven by positive
“Darwinian” selection, there is no guarantee that adaptation is without
health consequences, but only that there is a net gain in fitness, as mea-
sured by survival and reproduction.

With completion of the human and chimpanzee genomes and com-
prehensive surveys of human polymorphism, numerous genes and ge-
nomic regions exhibit evidence of positive selection along the human
lineage (Sabeti et al., 2006; Akey, 2009). Changes along the human
lineage that bear evidence of positive selection include chromosomal
rearrangements, duplications/deletions of genes, and point mutations
in both coding and noncoding sequences (Kehrer-Sawatzki and Cooper,
2007; O'Bleness et al., 2012). Evidence of adaptive evolution is generally
based on a pattern of non-neutral molecular evolution indicative of
ed.
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Fig. 1. Emergence of the cephalopelvic disproportion in humans as compared to chimpan-
zees. The human and the chimpanzee maternal pelvis are shown (ventral side up) along
with the neonatal head as it passes through the inlet, midplane and outlet of the pelvis.
Reprinted © Wiley. Used with permission from JohnWiley and Sons.
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positive selection or a unique evolutionary history in humans (Fay and
Wu, 2003; Harris and Meyer, 2006). In most instances, evolutionary
changes within such genes have not been associated with any pheno-
typic consequence. Even so, many genes that have been influenced by
positive selection are known to contribute to human disease (Bakewell
et al., 2007), and a composite analysis of 27 studies of positively selected
genes found an enrichment for genes expressed in the central nervous
systemandwith synapse-related functions (Huang et al., 2013). Further-
more, positive selected genes are often relevant to understanding disease
susceptibility and its genetic basis (Crespi, 2010; Quintana-Murci and
Barreiro, 2010). Of particular relevance are those human diseases
which are not well recapitulated in animal models, e.g. normal parturi-
tion and pretermbirthwhere a fall in circulating levels of the pregnancy
hormone progesterone is responsible for the initiation of labor in mice
but not humans (Ratajczak et al., 2010).

In this review, I describe variousmechanisms bywhich adaptation is
known to influence human disease. First, I describe adaptations where-
by new or substantially altered phenotypes encumber us with new or
an increased disease burden. Then I cover cases of balancing selection
whereby changes in a gene can provide a benefit under some circum-
stances but impart a health cost under others. I also describe evidence
for linkage effects whereby adaptive mutations can increase the fre-
quency of disease mutations through hitchhiking. Finally, I describe
genes that have evolved under positive selection along the human line-
age and the impact of these changes on human health. Taken together,
there are an increasing number of examples that point to a direct
relationship between adaptation and disease, highlighting the value of
incorporating adaptive evolution into our understanding of human
disease.

1.1. Phenotypic divergence and disease consequences

Adaptive phenotypes can often be directly linked to commonhuman
health problems. One of themost dramatic differences between humans
and other primates is bipedal locomotion. Bipedalism requires upright
posture and results in an increased pressure on various structures that
can give rise to a number of health problems, such as hernias, hemor-
rhoids, varicose veins, and back, hip and knee problems, e.g. osteoar-
thritis (Jurmain, 2000; Varki, 2012). Another major difference lies in
humans' increased mental faculty, which may be linked to the preva-
lence of mental disorders, such as schizophrenia (Horrobin, 1998) and
Alzheimer's disease (Varki, 2000).While the incidence ofmajor psycho-
ses, depression, phobias, obsessive–compulsive disorder, and mental
retardation is difficult or impossible to compare with other species,
the high incidence of mental disease compared to other diseases has
generated considerable interest in various evolutionary explanations
(Keller and Miller, 2006).

Perhaps one of the most clear health consequences of human
adaptation is our cephalopelvic disproportion. The combination of
our larger brain size with amore narrow pelvis, which facilitates biped-
al locomotion, has greatly complicated labor and delivery (Rosenberg
and Trevathan, 2002).While the chimpanzee neonatal cranium can eas-
ily pass through the pelvis, the head of human neonates must twist and
compress as it passes through the pelvis (Fig. 1). In modern humans,
unassisted childbirth is exceedingly rare, and with advent of modern
medicine mortality rates associated with childbirth are currently 40–
50 times lower than even 70 years ago (Loudon, 2000). The dramatic
cephalopelvic changes that have occurred during human evolution in
comparison to changes in gestation length is one line of evidence
supporting the hypothesis that humans have evolved to give birth
earlier than other primates, at least on a developmental timescale
(Montagu, 1961; Plunkett et al., 2011). The abundance of altricial
characters in human neonates compared to neonates of other pri-
mates, such as skull development (Penin et al., 2002), emergence
of teeth (Holly Smith et al., 1994) and vision (Boothe et al., 1985),
lends further support to this hypothesis. Being born early, and
especially too early, might alleviate the cephalopelvic disproportion,
but also raises a different set of health challenges faced by neonates,
e.g. ear and sinus infections (Bluestone, 2005; Behrman and Butler,
2006).

1.2. Balancing selection and disease alleles

A number of human disease alleles have been associated with a
fitness advantage under certain circumstances. In such cases, the
disease allele can become more common than in the absence of the
fitness advantage. Many examples are associated with resistance to
infection. The classic example is mutations in HBB, which in hetero-
zygous form confer resistance to malaria but as homozygotes cause
sickle-cell anemia. Resistance to malaria is also associated with mu-
tations that cause G6PD deficiency, thalassemia (HBA and HBB) and
other erythrocyte defects (SLC4A1 and DARC) (Kwiatkowski, 2005).
Because many other loci have been associated with resistance to
malaria (Driss et al., 2011), the strong selective pressure for malaria
resistance may have influenced other, as yet unknown, disease alleles.

Another compelling though complex example of balancing the pos-
itive and negative effects of human polymorphism can be found at the
Major Histocompatibility Complex (MHC). The MHC locus encodes
cell surface glycoproteins important to the immune system's fight
against infection and is one of the most variable regions within the
humangenome. Bothpopulation genetic and functional studies indicate
that the high levels of diversity at the MHC locus are maintained by
balancing selection (Hughes and Yeager, 1998). Coincident with one
of the strongest signals of balancing in the human genome, the MHC
locus also contains the largest number of disease associations within
the human genome (de Bakker and Raychaudhuri, 2012). Many of the
associates are related to inflammatory and autoimmune diseases, such
as multiple sclerosis, rheumatoid arthritis, psoriasis, and celiac dis-
ease. Thus, there are potentially many alleles that increase resistance
to certain pathogens but increased susceptibility to other pathogens
or increased risk of disease unrelated to infection. Although linkage
disequilibrium makes it difficult to tease apart genotype–phenotype
associations as well as pinpoint the evolutionary signals of selection, the
historical influence of selection at theMHC locus is compelling and likely
includes both direct effects (directional or balancing selection) as well as



Fig. 2. Interference between positive and negative selection. Positive selection increases
the frequency of advantageous mutations (red) and any linked neutral alleles (black).
Negative selection eliminates deleterious mutations (blue) and any linked neutral alleles.
Linkage can cause interference between positive and negative selection. If positive selec-
tion is stronger than negative selection, positive selection can fix a linked deleterious
mutation, thereby interfering with negative selection. In the presence of recombination,
a deleterious mutation can also increase in frequency due to hitchhiking but is not neces-
sarily fixed.
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indirect effects (hitchhiking, as described in Section 1.3) ondisease alleles
(van Oosterhout, 2009; Shiina et al., 2006).

Althoughmanyother examples of balancing selection exist, e.g. Leffler
et al. (2013), their association with disease alleles is not often known.
However, a number of examples have accumulated. These examples
include Celiac disease and bacterial infection at SH2B3 (Zhernakova
et al., 2010), kidney disease and resistance to African sleeping sick-
ness at APOL1 (Rosset et al., 2011), Crohn's disease and selection at
NOD2 and other loci (Nakagome et al., 2012; Cagliani et al., 2013),
and either direct or indirect selection on a hemochromatosis allele
at HFE (Distante et al., 2004). Even when phenotype associations
are present, it can be difficult to know how balancing selection has
led to an increased frequency of disease alleles. For example, a 32-
bp deletion in CCR5 is associated with resistance to HIV infection
(Dean et al., 1996), but susceptibility to West Nile Virus infection
(Glass et al., 2006).While CCR5 also exhibits a strong signal of balancing
selection and the CCR5 deletion allele has rapidly increased in frequency
(Bamshad et al., 2002), the age of the deletion predates the emergence
of HIV resistance as an important component of fitness (Novembre
et al., 2005), suggesting a role for some other selective agent, such as
smallpox (Galvani and Novembre, 2005).

1.3. Hitchhiking and interference between advantageous and deleterious
alleles

As populations evolve, natural selection strives to increase the
frequency of advantageous mutations and decrease the frequency
of deleterious mutations (Fig. 2). Because of linkage, there are nu-
merous opportunities for interferences between advantageous and
deleterious mutations (Hill and Robertson, 1966). Thus, a strongly
advantageous mutation has the potential to increase the frequency
of linked deleterious mutations (Fig. 2). While the frequency of in-
terference between advantageous and deleterious mutations is not
known, recent work suggests that interference is common enough
to have influenced disease alleles in humans.

Numerous regions in the human genome have been found to exhibit
evidence of positive selection in the recent past. In a review of 18
genome scans for selection, 5110 regions covering 14% of the genome
were found in one or more scans, 14% of which were found in more
than one study (Akey, 2009). Furthermore, the composite hitchhiking
signal based on all amino acid substitutions fixed along the human
lineage suggests thatmany of these substitutions generated hitchhiking
effects over small genomic regions, ~100 kb (Hernandez et al., 2011).
The strength of positive selection is important because it determines
the size of the region influenced by hitchhiking and whether it can
overwhelm the influence of selection against any linked deleterious
alleles (Hartfield and Otto, 2011). As such, strongly advantageous
mutations have the potential to increase the frequency of many del-
eterious alleles.

While hitchhiking may only influence certain genomic regions,
deleterious mutations are a pervasive feature of all functional elements
within the human genome. Estimates of the number of deleterious mu-
tations range from 200 to 800 per individual, based on evolutionary
criteria (Fay et al., 2001; Chun and Fay, 2009; Abecasis et al., 2012).

The extent to which there is interference between positive and
negative selection depends on the rate of recombination.When recom-
bination is low or absent, the possibility of interference is increased. As
expected under a model of interference, the abundance of deleterious
mutations is enriched relative to neutral variation in regions of low
recombination in humans (Chun and Fay, 2011). While background
selection against deleterious mutations can also explain this observa-
tion, an enrichment of deleterious to neutral alleleswas also found in re-
gions of high recombination baring signatures of hitchhiking (Chun and
Fay, 2011). In addition to alleles predicted to be deleterious, hitchhiking
regions are also enriched for clinical variants influencing auto-immune,
energy metabolism and mental, neurological or neurodevelopmental
disorders. However, there is no association between GWAS hits and
hitchhiking regions (Hindorff et al., 2009; Chun and Fay, 2011). The
absence of an association with GWAS hits may be due to lower power
to detect associations in regions with little variation remaining after
hitchhiking, neutrality of many GWAS variants (Dudley et al., 2012),
or some form of heterogeneity. For example, some associations with
hitchhiking have been found for subsets of GWAS data. There is an asso-
ciation between positive selection and GWAS hits within conserved
gene clusters (Preuss et al., 2012). Also, positive selection is associated
with susceptibility alleles for type 1 diabetes, but protective alleles for
Crohn's disease (Corona et al., 2010). In another study, the risk alleles
at inflammatory disease loci were found associated with positive selec-
tion and eQTL (Raj et al., 2013). However, some of these associations
may not be related to linkage effects but rather direct positive effects
of the disease alleles. For example, the increase in frequency of type 1
diabetes susceptibility alleles may be caused by historical periods of
famine, as held by the thrifty genotype hypothesis (Neel, 1962).

In addition to genome-wide studies, there are a number of disease
alleles at specific genes that are thought to have been influenced by
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positive selection via hitchhiking. A 250 kb haplotype associated with
inflammatory bowel disease is associated with an allele of OCTN1 that
has increased in frequency due to hitchhiking and provides increased
absorption of ergothioneine (Huff et al., 2012). A pleiotropic 1.6 Mbp
haplotype associated with a number of common diseases has increased
in frequency in European populations consistent with positive selection
(Soranzo et al., 2009). As a final example, a common inversion polymor-
phism has spread to high frequency in Europeans and has been associ-
ated with a number of diseases (Stefansson et al., 2005; Steinberg
et al., 2012). The increased risk of microdeletions associated with the
inverted haplotype illustrates another mechanism by which selection
can influence disease incidence: changes in mutation rate. While not
covered in this review, there are excellent examples of an increased
rate of deletions or other types of mutations associated with prior
segmental duplications or chromosomal changes (Mefford and Eichler,
2009; Stankiewicz and Lupski, 2010), some of which exhibit evidence
for positive selection (Samonte and Eichler, 2002; Gokcumen et al.,
2011). Further evidence for an increased mutational burden can be
found in a number of human-specific genes which are known to cause
disease when mutated (Cooper and Kehrer-Sawatzki, 2011).

1.4. Genes that have evolved under positive selection during human history

In contrast to the clear consequences of many adaptive pheno-
types, the health consequences of genetic changes that have been
fixed by positive selection aremore difficult to come by. This can largely
be attributed to the difficulty of linking signals of positive selection, of
which there are many, to adaptive and disease phenotypes. Even when
a phenotype is suspected, our ability to determine whether certain sub-
stitutions between species increase our susceptibility to disease is often
limited. There are, however, a few striking examples that illustrate the
potential importance of historical adaptations to current health prob-
lems along with a number of functional enrichments found present
within rapidly evolving gene sets.

With the completion of the chimpanzee genome, numerous sta-
tistical tests of neutrality have been used to detect coding or noncod-
ing regions that have evolved under positive selection along the
human lineage. While the signal of selection can be difficult to distin-
guish from relaxed constraint and even neutral evolution, a number of
gene ontology enrichments have been found. Themost common classes
of genes are those involved in sensory perception, immunity, and repro-
duction (Clark et al., 2003; Nielsen et al., 2005; Kosiol et al., 2008). How-
ever, positively selected genes have also been found to associate with
schizophrenia and other psychiatric disorders (Crespi et al., 2007;
Moalic et al., 2010), and apoptosis (da Fonseca et al., 2010). However,
many of these same categories are enriched in genes rapidly evolving
along the chimpanzee lineage and so may represent a general class
of rapidly evolving proteins rather than classes specific to humans
(Arbiza et al., 2006). In the case of noncoding sequences, rapidly evolv-
ing regions have been found to be enriched nearby genes that function
in cell adhesion (Prabhakar et al., 2006).

Some of the best characterized genes are those involved in viral
attenuation, which exhibit strong signals of selection and for which
functional studies have been completed. For example, adaptive evo-
lution within TRIM5α can in part explain human-specific susceptibility
to HIV infection (Sawyer et al., 2005). TRIM5α recognizes incoming
retroviral capsids and targets them for destruction (Stremlau et al.,
2006). However, the human allele of TRIM5α does not protect against
HIV infectionwhereas that ofmacaques provides resistance to infection
(Keckesova et al., 2004). Because the human allele of TRIM5α is able to
restrict an endogenous retrovirus found in the chimpanzee and gorilla
genomes but not the human genome, it is likely that TRIM5α evolved
under positive selection to restrict the activity of this retrovirus in the
ancestral human genome (Kaiser et al., 2007). The consequences of an
arms race between viral evasion and host infection are not limited to
TRIM5α and are also found in a handful of other genes that confer
species-specific differences in viral protection (Daugherty and Malik,
2012).

Another compelling case involves genes that function in sialic acid
biology (Varki, 2010). Sialic acids are a family of monosaccharides that
function in self recognition and pathogen infection. The sialic acid N-
glycolylneuraminic acid is absent in human blood, being replaced by
N-acetylneuraminic acid. While it is hard to know whether the gene
responsible for this difference, CMAH (Irie et al., 1998), evolved under
positive selection, this change is likely to have mediated escape from
certain pathogens, such asmalarial parasites, but susceptibility to others
(Varki and Gagneux, 2009). Another likely consequence of loss of CMAH
activity was a hyperimmune state that leads to multiple changes in
other sialic acid binding proteins (Varki, 2010), some of which have
evolved rapidly in humans (Angata et al., 2004).

More often than not, links between human adaptive changes and
disease are as yet suggestive. For example, changes in genes responsible
for the timing of labor are thought to have been under positive selection
along the human lineage, making us particularly susceptible to preterm
birth (Plunkett et al., 2011). While a number of genes associated with
preterm birth have evolved rapidly in humans (Chen et al., 2008;
Plunkett et al., 2010; Plunkett et al., 2011), the consequences of such
changes are not easily measured. Intriguingly, one of the rapidly evolv-
ing genes is the progesterone receptor, which might contribute to
humans' lack of response to progesterone therapy compared to mice
(Muglia and Katz, 2010). Rapid evolution has also been found in both
the coding and a nearby noncoding region of FSHR (Plunkett et al.,
2011). However, FSHR primarily functions in the establishment of preg-
nancy, rendering its association with preterm birth not only intriguing
but also enigmatic.

2. Conclusions

Adaptive evolution is rarely free from genetic, functional, develop-
ment and selective constraints (Arnold, 1992). In the limited evolution-
ary trajectories to higher fitness, some traits may be compromised at
the expense of an overall improvement in fitness. Inherent to this
scenario is the idea that trade-offs are common to fitness associated
traits (Stearns, 1989). However, linkage can also impose costs to adap-
tation whereby advantageous and deleterious mutations can only be
disentangled by recombination. Regardless of how the cost arises, the
negative consequences of many adaptations may be ameliorated over
time, through subsequent evolutionary changes (Denver et al., 2010).

In this review, I highlighted recent progress in understanding how
adaptive evolution during human history has incurred some cost to
the health of modern humans. The examples used have various levels
of support for the association between human adaptation and disease.
More importantly, they illustrate the variety of mechanisms and types
of supporting evidence used to connect current human health with
our evolutionary past. Finally, it is important to recognize that only a
subset of human diseases has been influenced by our adaptive history.
In this regard, understanding the molecular basis of adaptation may
provide insight into certain disease mechanisms.
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