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Objective

To present an introduction to the Proper Orthogonal
Decomposition (POD) method. Some examples are also presented.
This class is based on the paper [1].
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Introduction

• POD is an empirical method for dynamic analysis and allows
conclusions a posteriori about the investigated system;

• Besides its use in dynamics of structures, POD is also used in
�ow analyses (turbulence), image processing among other
applications. This class focuses on its use for vibration
analyses.
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Investigated problem

• Consider the vibrations of a structure. Let M be the number
of degrees of freedom (properly sorted) samples at N time
instants. The displacement on the m-th degree of freedom at
tn is xm(tn);

• Let X the response matrix given by:

X =


x1(t0) x2(t0) x3(t0) . . . xM(t0)
x1(t1) x2(t1) x3(t1) . . . xM(t1)
x1(t2) x2(t2) x3(t2) . . . xM(t2)

...
...

...
...

...
x1(tN) x2(tN) x3(tN) . . . xM(tN)


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Correlation matrix

• The correlation matrix R = 1

NX
TX.

• As X is symmetric and real, it can be made a diagonal matrix.
The eigenvalues of R are the proper orthogonal values (POVs)
and the corresponding eigenvectors are the proper orthogonal
modes (POMs).
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Geometric interpretation

Let v be a normalized POM. Consequently, Rv = λv. Como
R = 1

NX
TX, we obtain (Xv)T (Xv) = λN ↔ 1

N (Xv)
T (Xv) = λ
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Geometric interpretation

Each row of X can be interpreted as an snapshot (a �photograph�).
De�ning pj as the snapshot at a particular instant tj , Xv is given
by: 

vTp1
vTp2
...

vTpN


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Geometric interpretation

Xv can be interpreter as the projection of the experimental data
onto v. Consequently, λ plays the role of a mean squared distance
from the origin. In mechanical systems, such as distance is
associated with the energy.
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Formulação

Undamped system under free vibrations Mẍ+Kx = 0. Its solution
can be written as functions of the natural modes vi by means of:

x(t) =
M∑
i=1

Ai sin(ωi t − φi )vi
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• As showed, an eigenvector of R (POM) converges to a modal
vector. This is valid for low-damped systems.

• POD can be used as an empiric scheme for determining the
modal shape (a possible alternative do other methods such as,
for example, the Circle Adjust Method)
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A brief note

For a harmonically forced system, the POM do not tend to the
modal vectors. However, close to the resonance, in which one mode
dominates the response and the corresponding POV is much large
than the others, the associated POM is a good approximation for
the excited mode.
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De�nition

• A non-linear mode can be interpreted as an invariant manifold
in the state-space;

• Fenny & Kappagantu (1998) deal with synchronous non-linear
modes.
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The POD use for non-linear systems

• POMs are an optimal linear representation for the non-linear
normal modes;

• The POD technique can be used obtaining reduced-order
models for non-linear systems
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Final remarks

• For several applications, POMs can be assumed to match the
natural modes of a linear system. This allows the de�nition of
modal shapes in a quick way from experiments;

• Even for forced vibrations, the modal shapes can be obtained
from POD;
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Final remarks

• POD can be easily programmed and is a powerful toll for both
quick or intricate analyses;

• For synchronous non-linear normal modes, POMs consist of
the best linear �t (based on energy criterion);

• Feeny & Kappagantu suggest, as further works, investigations
on the POD use for non-synchronous non-linear modes.
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