REDUCING SNAPSHOTS TO POINTS:

A VISUAL ANALYTICS APPROACH TO DYNAMIC NETWORK EXPLORATION

OUTLINE

1 Introduction

2 Related Work

- 3 Reducing Snapshots to Points
 - Discretization
 - Vectorization and Normalization
 - Dimensionality Reduction
 - Visualization Interaction

4 Use cases

5 Discussion

6 Conclusion

INTRODUCTION

ARTICLE DETAILS

Title:

 Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration

Authors:

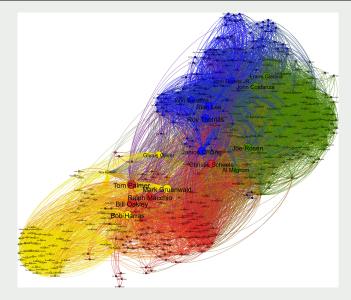
- Stef van den Elzen
- Danny Holten
- Jorik Blaas
- Jarke J. van Wijk

Year:

2016

Journal:

 IEEE Transactions on Visualization and Computer Graphics


Citation count:

56

- Graph and dynamic network visualization
- Time varying visualization

- Networks are ubiquitous
 - Represent relations between objects
- Often networks are large and dynamic
 - Change over time
 - Evolve!
- Examples:
 - ► (Tele-) communication networks
 - Social networks
 - Financial Networks
 - Transport network

MARVEL COMICS' AVENGERS ARTISTS COLLABORATION (1963-1996)

Available in: http://allthingsgraphed.com/public/images/marvel/avengers.svg

- Understanding the evolution of dynamic networks is challenging
- Discovery of states that characterize them over time:

States:

- Stable
- Recurring
- Outliers
- Transitions

Changes:

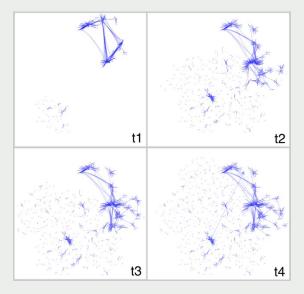
- Gradual, from a state to another
- Alternated between multiple states
- Not stable at all

- 1. How to visualize, interact with, and analyze a large static network for one point in time (*snapshot*)?
- 2. How to visualize, interact with, and analyze many of these snapshots?

Proposal: reducing network snapshots to points in 2D spaces
 Visual identification of network states
 Identification of transitions between states
 Analysis of network evolution in general

■ Visualization tool prototype as concept proof

Related Work


- 1. Mapping time-to-time
 - Animation
- 2. Mapping time-to-space
 - Small-multiples

ANIMATION

Available in: https://www.youtube.com/watch?v=HP63A09B1YM

SMALL-MULTIPLES

Available in: https://arxiv.org/pdf/1409.5034.pdf

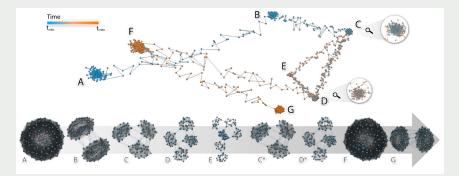
CURRENT APPROACHES

■ Problems with these approaches:

Animations

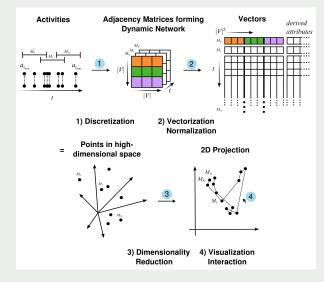
High cognitive load:

- Difficulty to track changes over time
- How to visually encode these changes


Small-multiples

To find the optimal balance between using: Few images Lacking of temporal detail Too many images Difficult to interpret

REDUCING SNAPSHOTS TO POINTS


GENERAL IDEA

Observe the disposition of projected network's snapshots, seeking for visible patterns

Retrieved from van den Elzen et al. [1]

Approach Overview

Adapted from van den Elzen et al. [1]

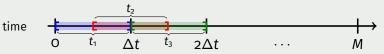
Dynamic Network Γ as a sequence of N snapshots:

 $\Gamma = (G_1,G_2,...,G_N)$

Snapshot as a directed graph:

$$G_i = (V, E_i, t_i)$$

- V: Node (vertex) set $E_i \subseteq V \times V$: Edge (link, event) set (vertex tuples (v_m, v_n)) t_i : *i*-th timestep
- Complete edge set and weight function w


(1) DISCRETIZATION

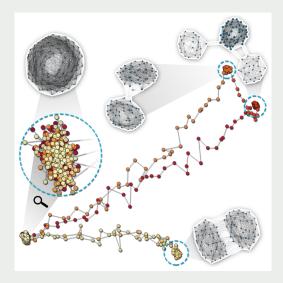
Discrete activities: activity log

 $A = (A_1, A_2, ..., A_j, ..., A_M) \qquad \qquad A_j \in E \times \mathbb{R}$

A_j = (a_j, s_j) is an activity with edge (v_m, v_n) and timestamp s_j
 Time window to select snapshots with constant Δt

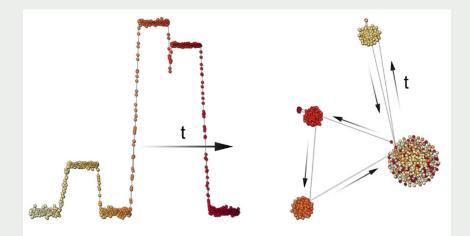
Overlapping is allowed

■ Each snapshot *G_i* is a *adjacency matrix M* of size |*V*| × |*V*|:


Wi	a	b	С	•••
a	W _{a,a}	W _{a,b}	W _{a,c}	•••
b	W _{b,a}	$W_{b,b}$	W _{b,c}	
С	W _{c,a}	W _{c,b}	W _{c,c}	
	•••			

(2) VECTORIZATION AND NORMALIZATION

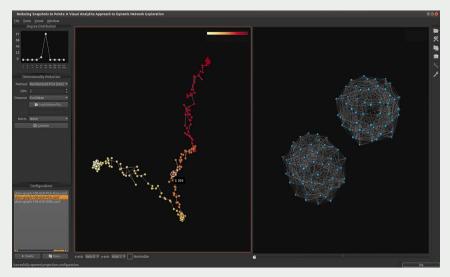
- Each adjacency matrix rearranged as $1 \times |V|^2$ array
- Snapshots stacked to form a $N \times |V|^2$ matrix
 - Columns represent edges, rows represent snapshots
- Different normalization strategies:
 - None
 - Binarization
 - Min-max
 - Z-score
- The choice depends on the dealt problem


- Linear and non-linear projection techniques evaluated:
 - Principal Component Analysis (PCA)
 - t-Distributed Stochastic Neighbour Embedding (t-SNE)
- Improved versions to reduce computations:
 - Randomized PCA
 - Barnes-Hut-SNE

EXAMPLE 1: SYNTHETIC DYNAMIC NETWORK AND PCA

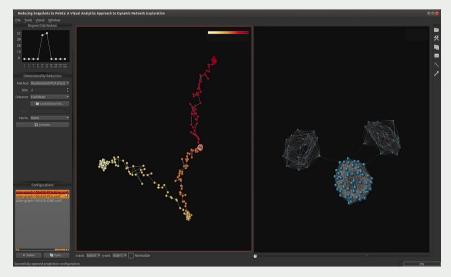
Retrieved from van den Elzen et al. [1]

EXAMPLE 2: TIME AND PC1, NON-LINEAR PROJECTION



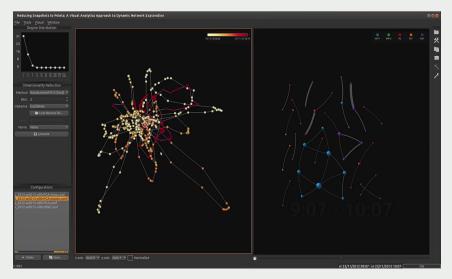
Retrieved from van den Elzen et al. [1]

- Prototype developed as concept proof
- Two linked and juxtaposed views:
 Projection View: Each snapshot as a dot
 - Close dots represent similar network states
 - Sequential dots connected with lines
 - User defined colormap (e.g., global time, hour of the day)


Network View: visualization of a selected snapshot using a node-like diagram

EXAMPLE 3: PROJECTION VIEW AND NETWORK VIEW

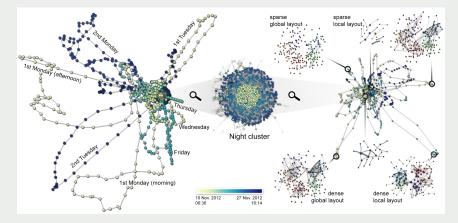
Supplementary material of van den Elzen et al. [1]


EXAMPLE 4: DIFFERENT PROJECTIONS

Supplementary material of van den Elzen et al. [1]

EXAMPLE 5: DEALING WITH DATA CLUTTERING AND ANIMATIONS IN THE NETWORK

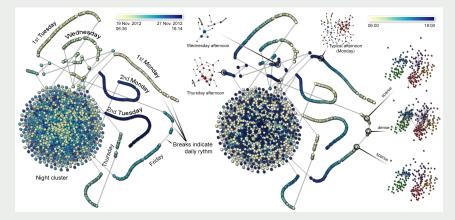
VIEW


Supplementary material of van den Elzen et al. [1]

USE CASES

- SocioPatterns initiative
- Face-to-face contact between persons (wearable sensors)
 - How infectious diseases spread within a population
 - High-school students
 - ▶ 7 school days (Monday to Tuesday, in a week of 2012)
 - 180 nodes (students from 5 classes)
 - 45,047 contacts (edges)
 - 10,104 unique edges
 - ► Time window of 60 minutes

HIGH-SCHOOL CONTACT PATTERNS: LINEAR PROJECTION


No normalization (left) and z-score (right)

Retrieved from van den Elzen et al. [1]

HIGH-SCHOOL CONTACT PATTERNS: NON-LINEAR PROJECTION

Global time variation (left) and Hour of the day (right)

Retrieved from van den Elzen et al. [1]

DISCUSSION

- Different tools and parameters for different problems
- Two dimensional projections:
 - Linear projections show transitions
 - Non-linear projections omit transitions but are better in separating the snapshots
- Sparse vs. Dense networks
 - Distance from the center

CONCLUSION

CONCLUSION

- Simple but yet powerful approach
- Flexibility is an advantage
- Known tools assembled in a novel approach
- Useful insights about dynamic network evolution

Text structure and quality: well written but sometimes repetitive/redundant

Software availability: prototype tool was not made available by the authors

THANKS FOR YOUR TIME!

ANY QUESTIONS?

REFERENCES

Stef van den Elzen, Danny Holten, Jorik Blaas, and Jarke J van Wijk.

REDUCING SNAPSHOTS TO POINTS: A VISUAL ANALYTICS APPROACH TO DYNAMIC NETWORK EXPLORATION.

IEEE transactions on visualization and computer graphics, 22(1):1–10, 2016.

- 1. What does the agglomeration of points with mixed colors mean?
- 2. What type of projection achieves the best data separation? Linear or non-linear?
- 3. Why is z-score the indicated normalization method to be used with PCA?