A Visual Approach for Interactive Keyterm-Based Clustering (Nourashrafeddin et al., 2018) Paper Analysis

Eric Macedo Cabral

Universidade de São Paulo (USP) Instituto de Ciências Matemáticas e de Computação (ICMC) Laboratório de Visualização, Imagens e Computação Gráfica (VICG)

cabral.eric@usp.br

September 17, 2018

Abstract

- Keyterm-based approach is arguably intuitive for users to direct text-clustering processes and adapt results to various applications in text analysis.
- This article first presents a text-clustering algorithm that can easily be extended into an interactive algorithm.
- Visualizations are provided for the whole collection as well as for detailed views of document and cluster relationships.

CCS Concepts:

- Information systems → Clustering;
- Human-centered computing → Visual analytics;

Keywords: document clustering, keyterm-based clustering, visualization, interactive.

- Introduction
- 2 Related Work
- 3 Proposed Document Clustering Algorithm
- 4 VIS-KT
- Conslusion

- Introduction
- 2 Related Work
- 3 Proposed Document Clustering Algorithm
 - Lexical Double Clusterer (LDC)
- 4 VIS-KT
- Conslusion

Introduction I

- By grouping similar documents, clustering algorithms provide precious information about topics in text collections.
 - Traditionally, no user-effort is targeted and the user has minimum interaction with the clustering process.
 - By putting the user in the clustering process, the results are more likely to satisfy his needs.

Introduction II

Three main categories of interaction in text clustering:

- **Document supervision:** It relies on training documents to coordinate the clustering process (pre-labeled), seeds.
- Keyterm supervision: The main tasks of this approach are extracting relevant keyterms from documents and clusters, presenting them to the user, collecting feedback, and incorporating them in the clustering process.
- Hybrid keyterm-documetn supervision: It uses both document and keyterm supervision

Introduction III

- Keyterm supervision is more intuitive and requires less user effort.
 - It reflects to the individual's preferences.
- Clustering documents by groups of terms help the user to target the sense of the document by the context of the terms, not a single term.

- Introduction
- 2 Related Work
- 3 Proposed Document Clustering Algorithm
 - Lexical Double Clusterer (LDC)
- 4 VIS-KT
- Conslusion

Related Work

Visual Text Clustering Using High-Resolution Display

- All the works in this section require the user to read the documents and label them. Too much user effort.
- Working based on relevant terms, on the other hand, allows us to express topics of documents in a more abstract form.
 - A few keyterms can represent hundreds of relevant documents

Related Work

Visual Text Clustering Using Semi-Supervision

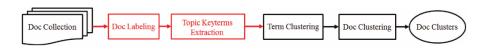
- All the works in this section require the user to move the instances manually or to declare document seeds. <u>Too much user effort</u>.
- Examining all data objects and moving them on a 2D plot is time-consuming, especially for large collections
- Also, a single document does not contain enough information to effectively build a cluster around it [Aggarwal and Zhai (2013)].

Related Work

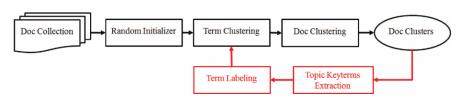
Visual Text Clustering Based on Topic Modeling

- Latent Dirichlet Allocation (LDA).
 - Generate initial topics.
- Requires the user to define weights to the generated topics.
 - Defining a ranked list of terms is more intuitive.
- Hard clustering.
 - Soft clustering is more informative for the user.

- Introduction
- 2 Related Work
- 3 Proposed Document Clustering Algorithm
 - Lexical Double Clusterer (LDC)
- 4 VIS-KT
- Conslusion


Lexical Double Clusterer (LDC) I

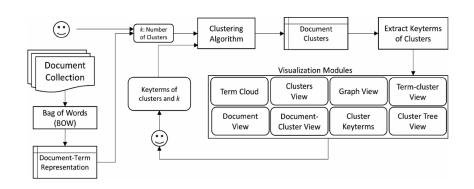
- The idea behind the algorithm is that before finding document clusters it is better to focus on term clusters and the keyterms that represent topics.
- It uses a matrix of documents-terms, obtained with the Bag of Words (BoW) Model.
- Term frequency-inverse document frequency (TF-IDF) is used as feature values to indicate the importance of terms in documents.
 - Discriminative terms have a higher TF-IDF in a subset of documents.
- The term clusters are obtained with the fuzzy c-means algorithm. Which means they are soft clusters.
- By finding the terms clusters, it's possible to find good document seeds that well represent that topic space (Hybrid supervision).


Lexical Double Clusterer (LDC) II

LDC can be easily adapted for interactive use. In a way that we can categorize interactions by:

• Document-supervised: Documents seeds.

Term-surpervised: Terms manipulations (add, remove, move...).

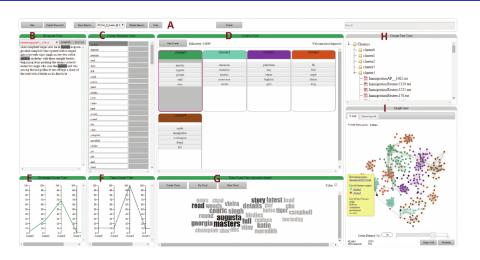

Lexical Double Clusterer (LDC) III

Datasets used in the tests:

	No. of	No. of		
Dataset Name	Classes	Documents	Description	
20newsgroups	20	18,821	All news articles in 20newsgroups	
			after removing duplicates	
NewsGroup9	9	720	Subset of news articles of 20newsgroups dataset	
NewsRelated	3	2,624	Subset of news articles of 20newsgroups dataset	
Reuters8	8	7,674	Articles of Reuters-21578 in eight categories	
Classic-4	4	7,095	Scientific abstracts in four categories	
WebKB	4	4,168	Webpages of computer science departments	
SMS	2	5,479	A public set of text messages	
BBC Sport	5	737	BBC Sport news articles collected in 2004-2005	
News 2006	_	1,747	News feeds collected in 2006 from	
			Associated Press, CNN, and Reuters	
NewsSeparate	13	381	A subset of News 2006 dataset categorized	
			into 13 classes manually	

- Introduction
- 2 Related Work
- 3 Proposed Document Clustering Algorithm
- Lexical Double Clusterer (LDC)
- 4 VIS-KT
- Conslusion

A visual Framework to Support Keyterm-based Clustering I



A visual Framework to Support Keyterm-based Clustering II

Main visual components:

- Document View
- Cluster Keyterm View
- Cluster View
- Term Cloud View
- Cluster Tree View
- Graph View

A visual Framework to Support Keyterm-based Clustering III

A visual Framework to Support Keyterm-based Clustering IV

Further tests have shown improvement as the user interacted with the data:

rvewsseparate iii Lacii iteratioii

	Average Silhouette					
	Iteration1	Iteration2	Iteration3	Iteration4		
Clustering	0.0830	0.1718	0.2011	0.2224		
t-SNE	0.0522	0.2305	0.3530	0.3385		
Force Layout	0.0474	0.2423	0.3774	0.4681		

The silhouette indices of t-SNE and force layout are independent of the user interaction. The silhouette index of the clustering shows the quality of clustering.

- Introduction
- Related Work
- Proposed Document Clustering Algorithm
 - Lexical Double Clusterer (LDC)
- 4 VIS-KT
- Conslusion

Conclusion

Contributions

- Interactive text-clustering visualization with keyterm labeling support.
- LDC.

Positive Points

- The method proposed presents good results.
- The tests and the results were expressive and informative.
- It is open-source^a.

Negative Points

None that I could find.

^ahttps://github.com/ehsansherkat/IDC/

Questions?

References I

- S. Nourashrafeddin, E. Sherkat, R. Minghim, and E. E. Milios, "A Visual Approach for Interactive Keyterm-Based Clustering," *ACM Transactions on Interactive Intelligent Systems*, vol. 8, no. 1, pp. 1–35, 2018. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3185338.3181669
- C. C. Aggarwal and C. X. Zhai, Mining text data, 2013, vol. 9781461432.