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Abstract

Ultrasound (US) imaging is the most commonly per-
formed cross-sectional diagnostic imaging modality in
the practice of medicine. It is low-cost, non-ionizing,
portable, and capable of real-time image acquisition and
display. US is a rapidly evolving technology with sig-
nificant challenges and opportunities. Challenges include
high inter- and intra-operator variability and limited
image quality control. Tremendous opportunities have
arisen in the last decade as a result of exponential growth
in available computational power coupled with pro-
gressive miniaturization of US devices. As US devices
become smaller, enhanced computational capability can
contribute significantly to decreasing variability through
advanced image processing. In this paper, we review
leading machine learning (ML) approaches and research
directions in US, with an emphasis on recent ML ad-
vances. We also present our outlook on future oppor-
tunities for ML techniques to further improve clinical
workflow and US-based disease diagnosis and charac-
terization.
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Ultrasound (US) is one of the core diagnostic imaging
modalities, and is routinely used as the first line of
medical imaging for evaluation of internal body struc-
tures, including solid organ parenchyma, blood vessels,
the musculoskeletal system, and the fetus. US has be-
come a ubiquitous diagnostic imaging tool owing to

several major advantages over other medical imaging
methods such as computed tomography (CT) and
magnetic resonance imaging (MRI). These key advan-
tages include real-time imaging, no use of ionizing
radiation, and better cost effectiveness than CT and
MRI in many situations. In addition, US is portable,
requires no shielding, and utilizes conventional electrical
power sources and is therefore well suited to point-of-
care applications, especially in under-resourced settings.
As the field progresses, US, especially when combined
with other technologies, has the potential to be an in-
home biosensor, providing ambulatory, long duration,
and non-intrusive monitoring with real-time biofeed-
back.

US also presents unique challenges, including
operator dependence, noise, artifacts, limited field of
view, difficulty in imaging structures behind bone and
air, and variability across different manufacturers’ US
systems. Dependence on operator skill is particularly
limiting. Many healthcare providers who are not
imaging specialists do not use US at the point of care
owing to a lack of skill in acquiring and interpreting
images. For those that do, high inter- and intra-oper-
ator variability remains a significant challenge in clin-
ical decision making. As a result of high inter-operator
variability, US-derived tumor measurements are not
accepted in most cancer drug trials, and US is there-
fore generally not used clinically for serial oncologic
imaging. Automated US image analysis promises to
play a crucial role in addressing some of these chal-
lenges.

Recent surveys of ML for medical imaging, such as
[1–4], primarily focus on CT, MRI, and microscopy. In
this review, we focus on the use of machine learning
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recent advances in ML have helped accelerate US image
analysis adoption by modeling complicated multidi-
mensional data relationships that answer diagnosis and
disease severity classification questions. We have two
goals: (1) to highlight contributions that utilize ML ad-
vances to solve current challenges in medical US, (2) to
discuss future opportunities that will utilize ML tech-
niques to further improve clinical workflow and US-
based disease diagnosis and characterization. Our survey
is non-exclusive, as we mainly focus on work within the
past 5 years, where ML, particularly deep learning (DL),
has started to have a major impact. We also emphasize
solutions at the system level, which is an important as-
pect, due to the unique characteristics of the US image
generation workflow. Figure 1 shows that US image
processing involves more than simply a classification
step, but additionally includes preprocessing and various
types of analyses depending on several possible applica-
tions.

This article is divided into four sections: (i) an over-
view of basic principles of US, (ii) an overview of ML,
(iii) ML for US, and (iv) summary and outlook.

Overview of US imaging

US imaging

Medical US images are formed by using an US probe to
transmit mechanical wave pulses into tissue. Sound
echoes are generated at boundaries where different tis-
sues exhibit acoustic impedance differences. These echoes
are recorded and displayed as an anatomic image, which
may contain characteristic artifacts including signal

dropout, attenuation, speckle, and shadows. Image
quality is highly dependent on multiple factors, including
force exerted on the US transducer, transducer location,
and orientation.

Using various signal-to-image reconstruction ap-
proaches, several different types of images can be formed
using US equipment. The most well-known and routinely
used clinically is a B-mode image, which displays the
acoustic impedance of a two-dimensional cross section of
tissue. Other types of US imaging display blood flow
(Doppler imaging and contrast-enhanced US), motion of
tissue over time (M-mode), the anatomy of a three-di-
mensional region (3D US), and tissue stiffness (elastog-
raphy).

US elastography

US elastography is a relatively new imaging technique of
which there are two main types in current clinical use: (1)
strain elastography, where image data are compared
before and after application of external compression
force to detect tissue deformation, and (2) shear wave
elastography (SWE), which uses acoustic energy to move
tissue, generating shear waves that extend laterally in
tissue. These shear waves can be tracked to compute
shear wave velocity, which is algebraically related to
tissue stiffness measured as the tissue Young’s modulus.

Tissue stiffness is a useful biomarker for pathologic
processes, including fibrosis and inflammation, leading to
several additional clinical applications for medical US. A
diagnostic imaging gap recently addressed by US elas-
tography is the evaluation of chronic liver disease [5–8].

Fig. 1. Overview of
ultrasound processing
system workflow.
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US elastography liver stiffness measurements have been
shown to be a promising liver fibrosis staging biomarker,
and as a result highly relevant to chronic liver disease risk
stratification. These technologies have the potential to
replace liver biopsy as the diagnostic standard of care for
key biologic variables in chronic liver disease. SWE has
also been used to assess breast lesions [9–11], thyroid
nodules [12–15], musculoskeletal conditions [16–20], and
prostate cancer [21–23].

Figure 2 is an example of a SWE image (the colored
pixels) overlaid on top of a B-mode US image, acquired
for liver fibrosis staging. Tissue stiffness measurements
are obtained by placing a region of interest (ROI) inside
the SWE image box. Similar to B-mode US, elastography
also suffers from inter- and intra-observer variability [8].
This represents an area of opportunity for ML-based
automated image analysis improvement. We will discuss
this in detail in Sect. ‘‘Additional applications of ma-
chine learning to US.’’

Contrast-enhanced US (CEUS)

Contrast-enhanced US utilizes gas-filled microbubbles
for dynamic evaluation of microvasculature and
macrovasculature. At present, US contrast agents are
exclusively intravascular blood pool agents. Differentia-
tion between benign and malignant focal liver lesions is
an application of particular clinical interest [24–26]. The
late phase of contrast enhancement allows for real-time
characterization of washout, a critical feature in the
differentiation of benign liver lesions (e.g., hemangioma,
focal nodular hyperplasia, adenoma, regenerative nod-

ule) and malignant liver lesions (e.g., hepatocellular
carcinoma, cholangiocarcinoma, metastasis). The DE-
GUM study—a multicenter German study that analyzed
1328 focal liver lesions—reported a 90.3% accuracy of
CEUS for focal liver lesions with a 95.8% sensitivity,
83.1% specificity, 95.4% positive predictive value, and
95.9% negative predictive value for distinguishing benign
and malignant liver lesions [27]. Other areas of clinical
interest include evaluation of focal renal lesions [28],
thyroid nodules [29], splenic lesions [30], and prostate
cancer [31]. CEUS limitations include operator depen-
dence, motion sensitivity, and the need for a good
acoustic window. Advanced US image processing offers
potential opportunities to augment CEUS by mitigating
these limitations.

Overview of machine learning (ML)

ML is an interdisciplinary field that aims to construct
algorithms that can learn from and make predictions on
data [32], [33]. It is part of the broad field of artificial
intelligence and overlaps with pattern recognition. Sub-
stantial progress has been made in applying ML to nat-
ural language processing (NLP), computer vision (e.g.,
image and text search, face recognition), video surveil-
lance, financial data analysis, and many other domains.
Recent progress in deep learning, a form of ML, has been
dramatic, resulting in significant performance advances
in international competitions and wide commercial
adoption. The application of ML to diverse areas of
computing is gaining popularity rapidly, not only be-
cause of more powerful hardware, but also because of the
increasing availability of free and open source software,

Fig. 2. Example SWE color map overlaid on a B-mode ultrasound image.
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which enable ML to be readily implemented. The pur-
pose of this section is to introduce ML approaches and
capabilities to US researchers and clinicians. Historical
reviews of the field and its relationship with pattern
recognition can be found elsewhere [34–36]. The fol-
lowing essential concepts are introduced at a level
appropriate for understanding this review: supervised
and unsupervised learning, learning based on hand-
crafted features, deep learning, testing, and performance
metrics.

Supervised vs. unsupervised learning

Most ML applications for US involve supervised learn-
ing, in which a classifier is trained on a database of US
images labeled with desired classification outputs. For
example, a classifier could be trained to output a value of
1 for input images of malignant tumors and a value of 0
for benign tumors. Once a classifier is trained, it can be
used to classify previously unseen test images.

Unsupervised learning involves finding clusters or
similarities in data, with no labels provided. This can be
useful for applications such as content-based retrieval, or
to determine features that can distinguish different clas-
ses of data.

A type of learning that falls between supervised and
unsupervised learning is termed weakly supervised
learning [37]. A significant challenge in building up large
US image databases has been the time involved for ex-
pert annotation to support supervised learning. Anno-
tation effort can be simplified by reducing the detail of
information provided by the expert. For example, an
image containing a tumor can be labeled as such, without
having to annotate the precise location or boundaries.
The ability to train a classifier with this type of less de-
tailed information is termed weakly supervised learning.
These and other types of learning, such as reinforcement
learning, are described in detail elsewhere [38].

Learning based on handcrafted features

Traditionally, ML has involved computing handcrafted
features that are believed to be able to distinguish be-
tween classes of data. These features are then used to
train and test a classifier. For US, common types of
features are morphologic, e.g., lesion area or perimeter,
or textural [39], based on information in the frequency
domain [40], or parameter fitting. Often a large number
of candidate features are computed and then a feature
selection algorithm is applied to select the best features
or a dimensionality reduction algorithm [41] is applied to
combine the features into a smaller composite set.

A classifier is then trained to form a feature mapping
to compute desired outputs. It is important to constrain
the classifier so that it does not overfit to the training
data, because overfitting results in model errors that do

not generalize beyond the training set to new data. The
need to avoid overfitting is one of the main reasons
feature selection or extraction algorithms are applied
before training a classifier. Avoiding overfitting is a
special concern for US research, which has thus far in-
volved relatively small databases. Over the years, many
supervised learning classification algorithms have been
developed and many have been applied to US for
handcrafted features. The most common approaches
applied in the surveyed papers are random forests [42],
support vector machines [43, 44], and multilayer feed-
forward networks [45–47], also known as artificial neural
networks.

Deep learning (DL)

The effort and domain expertise involved in handcrafting
features has led researchers to seek algorithms that can
learn features automatically from data. DL is a partic-
ularly powerful tool for extracting non-linear features
from data. This is particularly promising in US, where
predictable acoustic patterns are typically neither obvi-
ous nor easily hand-engineered. Figure 3 illustrates high-
level differences between conventional ML and DL. The
fast adoption of DL has been enabled by faster algo-
rithms, more capable Graphics Processing Unit (GPU)-
based computing, and large data sets.

DL extends multilayer feedforward networks from
the two layers of weights used in the past to multiple
layers. Figure 4 is an example of a generic supervised DL
pipeline that includes both the learning phase and the
deployment phase. In the learning phase, labeled samples
(e.g., labeled US thyroid nodule images) are randomly
divided into training/test sets or training/validation/test
sets. The training data are used for finding the weights
for each of the layers. During the process, features are
discovered automatically and a model is learned. The
validation set is used for optimizing the network
parameters. The test data are used for estimating the
performance of the learned network. This model esti-
mation and selection technique is called cross-validation
[48]. During the deployment phase, the machine applies
the model learned to make a prediction on a new,
unlabeled input (e.g., an unlabeled US thyroid nodule
image that the machine has not seen before).

The multiple processing layers have been demon-
strated to learn features of the data with multiple levels
of hierarchy and abstraction [49]. For example, in ima-
gery of humans, a low level of abstraction is edges;
higher levels are body parts. A variety of deep learning
structures have been explored. Among them, convolu-
tional neural networks (CNNs) are one of the most
popular choices for classifying images, due to unprece-
dented classification accuracy [50, 51] in applications
such as object detection [52–54], face detection [55–57],
and segmentation [58, 59]. In a typical CNN, convolu-
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tional filters are applied in each CNN layer to auto-
matically extract features from the input image at mul-
tiple scales (e.g., edges, colors, and shapes), and a
pooling process (termed ‘max pooling’) is often used
between CNN layers in order to progressively reduce the
feature map size. The last two layers are typically fully
connected layers, from which classification labels are
predicted (Fig. 5).

Testing and Performance Metrics

As mentioned in Sect. ‘‘Deep learning,’’ classifier devel-
opment and testing typically involve splitting the ran-
domized labeled data into training/test sets or
training/validation/test sets. A validation set is used to
determine the best network structure and other classifier
variations based on several training runs, and an inde-
pendent test set held aside to evaluate performance until
the classifier has been completed.

Fig. 4. Supervised
learning with deep neural
networks.

Fig. 3. Conventional
machine learning vs. deep
learning.
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When a database is sufficiently large, it can be par-
titioned a priori into these distinct sets above. For
smaller data sets such as those commonly seen in US
research, k-fold cross-validation is often used. Cross-fold
testing can be performed up to a maximum of N times
for a database of N samples. In this case, termed leave-
one-out testing, all of the samples in the database are
used for training except for one sample data (e.g., one
image), which is used for testing. Details of these tech-
niques and other cross-validation techniques can be
found in [60, 61].

Classifier performance is reported in a variety of
ways. The most common for two classes is area under the
receiver operating characteristic curve (AUROC), often
simplified as ‘‘area under the curve’’ (AUC). An oper-
ating characteristic is formed by measuring true positive

and false positive rates as the decision threshold applied
to the classifier output is varied [62]. The AUC is then
computed from the operating characteristic.

ML for US

Principal applications of ML to US include classification
or computer-aided diagnosis, regression, and tissue seg-
mentation. Other applications include image registration
and content retrieval. Each of these applications is sur-
veyed in the following subsections, with an aim to pro-
vide insights into progress and best approaches. In
particular, advances in approaches using deep learning
are highlighted, compared to approaches that use
handcrafted features. Table 1 provides a summary of the
applications in the papers surveyed.

Fig. 5. Example
convolutional neural
network (CNN).

Table 1. List of applications for papers surveyed

Organ or body location Modality Application # Of papers References

Breast US Classification (lesions) 10 [69, 71, 74, 93, 114–120]
Liver US Classification (lesions, cirrhosis, other focal and diffuse conditions) 4 [64, 121–123]
Lung US Classification (several diseases, B-lines) 2 [124, 125]
Muscle US Classification (atrophy, myositis) 2 [126, 127]
Intravascular US Classification (plaque) 2 [72, 128]
Spine US Classification (needle placement) 1 [129]
Ovary/uterus US Classification (masses) 2 [130, 131]
Kidney US Classification (renal disease, cysts) 1 [132]
Spleen US Classification (lesion) 1 [133]
Eye US Classification (cataracts) 1 [134]
Abdominal cavity US Classification (free fluid from trauma) 1 [135]
Thyroid US Classification (nodules) 1 [70]
Other US Classification (abdominal organs) 1 [73]
Heart US Classification (viewing planes, congenital heart disease)

Content retrieval
8 [95–102]

Heart US Segmentation 1 [88]
Placenta US Segmentation 1 [91]
Lymph node US Segmentation 1 [90]
Brain US Segmentation 1 [92]
Prostate US Segmentation 2 [82, 83]
Carotid artery US Segmentation 1 [89]
Breast US Segmentation 1 [81]
Gastrocnemius muscle US Regression (orientation) 1 [76]
Fetal brain US Regression (gestational age) 1 [77]
Spine US Registration 1 [93]
Prostate US (TRUS) Registration 1 [94]
Liver Elastography Classification (fibrosis, chronic liver disease) 2 [106, 109]
Thyroid Elastography Classification (nodule) 1 [108]
Breast Elastography Classification (tumor) 3 [107, 110, 111]
Liver CEUS Classification (lesions) 1 [112]
Total 56
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Classification

Computer-aided disease diagnosis and classification in
radiology have received extensive attention and have
benefited greatly from the recent advances in ML. A
variety of applications have been addressed in computer-
aided diagnosis, but primarily for detecting or classifying
lesions, mainly in the breast and liver. Most of the recent
papers surveyed follow the classic approach of comput-
ing handcrafted features, applying a feature selection
algorithm, and training a classifier on the reduced feature
set. This basic approach has been investigated for over
20 years, e.g., [63, 64]. Specific feature and algorithm
choices for each step vary. Preprocessing includes
despeckling.

Features considered are primarily texture-based or
morphological. The largest number of publications has
been on classifying breast lesions. A review of breast
image analysis [65] places US in the context of several
imaging modalities. For classifying breast lesions,
computerized methods have been developed to auto-
matically extract features from the BI-RADS (Breast
Imaging Reporting and Data System) lexicon, relating
to shape, margin, orientation, echo pattern, and
acoustic shadowing [66]. These features are standard-
ized and readily understandable by radiologists. Typi-
cally, a large number of features is reduced in
dimension by either selecting the most informative
features or by linearly combining features with princi-
pal components analysis [41]. Commonly used classi-
fiers include multilayer networks (neural networks)
[67], support vector machines [43], and random forests
[68], the details of which extend beyond the scope of
this review.

Although these papers indicate the promise of US
computer-aided diagnosis, the reported studies have
several limitations. These classification studies typically
rely on manual region-of-interest (ROI) selection of the
portion of the image that includes candidate pathol-
ogy; that subimage is then classified. Manual ROI
selection assumes significant involvement by a radiol-
ogist in practice, or at least neglects the problem of
ROI selection. The number of patients and images
available for training and testing is typically small; in
nearly all cases, the number of images was < 300. In
addition, the US images were often collected at a
single location by a single type of US device. Each
paper reports results obtained on a different validation
database, making results difficult or impossible to
compare.

Two recent papers have compared the performance of
commercial diagnosis systems vs. radiologists. In [69],
performance of a system from ClearView Diagnostics
(Piscataway, New Jersey, USA) for diagnosing breast
lesions was compared to that of three certified radiolo-
gists. At the time of publication, the system was being

reviewed for FDA clearance. The study was co-authored
by ClearView Diagnostics employees and thus was not
an independent evaluation. Ground truth for 1300 ima-
ges was determined based on biopsy or one-year follow-
up. Likelihood of malignancy and the preliminary BI-
RADS assessment were assessed. The comparison fo-
cused on images; the reading radiologists did not have
access to other information, such as patient history and
previous imaging studies. Based on likelihood of malig-
nancy, the computer system was determined to have
outperformed the radiologists. Fusing the radiologist
and computer assessments was also found to improve
sensitivity and specificity over radiologist assessments
alone.

In [70], performance of a system from Samsung
(Seoul, South Korea) for assessing malignancy of thyroid
nodules was compared to that from an experienced
radiologist. One hundred two nodules with a definitive
diagnosis from 89 patients were included in the study.
The system’s performance was lower than that of the
radiologist’s. It was speculated that improved segmen-
tation would improve the performance.

The number of papers that have applied deep learning
techniques to US disease classification has dramatically
increased in the last 2–3 years [71, 72]. For deep learning,
it has been unclear until very recently whether CNNs
that have been trained on non-medical color images can
be used as a starting point and partially retrained to
classify US images that do not resemble optical images.
However, recent work, such as [73], has shown that this
method, referred to as ‘‘transfer learning,’’ can be effec-
tive. This technique avoids overfitting on small data sets,
which is often the case for US imagery. Fusing hand-
crafted features with those computed with deep learning
has been shown to further improve performance [74].
Weakly supervised learning has also been successfully
applied to US [75].

Regression

Regression involves estimating continuous values as
opposed to discrete classes of data. Deep learning has
been applied to regression, for example by [76] to esti-
mate muscle fiber orientation from US imagery. Deep
learning was found to improve over previous approaches
using handcrafted features, specifically a well-established
wavelet-based method. However, another regression
application provides an example of how handcrafted
features may still be the preferred approach. In this
application, gestational age is estimated from 3D US
images of the fetal brain [77]. A semi-automated ap-
proach based on deformable surfaces is used to compute
standard biometric features, e.g., head circumference, as
well as information on local structural changes in the
brain.
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Segmentation

Segmentation is the delineation of structural boundaries.
Automated US segmentation is challenging; in that US
data are often affected by speckle, shadow, and missing
boundaries, as well as by tradeoffs between US fre-
quency, depth, and resolution during image acquisition.

Many US segmentation approaches have been
developed, including methods based on intensity
thresholding, level sets, active contours [78], and other
model-based methods. These techniques are reviewed in
[79, 80]. Intensity-based approaches are sensitive to the
noise and image quality. Active contour and level sets
require initialization, which can affect the results. Most
conventional approaches are not fully automated.

Segmentation methods based on ML typically involve
two steps: first, a pixel-wise classification of the desired
structure, followed by a clean-up or smoothing step since
the pixel-wise classification is noisy. In recent papers,
several classification approaches have been investigated
involving handcrafted features [81–87], and various types
of neural networks, including deep-learning [88–92].
Three papers [82, 91, 92] made use of 3D US.

Additional applications of machine learning
to US

In addition to US segmentation, ML has also been ap-
plied to US registration, for example for imagery of
vertebrae [93] and transrectal US [94].

One key advantage of US over some other modalities
is that it is well suited for real-time guidance (e.g., needle
guidance, intra-cardiac procedures, and robotic surg-
eries), but the real-time performance has not been fully
realized due to the limitations in US image processing,
including lack of robust content retrieval from US video
clips. A number of very recent papers focus on using
deep learning techniques for frame labeling or content
interpretation [95–98]. One approach [99] was evaluated
on a database of about 30,000 images, which is very large
for US. Techniques that integrate spatiotemporal infor-
mation have started to emerge, particularly in dealing
with echocardiograms acquired from different views, to
capture key information of the motion of heart [100–
102]. We predict ML will play a major role in the near
future in enabling US guided interventions.

US elastography and CEUS

Elastography, particularly SWE, is being increasingly
used in conjunction with US as a quantitative measure-
ment to characterize tissue lesions [103]. Key limitations
of SWE, as summarized in [13], include variability in
stiffness cutoff thresholds, lack of image quality control,
and variability in ROI selection. It has been shown that
SWE measurements depend greatly on the quality of the

acquired data [104, 105]. Using liver fibrosis staging as
an example, Fig. 6A illustrates the existing clinical
workflow and challenges. As such, the current clinical
protocol requires multiple image acquisitions as a way to
mitigate measurement variability. Figure 6B presents a
potential solution to improving the clinical workflow. It
includes algorithms to automatically check image quality
and ML methods to quantify SWE and classify disease
stages. In addition, algorithms can also assist with
assessing additional useful biomarkers (e.g., subcuta-
neous fat content, steatosis, inflammation), which are
currently not used because of the time-intensive manual
interpretation required.

Among the surveyed papers from the past 5 years, the
most common ML approach is to extract statistical
features from the SWE images and then apply a classifier
[106–110].

SWE images often contain irrelevant patterns (e.g.,
artifacts, noise, areas absence of SWE information),
which can be difficult for both handcrafted feature
extraction approaches and for typical DL methods such
as CNN. Very recently, [111] reported using a two-layer
DL network for automated feature extraction from SWE
breast data. The work focuses on differentiating task-
relevant (i.e., patterns of interest) vs. task-irrelevant
patterns (i.e., distracting patterns).

CEUS is a non-invasive diagnostic tool for focal liver
lesion evaluation. Typically, time intensity curves (TICs)
are extracted from manually selected ROI in CEUS.
Results are often subjected to operator variability, mo-
tion sensitivity, and speckle noise. Recently, DL has been
applied to CEUS to improve the classification of benign
and malignant focal liver lesions from automatically
extracted TICs with respiratory compensation [112]. DL
shows higher accuracy than conventional ML methods.

Discussion and outlook

While the use of medical US is becoming ubiquitous,
advanced US image analysis techniques lag behind other
modalities such as CT and MRI. As with CT and MRI,
ML is a promising approach to improve US image
analysis, disease classification, and computer-aided
diagnosis.

Overall, application of ML to US is at an early stage,
but is rapidly progressing, as evidenced by the large
number of 2016 and 2017 surveyed papers. Most of the
recent papers surveyed use databases of a few hundred
images. Only a few papers use databases of at least one
thousand images, which is three orders of magnitude
smaller than large challenge databases of optical images.
On the other hand, it is unrealistic to expect US data-
bases will reach that size in the foreseeable future,
pointing to the need for ML techniques that can train on
smaller databases. In many cases, databases are gener-
ated from a single device type and a single collection site,
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limiting the generalizability of ML classification models
derived from these databases. Large, publicly accessible
challenge databases such as ImageNet that have signifi-
cantly advanced conventional image classification per-
formance are currently unavailable for US. Most of the
present US ML research has concentrated on single
functions within an overall system, such segmentation or
classification.

Within the past few years, deep learning approaches
have been shown to significantly improve performance
when compared with classifiers operating on handcrafted
features. Transfer learning, which involves retraining a
portion of a network originally trained on other images,
has been shown to be effective for classifying the rela-
tively small databases that are currently available. These
results address early skepticism that transfer learning

would not be useful for US because US images appear to
be quite different than the optical color imagery on
which the networks were originally trained. Deep learn-
ing approaches have also obviated the need for sophis-
ticated preprocessing, such as despeckling. On the other
hand, certain applications are based on sophisticated
handcrafted features that are unlikely to be surpassed by
deep learning with currently available databases. More-
over, surveyed papers combining classifiers with both
deep learning and handcrafted features have shown im-
proved results over either approaches, indicating that
Deep Learning techniques alone are unlikely to achieve
the potential of ML in US.

There are several challenges in applying ML to US
and other medical imaging modalities: (1) because US is
often used as a first-line imaging modality, there is often

A

B

Fig. 6. A Example pipeline
of using SWE for liver
fibrosis staging. B Proposed
semi-automated SWE
acquisition and analysis
workflow.
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an imbalance with an excess of normal ‘‘no-disease’’
images, and (2) obtaining consistently annotated data is
a challenge as there is significant inter-operator and in-
ter-observer variability among expert US physicians. The
variability that this subjectivity adds to the annotations
requires a larger database so the classifier can be trained
to smooth over the variations. Transfer learning has been
widely adopted to address the challenge of operating
with relatively small databases. Weakly supervised
learning was also successfully used in one surveyed pa-
per; its use is likely to increase, although challenges have
been found in unpublished work. In addition to these
techniques, other approaches commonly used by the
deep learning community to address small, annotated
databases are unsupervised learning, database augmen-
tation and active learning. Interestingly, these techniques
have been rarely used in US, and are likely to be
promising approaches. Active learning requires an
interactive annotation tool that is somewhat more com-
plex than a static tool, but once developed, has the value
of focusing the expert’s time on images most important
to annotate. Another approach to annotating images
would be to apply natural language processing tools to
extract annotations from the patient reports. This is still
an area of research that has its own challenges to ad-
dress.

Another algorithmic challenge is the need for the re-
sults to be interpretable by radiologists, as opposed to a
‘‘black box’’ result that might suffice in domains other
than clinical medicine. Although interpretability is not an
intrinsic characteristic of deep learning, it is an active
area of research. Within the past few years, new tech-
niques for interpreting CNNs have emerged, and other

classification techniques are being developed that are
intrinsically interpretable [113].

One key strength of US is its ability to produce real-
time video. ML applied to echocardiography and
obstetrics has increasingly exploited the advantages of
spatiotemporal data to improve results. Even in the case
of detecting tumors and other pathologies, video clips
provide more information than a single image frame.
None of the surveyed papers about classifying patholo-
gies exploited video data. This is an aspect that will likely
advance in future work.

Returning to the system view in Fig. 1, advances
across the workflow are needed. ML enables part of the
system solution, but not all of it. For example, a unique
challenge of US is the expertise required for image
acquisition, which currently contributes to variable
interpretations. Operating on freehand US is preferred.
In the future, it will be important for ML systems to
provide real-time feedback to the sonographer during
image acquisition, and not only to interpret freehand US
post hoc. Also, manual ROI selection and caliper
placement for measurements are still common, which
also result in significant variability. Image quality con-
trol, automatic ROI selection, and attention to com-
puter–human integration are needed to replace manual
ROI selection and caliper placement for measurements.

Based on recent rapid progress summarized in this
review, we expect ML for US will continue to progress,
and will be one of the most important trends in diag-
nostic US in the coming years. Broadly speaking, US will
likely become one of the many inputs of a ML-based
intelligent diagnostic assistant system, where multimodal
and multiscale observations are learned over time and

Fig. 7. Proposed
framework for machine
learning-based intelligent
diagnostic assistant.
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are turned into clinical viable quantitative models
(Fig. 7); the aggregated machine intelligence will have
the ability to observe data, orient the end user, assess
new information, and assist with decision making. Such a
system has the potential to greatly improve not only the
clinical workflow but also the overall outcome of care.
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González-Castro V (eds) Medical image understanding and analy-
sis, vol. 723. Cham: Springer, pp 63–73

77. Namburete AI, Stebbing RV, Kemp B, et al. (2015) Learning-
based prediction of gestational age from ultrasound images of the
fetal brain. Med. Image Anal. 21(1):72–86

78. Cary TW, Reamer CB, Sultan LR, Mohler ER, Sehgal CM (2014)
Brachial artery vasomotion and transducer pressure effect on
measurements by active contour segmentation on ultrasound:
brachial artery vasomotion and transducer pressure effect. Med
Phys 41(2):022901

79. Noble JA, Boukerroui D (2006) Ultrasound image segmentation:
a survey. IEEE Trans Med Imaging 25(8):987–1010

80. Noble JA (2010) Ultrasound image segmentation and tissue
characterization. Proc Inst Mech Eng Part H 224(2):307–316

81. Torbati N, Ayatollahi A, Kermani A (2014) An efficient neural
network based method for medical image segmentation. Comput
Biol Med 44:76–87

82. Yang X, Rossi PJ, Jani AB, et al. (2016) 3D transrectal ultrasound
(TRUS) prostate segmentation based on optimal feature learning
framework. Med Imaging. https://doi.org/10.1117/12.2216396

83. Ghose S, et al. (2013) A supervised learning framework of sta-
tistical shape and probability priors for automatic prostate seg-
mentation in ultrasound images. Med Image Anal 17(6):587–600

84. Sultan LR, Xiong H, Zafar HM, et al. (2015) Vascularity assess-
ment of thyroid nodules by quantitative color doppler ultrasound.
Ultrasound Med Biol 41(5):1287–1293

85. Chauhan A, Sultan LR, Furth EE, et al. (2016) Diagnostic
accuracy of hepatorenal index in the detection and grading of
hepatic steatosis: factors affecting the accuracy of HRI. J Clin
Ultrasound 44(9):580–586

86. Noe MH, et al. (2017) High frequency ultrasound: a novel
instrument to quantify granuloma burden in cutaneous sar-
coidosis. Sarcoidosis Vasc Diffuse Lung Dis 34(2):136–141

L. J. Brattain et al.: Machine learning for medical ultrasound: status, methods, and future opportunities 797

https://doi.org/10.1117/12.2254581
https://doi.org/10.1117/12.2254581
https://doi.org/10.1002/mp.12453
https://doi.org/10.1002/mp.12453
https://doi.org/10.1117/12.2216396


87. Xiong H, Sultan LR, Cary TW et al. (2017) The diagnostic per-
formance of leak-plugging automated segmentation vs. manual
tracing of breast lesions on ultrasound images. Ultrasound http://
journals.sagepub.com/doi/pdf/10.1177/1742271X17690425#arti
cleCitationDownloadContainer. Accessed 17 Jan 2018

88. Carneiro G, Nascimento JC, Freitas A (2012) The segmentation of
the left ventricle of the heart from ultrasound data using deep
learning architectures and derivative-based search methods. IEEE
Trans Image Process 21(3):968–982

89. Menchón-Lara RM, Sancho-Gómez JL (2015) Fully automatic
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