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14.00 -14.45 
Historical Framework  - A Global Dynamics Perspective in the Nonlinear 
Analysis of Systems/Structures 

15.00 -15.45 Achieving Load Carrying Capacity: Theoretical and Practical Stability 

16.00 -16.45 Dynamical Integrity: Concepts and Tools_1 
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14.00 -14.45 Dynamical Integrity: Concepts and Tools_2 

15.00 -15.45 Global Dynamics of Engineering Systems 

16.00 -16.45 Dynamical integrity: Interpreting/Predicting Experimental Response 
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14.00 -14.45 Techniques for Control of Chaos 

15.00 -15.45 A Unified Framework for Controlling Global Dynamics 

16.00 -16.45 Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics 
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14.00 -14.45 
A Noncontact AFM:  (a) Nonlinear Dynamics and Feedback Control  
                                     (b) Global Effects of a Locally-tailored Control  

15.00 -15.45 Exploiting Global Dynamics to Control AFM Robustness  

16.00 -16.45 Dynamical Integrity as a Novel Paradigm for Safe/Aware Design 
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1.   A CONTROL PROCEDURE OF GLOBAL EVENTS  

 ANALYTICAL CONTROL OF HOMOCLINIC BIFURCATION OF HILLTOP SADDLE 

 IDENTIFYING THE BIFURCATION ACTUALLY TRIGGERING EROSION 

2.  NUMERICAL CONTROL PROCEDURE 

 VALIDATION 

 CONTROLLING HOMOCLINIC BIFURCATION OF IN-WELL SADDLE 

3. SUMMARY AND COMMENTS 

V. SETTIMI, G. REGA, S. LENCI 

EXPLOITING GLOBAL DYNAMICS TO CONTROL AFM ROBUSTNESS G. REGA 

OUTLINE 



2.  ALTERNATIVE, GLOBALLY  ORIENTED,  CONTROL: 

preventing/delaying EROSION by INCREASING 

some GLOBAL BIFURCATION THRESHOLD 

(homo/heteroclinic tangency of invariant 

manifolds of saddle points)  

FOR PRACTICAL PURPOSES: PREVENTING or DELAYING safe basin EROSION (profile fall down)  

• HILLTOP SADDLE, as usual, ?? (can be analytically detected by Melnikov function) 

• DIFFERENT SECONDARY SADDLE ??  (to be identified numerically) 

PROBLEMS:  

Detecting the SADDLE(S) triggering erosion and identifying its homo/heteroclinic 

bifurcation  

 A GLOBALLY-TAILORED CONTROL   

1. SECURING SYSTEM OVERALL SAFETY  G. REGA 



 A CONTROL PROCEDURE OF GLOBAL EVENTS  

Homo/heteroclinic bifurcations delayed by addition of superharmonics to basic harmonic 

excitation (Lenci and Rega, 1998, 2004): 

 

 Optimal choice of controlling superharmonics  optimal excitation that maximizes 

the global bifurcation load 

 Different types of control, one-side (only one bifurcation controlled) and global (more 

bifurcations controlled) dependent on governing global mechanism 

     Still detectable through Melnikov function (if hilltop saddle) 

 Performance of control measured by the gain, ratio between 

         critical amplitudes of  control (harmonic + superharmonics) 

         and reference (harmonic) excitation 
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MELNIKOV METHOD:  

Perturbative technique to compute distance between the perturbed stable and unstable 
manifolds 

MELNIKOV FUNCTION = manifolds distance to first order 

PERTURBED SYSTEM 

2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS  G. REGA 
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MELNIKOV METHOD:  

Perturbative technique to compute distance between the perturbed stable and unstable 
manifolds 

MELNIKOV FUNCTION = manifolds distance to first order 
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MANIFOLDS INTERSECTION     Simple zero of the Melnikov function 
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WITH 1 SUPERHARMONIC: 
FOR VARYING h2 COEFFICIENTS  h m

OPTIMAL 
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MANIFOLDS INTERSECTION     Simple zero of the Melnikov function 
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CONTROLLED VS UNCONTROLLED  

UNCONTROLLED 

CONTROLLED 

WITH 1 SUPERHARMONIC: 

UNCONTROLLED CONTROLLED 

INCREASE of critical amplitude    ……and……   SEPARATION of MANIFOLDS 

NUMERICAL VERIFICATION 

G. REGA 2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS  
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NO improvement of erosion profile!! 
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CONTROLLED VS UNCONTROLLED  

UNCONTROLLED 

CONTROLLED 

WITH 1 SUPERHARMONIC: 
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NO improvement of erosion profile!! 
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CONTROLLED VS UNCONTROLLED  

UNCONTROLLED 

CONTROLLED 

WITH 1 SUPERHARMONIC: 
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MEMS 
(Lenci, Rega 2006) 

HELMHOLTZ  
(Lenci, Rega, 2003) DIFFERENTLY  

from other 
ESCAPE oscillators 



BEFORE   U = 0.001 

AFTER   U = 0.005 

UNCONTROLLED SYSTEM: MELNIKOV FUNCTION   HOMOCLINIC BIFURCATION at U=0.001823 

Just very minor 

fractalization of 

outer  boundary 

NO EROSION of 

potential well !!! 

 

 HOMOCLINIC BIFURCATION OF HILLTOP SADDLE - 5 - 

G. REGA 2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS  

SH 

Wu 

Ws 

Ws 

Wu 

SH 

Wu 

Ws 

Ws 

Wu 

Why no improvement of erosion profiles?    ANALYSIS OF BASINS EVOLUTION  ω = 0.7 



 IDENTIFYING THE EVENT ACTUALLY TRIGGERING EROSION - 1 - 
ω = 0.7 

G. REGA 2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS  

Accurate numerical investigation of the global bifurcation scenario 

Harmonic 
Amplitude 

Global Event Saddle 
Involved 

i. 0.001697 Onset of in-well saddle S1 

ii. 0.001823 Homoclinic bif.   Wr
s(SH)∩Wr

u(SH) SH 

iii. 0.006375 Homoclinic bif.   Wl
u(S1)∩Wl

s(S1) S1 

iv. 0.006676 Homoclinic bif.   Wl
u(S1)∩Wr

s(S1) S1 

v. 0.006676 Heteroclinic bif.  Wl
u(S1)∩Wr

s(SH) S1, SH 



 IDENTIFYING THE EVENT ACTUALLY TRIGGERING EROSION - 2 - 
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i. U=0.001697  -  ONSET OF IN-WELL SADDLE S1 

BEFORE 
U=0.0015 

AFTER 
U=0.0018 

Related to the arise 
of the competing P1 
solution basin (red) 
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ii. U=0.001823  -  HOMOLINIC BIFURCATION OF THE HILLTOP SADDLE SH  

BEFORE 
U=0.0015 

AFTER 
U=0.002 

ALREADY CONTROLLED THROUGH ANALYTICAL PROCEDURE (MELNIKOV METHOD) 

TANGENCY 
U=0.001823 
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G. REGA 2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS  

iii. U=0.006375  -  HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S1 

BEFORE 
U=0.0063 

AFTER 
U=0.0064 

TANGENCY 
U=0.006375 
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G. REGA 2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS  

BEFORE 
U=0.0063 

AFTER 
U=0.0064 

TANGENCY 
U=0.006375 

STARTING POINT FOR 

IN-WELL BASINS BOUNDARY 

FRACTALIZATION !!  

iii. U=0.006375  -  HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S1 



 IDENTIFYING THE EVENT ACTUALLY TRIGGERING EROSION - 4 - 
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iv. U=0.006676 - HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S1 

AFTER  U=0.00668 

TANGENCY  U=0.006676 
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iv. U=0.006676 - HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S1 

 v.  HETEROCLINIC BIFURCATION OF THE IN-WELL/HILLTOP SADDLEs S1/ SH 

AFTER  U=0.00668 

TANGENCY  U=0.006676 
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iv. U=0.006676 - HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S1 

 v.  HETEROCLINIC BIFURCATION OF THE IN-WELL/HILLTOP SADDLEs S1/ SH 

AFTER  U=0.00668 

TANGENCY  U=0.006676 

STARTING POINT FOR 
ACTUAL IN-WELL BASINS 

SEPARATION  VIA 
TONGUES FROM ESCAPE !! 



HOMOCLINIC BIFURCATION S1 / HETEROCLINIC BIFURCATION S1-SH: 

actually TRIGGERING the SHARP REDUCTION OF SAFE BASIN INTEGRITY ! 

 IDENTIFYING THE SADDLE ACTUALLY TRIGGERING EROSION - 5 - 
ω = 0.7 
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BIFURCATIONS VS EROSION PROFILES 



AIM 

Delay HOMO/HETEROCLINIC BIFURCATIONS involving ANY 
SADDLE of the system 

STEPS 

• IDENTIFY a PROPER REGION in state plane (including all 
possible global bifurcations) 

• NUMERICALLY DETECT stable and unstable MANIFOLDS 

 

• COMPUTATION of MANIFOLDS DISTANCE: 

• One manifold       DISCRETE 

Other manifold    CONTINUOUS (interpolating function) 

 

• Projection of DIRECTION of hilltop saddle UNSTABLE 
EIGENVECTOR on each point of discrete manifold 

• MEASURE of DISCRETE-CONTINUOUS SEGMENT via 
Arclength Method 

DISTANCE equal to ZERO  GLOBAL BIFURCATION 

  NUMERICAL CONTROL PROCEDURE 

SH 

3. NUMERICAL CONTROL PROCEDURE G. REGA 
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 VALIDATION 

HOMOCLINIC BIFURCATION OF HILLTOP SADDLE SH 

• Good ACCORDANCE between results 

• The numerical method is able to DETECT the value of OPTIMAL SUPERHARMONIC to be 
added for shifting the global bifurcation to the highest value of forcing amplitude 

COMPARISON between  

analytical MELNIKOV method  

and NUMERICAL method  

(1 superharmonic, ω=0.7) 

3. NUMERICAL CONTROL PROCEDURE G. REGA 



 VALIDATION 

HOMOCLINIC BIFURCATION OF HILLTOP SADDLE SH 

3. NUMERICAL CONTROL PROCEDURE G. REGA 

• Strongly nonlinear behavior of manifolds 
• Different way of approaching each other  
• Shift of the bifurcation point 

ANALYTICAL 

NUMERICAL 

Analytical vs numerical max manifolds distance 
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3. NUMERICAL CONTROL PROCEDURE G. REGA 

U=0.006676 U=0.006938 
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DELAY of PROFILE 
 FALL DOWN !! 

U=0.006676 U=0.006938 

3. NUMERICAL CONTROL PROCEDURE G. REGA 



 HOMOCLINIC BIFURCATION OF IN-WELL SADDLE S1 - 2 -  

UNCONTROLLED (HARMONIC) 

CONTROLLED (OPTIMAL SUP.) 

REDUCTION OF 
BASINS EROSION 

3. NUMERICAL CONTROL PROCEDURE G. REGA 



UNCONTROLLED (HARMONIC) 

CONTROLLED (OPTIMAL SUP.) 
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DELAY OF BASINS 
SEPARATION 

3. NUMERICAL CONTROL PROCEDURE G. REGA 



 SUMMARY AND COMMENTS 

 Transition from LOCAL to GLOBAL SAFETY in engineering design: major implications also as 

regards FEASIBILITY/EFFECTIVENESS of CONTROL  

 GLOBAL control procedure  EXPLOITING some associated GLOBAL BIFURCATION event to 

favorably affect system stability in terms of EROSION DELAY 

MAIN PROBLEM: DETECTION of GLOBAL BIFURCATIONS/SADDLES involved in erosion 

triggering 

HILLTOP SADDLE: analytical asymptotic MELNIKOV METHOD to compute distance 

between perturbed stable and unstable manifolds 

OTHER INTERNAL SADDLES: need for a FULLY NUMERICAL METHOD 

Cross-validation and differences 

5. CONCLUSIONS G. REGA 4.  SUMMARY AND COMMENTS G. REGA 


