	DAY	TIME	LECTURE
Monday	05/11	14.00 -14.45	Historical Framework - A Global Dynamics Perspective in the Nonlinear Analysis of Systems/Structures
		15.00 -15.45	Achieving Load Carrying Capacity: Theoretical and Practical Stability
		16.00 -16.45	Dynamical Integrity: Concepts and Tools_1
Wednesday	07/11	14.00 -14.45	Dynamical Integrity: Concepts and Tools_2
		15.00 -15.45	Global Dynamics of Engineering Systems
		16.00 -16.45	Dynamical integrity: Interpreting/Predicting Experimental Response
Monday	12/11	14.00 -14.45	Techniques for Control of Chaos
		15.00 -15.45	A Unified Framework for Controlling Global Dynamics
		16.00 -16.45	Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics
Wednesday	14/11	14.00 -14.45	A Noncontact AFM: (a) Nonlinear Dynamics and Feedback Control (b) Global Effects of a Locally-tailored Control
		15.00 -15.45	Exploiting Global Dynamics to Control AFM Robustness
		16.00 -16.45	Dynamical Integrity as a Novel Paradigm for Safe/Aware Design

12.2 – Exploiting Global Dynamics to Control AFM Robustness

STADIUM VIE

Department of Structural and Geotechnical Engineering Sapienza University of Rome, Italy <u>Giuseppe.Rega@uniroma1.it</u>

Giuseppe Rega

Coworkers: V. Settimi, S. Lenci

OUTLINE

1. A CONTROL PROCEDURE OF GLOBAL EVENTS

ANALYTICAL CONTROL OF HOMOCLINIC BIFURCATION OF HILLTOP SADDLE IDENTIFYING THE BIFURCATION ACTUALLY TRIGGERING EROSION

2. NUMERICAL CONTROL PROCEDURE

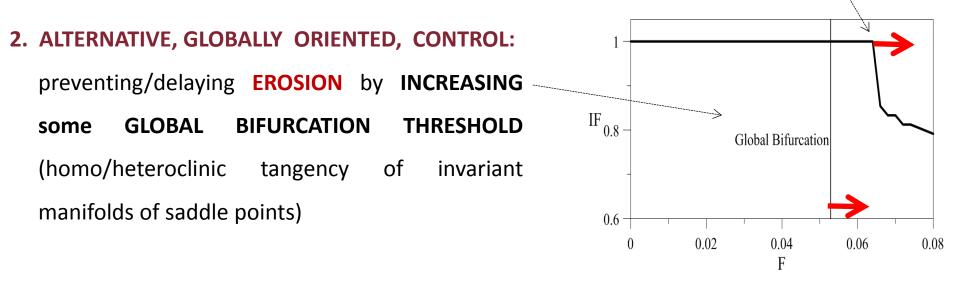
VALIDATION

CONTROLLING HOMOCLINIC BIFURCATION OF IN-WELL SADDLE

3. SUMMARY AND COMMENTS

A GLOBALLY-TAILORED CONTROL

FOR PRACTICAL PURPOSES: PREVENTING or DELAYING safe basin EROSION (profile fall down)



PROBLEMS:

Detecting the **SADDLE(S) triggering erosion** and **identifying** its **homo/heteroclinic bifurcation**

- **HILLTOP SADDLE**, as usual, **??** (can be **analytically** detected by Melnikov function)
- DIFFERENT SECONDARY SADDLE ?? (to be identified numerically)

A CONTROL PROCEDURE OF GLOBAL EVENTS

Homo/heteroclinic bifurcations delayed by addition of superharmonics to basic harmonic excitation (Lenci and Rega, 1998, 2004):

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\alpha_1 x - \alpha_3 x^3 - \frac{\Gamma_1}{(1+x)^2} - \rho_1 y + \sum_{j=1}^N \tilde{U}_j \sin\left(j\omega t + \psi_j\right) \end{cases}$$

- Optimal choice of controlling superharmonics → optimal excitation that maximizes the global bifurcation load
- Different types of control, <u>one-side</u> (only one bifurcation controlled) and global (more bifurcations controlled) dependent on governing global mechanism
- Still detectable through **Melnikov** function (if **hilltop saddle**)
- Performance of control measured by the gain, ratio between critical amplitudes of control (harmonic + superharmonics) and reference (harmonic) excitation

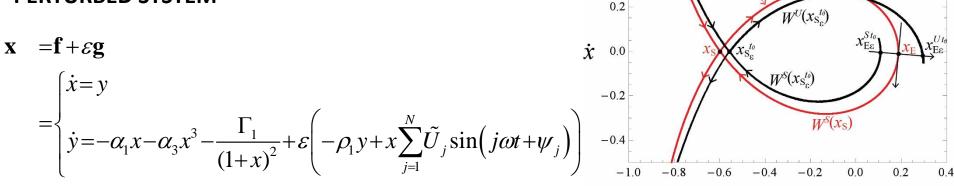
$$G = \frac{U_{1,cr}}{U_{1,cr}^{h}}$$

HOMOCLINIC BIFURCATION OF HILLTOP SADDLE - 1 -

MELNIKOV METHOD:

Perturbative technique to compute distance between the perturbed stable and unstable manifolds $_{0.4}$

PERTURBED SYSTEM



MELNIKOV FUNCTION = manifolds **distance** to first order

$$\boldsymbol{M}(\boldsymbol{t}_{0}) = \mathbf{f} \wedge \mathbf{g} = \int_{-\infty}^{+\infty} \boldsymbol{y}_{h}(\boldsymbol{t}) \left(-\rho_{1}\boldsymbol{y}_{h}(\boldsymbol{t}) + \boldsymbol{x}_{h}(\boldsymbol{t}) \sum_{j=1}^{N} \tilde{\boldsymbol{U}}_{j} \sin\left(j\omega(\boldsymbol{t}+\boldsymbol{t}_{0}) + \boldsymbol{\psi}_{j}\right) \right) d\boldsymbol{t}$$

$$\mathbf{y}_{h}(t) = \text{homoclinic horbit} = \frac{dx_{h}}{dt} = \pm \sqrt{2(V(x_{s}) - V(x))}, \quad V(x) = \alpha_{1}\frac{x^{2}}{2} + \alpha_{3}\frac{x^{4}}{4} - \frac{\Gamma_{1}}{1+x}$$

 $W^{U}(x_{\rm S})$

x

HOMOCLINIC BIFURCATION OF HILLTOP SADDLE - 2 -

MELNIKOV METHOD:

Perturbative technique to compute distance between the perturbed stable and unstable manifolds

MELNIKOV FUNCTION = manifolds **distance** to first order

$$M(t_0) = \mathbf{f} \wedge \mathbf{g} = \int_{-\infty}^{+\infty} y_h(t) \left(-\rho_1 y_h(t) + x_h(t) \sum_{j=1}^{N} \tilde{U}_j \sin(j\omega(t+t_0) + \psi_j) \right) dt$$
$$= -2\rho_1 I_1 + 2I_2(j\omega) \sum_{j=1}^{N} \tilde{U}_j \cos(j\omega t_0 + \psi_j)$$
$$= -2\rho_1 I_1 + 2\tilde{U}_1 I_2(\omega) h(\omega t_0)$$

$$\mathbf{y}_{h}(t) = \text{homoclinic horbit} = \frac{dx_{h}}{dt} = \pm \sqrt{2(V(x_{s}) - V(x))}, \quad V(x) = \alpha_{2} \frac{x^{2}}{2} + \alpha_{3} \frac{x^{4}}{4} - \frac{\Gamma_{1}}{1 + x}$$

$$I_{1} = \int_{x_{E}}^{x_{S}} y_{h}(x) dx < 0, \quad I_{2}(j\omega) = \int_{x_{E}}^{x_{S}} x \sin\left(j\omega \int_{x_{E}}^{x} \frac{dr}{\sqrt{2(V(x_{s}) - V(r))}}\right) dx$$
$$h(\omega t_{0}) = \sum_{j=1}^{N} h_{j} \cos\left(j\omega t_{0} + \psi_{j}\right), \quad h_{j} = \frac{\tilde{U}_{j}I_{2}(j\omega)}{\tilde{U}_{1}I_{2}(\omega)}$$

HOMOCLINIC BIFURCATION OF HILLTOP SADDLE - 3 -

MANIFOLDS INTERSECTION → Simple zero of the **Melnikov** function

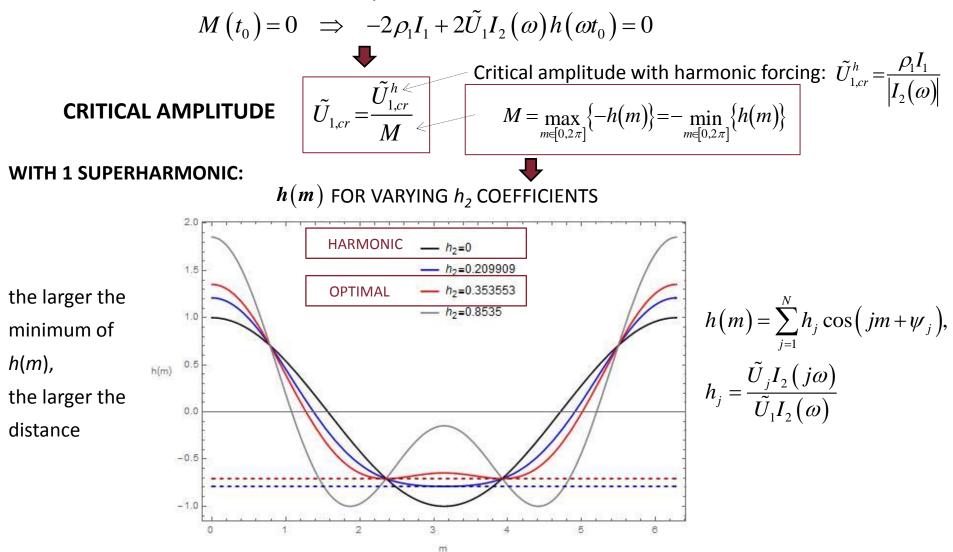
$$M(t_0) = 0 \implies -2\rho_1 I_1 + 2\tilde{U}_1 I_2(\omega) h(\omega t_0) = 0$$

$$\swarrow$$
Critical amplitude with harmonic forcing: $\tilde{U}_{1,cr}^h = \frac{\rho_1 I_1}{|I_2(\omega)|}$

$$\tilde{U}_{1,cr} = \frac{\tilde{U}_{1,cr}^{h \ll}}{M} \qquad M = \max_{m \in [0,2\pi]} \{-h(m)\} = -\min_{m \in [0,2\pi]} \{h(m)\}$$

HOMOCLINIC BIFURCATION OF HILLTOP SADDLE - 3 -

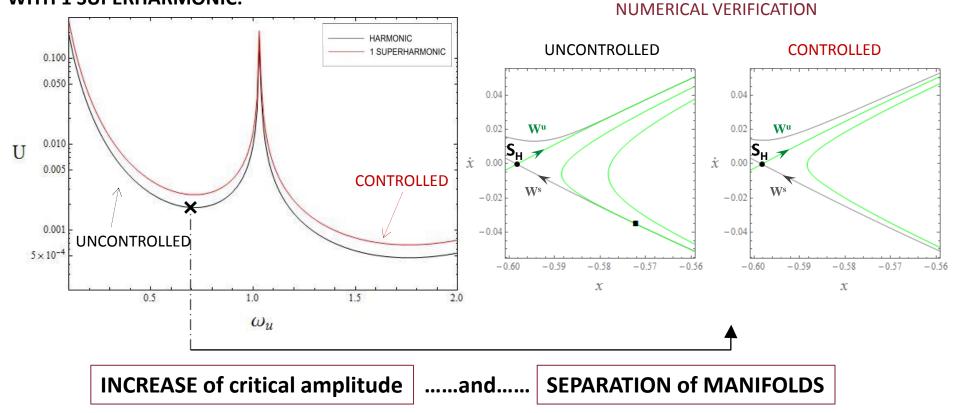
MANIFOLDS INTERSECTION → Simple zero of the Melnikov function



HOMOCLINIC BIFURCATION OF HILLTOP SADDLE - 4 -

CONTROLLED VS UNCONTROLLED

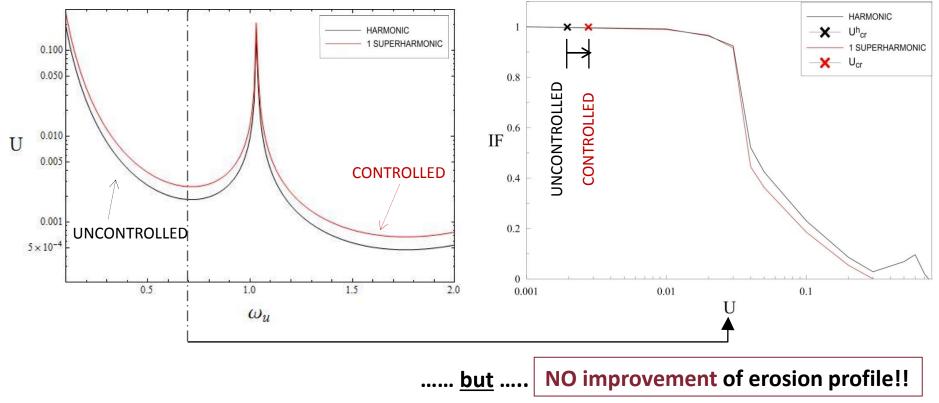
WITH 1 SUPERHARMONIC:



HOMOCLINIC BIFURCATION OF HILLTOP SADDLE - 4 -

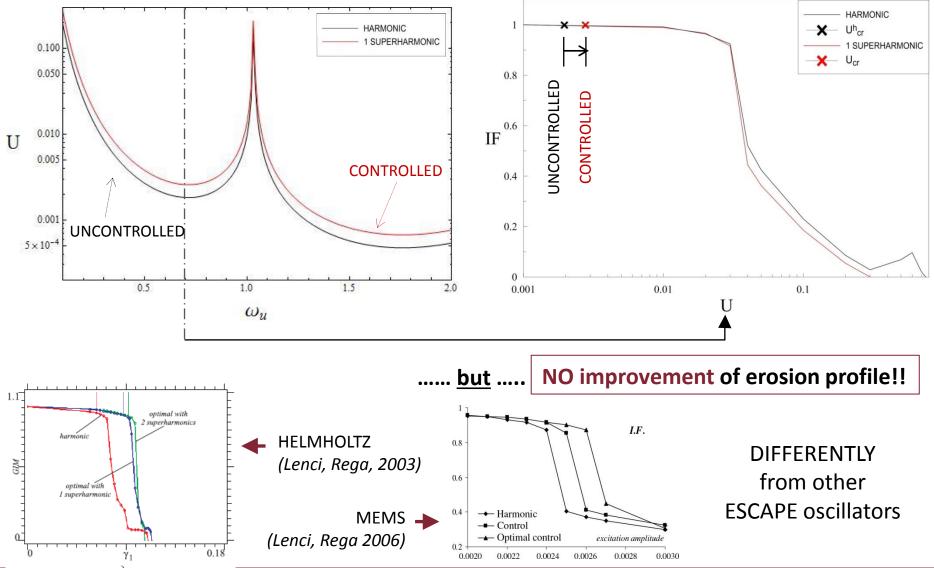
CONTROLLED VS UNCONTROLLED

WITH 1 SUPERHARMONIC:



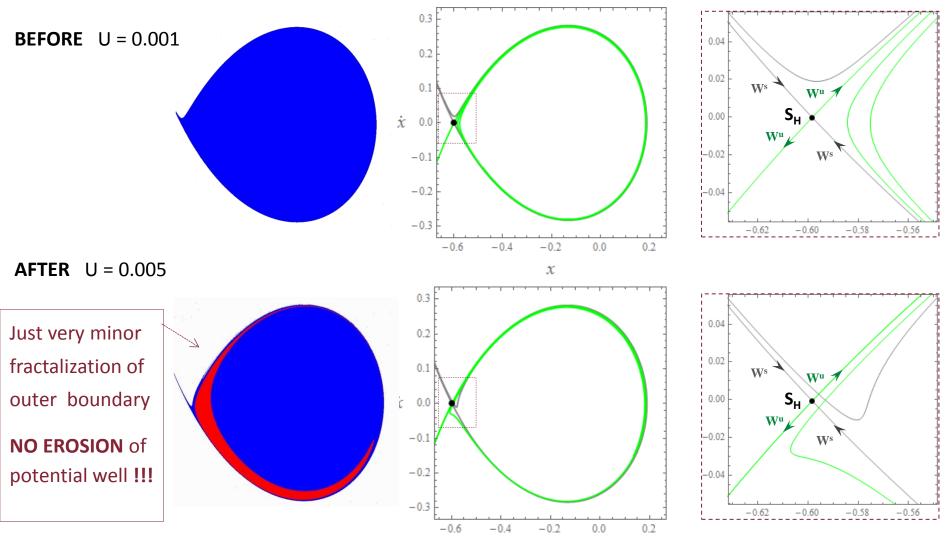
HOMOCLINIC BIFURCATION OF HILLTOP SADDLE - 4 -

CONTROLLED VS UNCONTROLLED



Why no improvement of erosion profiles? ANALYSIS OF **BASINS EVOLUTION**

Uncontrolled system: Melnikov function \rightarrow HOMOCLINIC BIFURCATION at U=0.001823



x

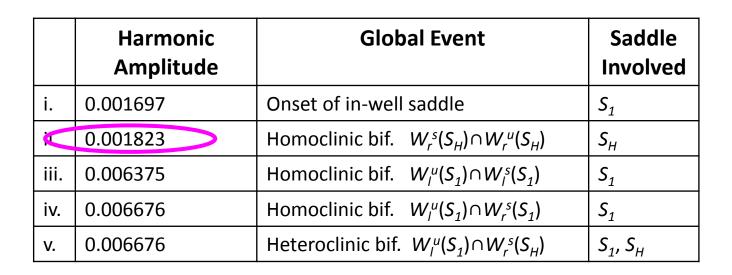
2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS

ω = 0.7

IDENTIFYING THE EVENT ACTUALLY TRIGGERING EROSION - 1 -

ω = 0.7

Accurate numerical investigation of the global bifurcation scenario



i. U=0.001697 - ONSET OF IN-WELL SADDLE S₁

0.3 0.3 BEFORE 0.2 0.2 U=0.0015 0.1 0.1 \dot{x} \dot{x} 0.0 0.0 -0.1-0.1-0.2-0.2-0.3-0.30.2 -0.4-0.20.0 0.2 -0.2-0.6-0.6-0.40.0 xx0.3 0.3 AFTER 0.2 0.2 U=0.0018 0.1 0.1 ż \dot{x} 0.0 0.0 -0.-0.1Related to the arise of the competing P1 -0.2-0.2solution basin (red) -0.3-0.3-0.4 0.2 -0.6-0.20.0 0.2 -0.4-0.20.0 -0.6

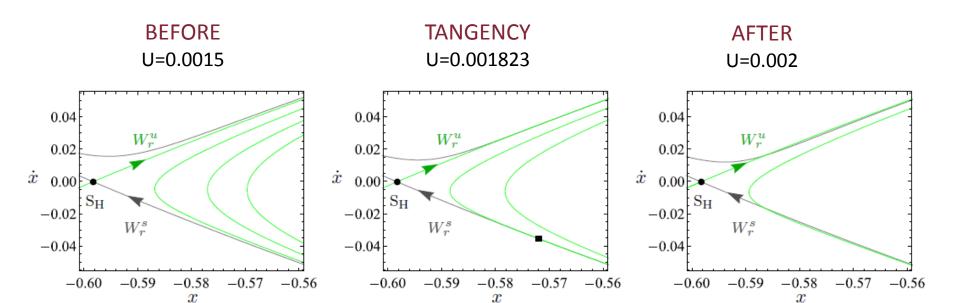
x

ω = 0.7

2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS

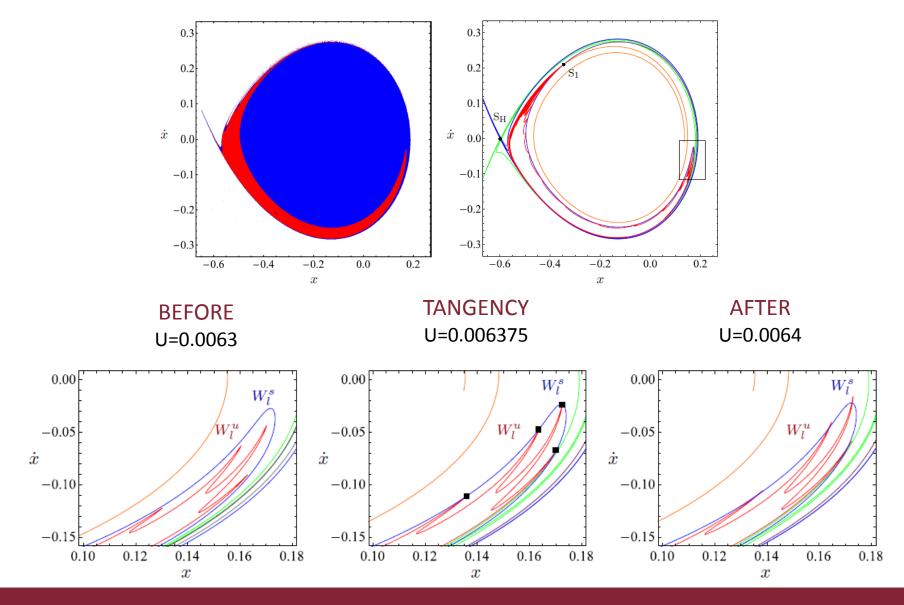
x

ii. U=0.001823 - HOMOLINIC BIFURCATION OF THE HILLTOP SADDLE S_H



ALREADY CONTROLLED THROUGH ANALYTICAL PROCEDURE (MELNIKOV METHOD)

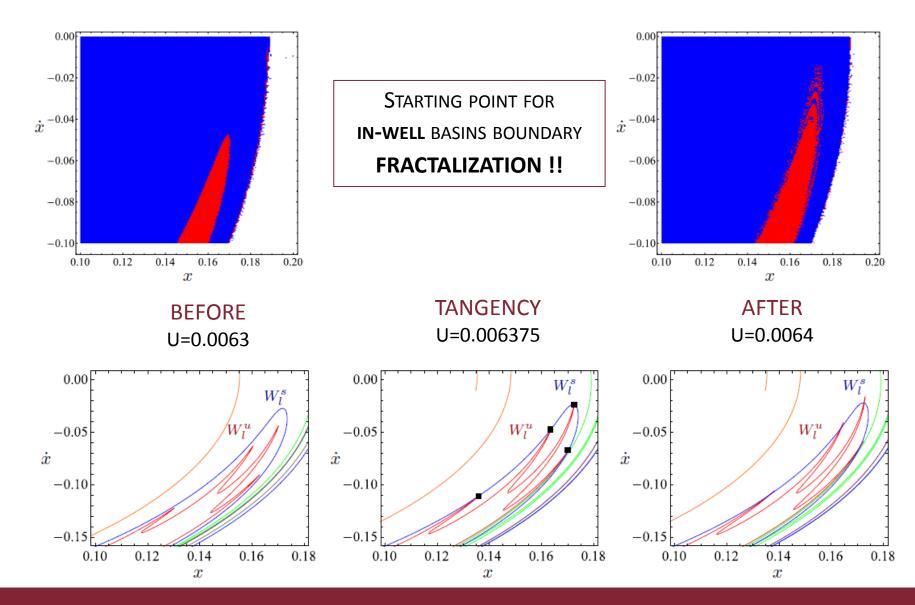
iii. U=0.006375 - HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S1



2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS

ω = 0.7

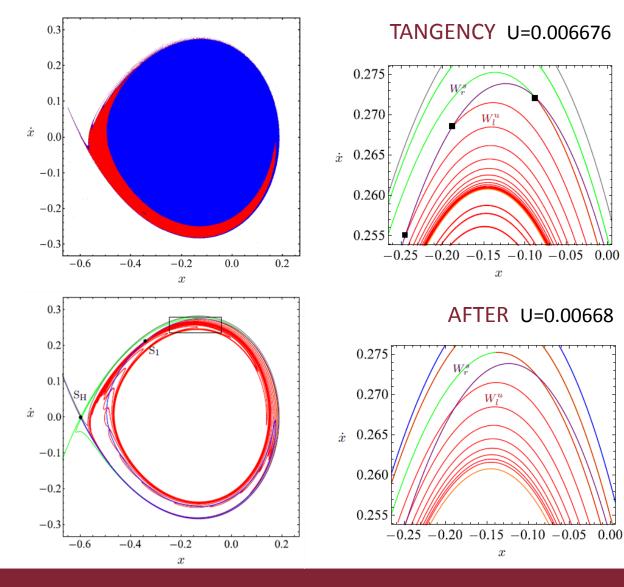
iii. U=0.006375 - HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S1



2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS

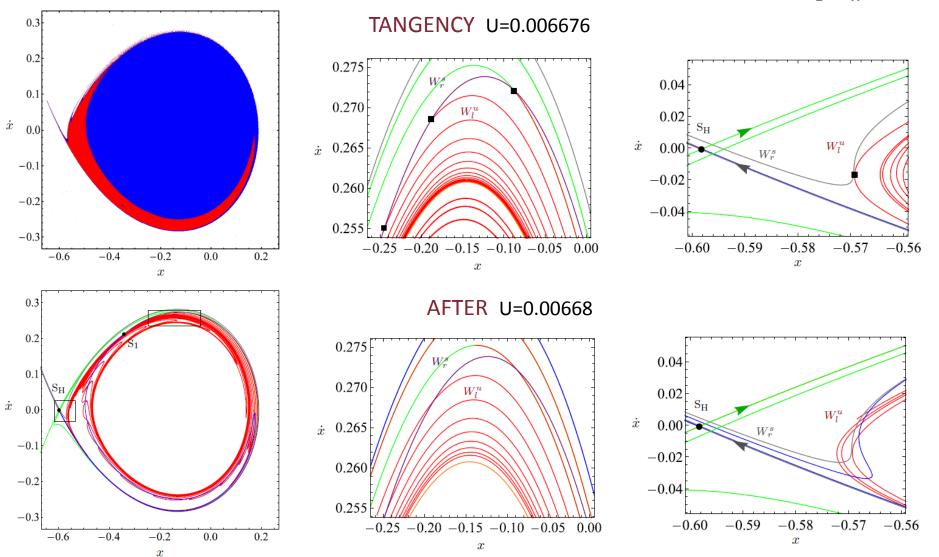
ω = 0.7

iv. U=0.006676 - HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S1



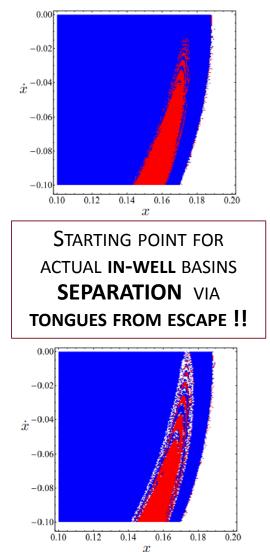
IDENTIFYING THE EVENT ACTUALLY TRIGGERING EROSION - 4 -

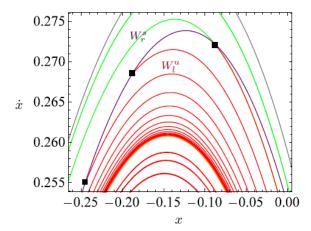
iv. U=0.006676 - HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S_1 v. HETEROCLINIC BIFURCATION OF THE IN-WELL/HILLTOP SADDLES S_1/S_H



IDENTIFYING THE EVENT ACTUALLY TRIGGERING EROSION - 4 -

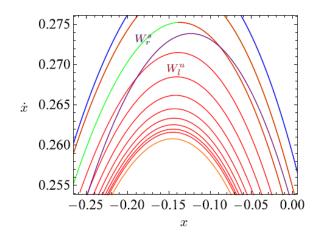
iv. U=0.006676 - HOMOCLINIC BIFURCATION OF THE IN-WELL SADDLE S_1 v. HETEROCLINIC BIFURCATION OF THE IN-WELL/HILLTOP SADDLES S_1/S_H

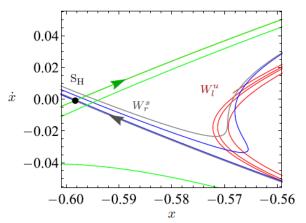




$\begin{array}{c} 0.04 \\ 0.02 \\ \dot{x} \\ 0.00 \\ -0.02 \\ -0.04 \\ -0.04 \\ -0.059 \\ -0.58 \\ -0.57 \\ -0.56 \\ x \end{array}$

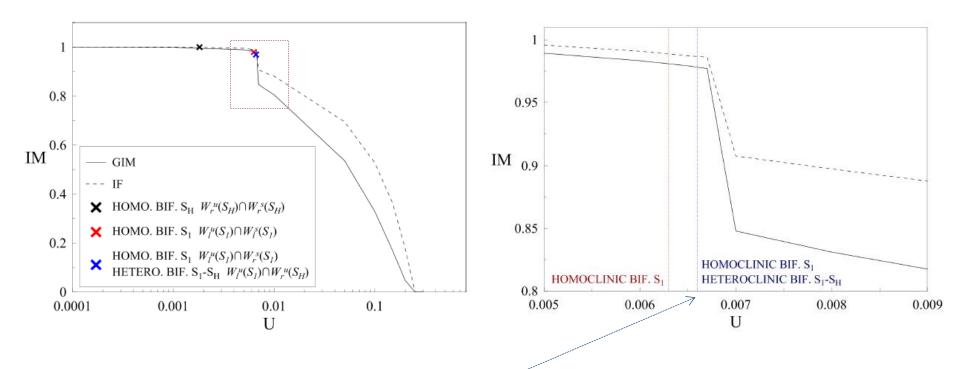
AFTER U=0.00668





TANGENCY U=0.006676

BIFURCATIONS VS EROSION PROFILES



HOMOCLINIC BIFURCATION S_1 / HETEROCLINIC BIFURCATION S_1 - S_H :

actually TRIGGERING the SHARP REDUCTION OF SAFE BASIN INTEGRITY !

2. ANALYTICAL CONTROL PROCEDURE OF GLOBAL EVENTS

ω = 0.7

NUMERICAL CONTROL PROCEDURE

AIM

Delay **HOMO/HETEROCLINIC** BIFURCATIONS involving **ANY SADDLE** of the system

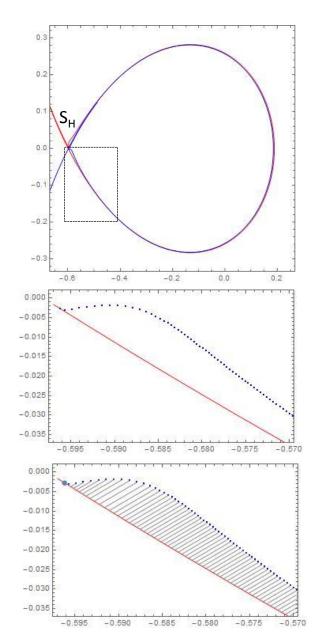
STEPS

- **IDENTIFY** a PROPER **REGION** in state plane (including all possible global bifurcations)
- NUMERICALLY DETECT stable and unstable MANIFOLDS
- COMPUTATION of MANIFOLDS DISTANCE:
 - One manifold → DISCRETE

Other manifold \rightarrow CONTINUOUS (interpolating function)

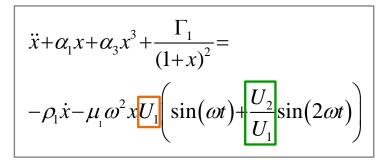
- Projection of DIRECTION of hilltop saddle UNSTABLE EIGENVECTOR on each point of discrete manifold
- MEASURE of DISCRETE-CONTINUOUS SEGMENT via Arclength Method

DISTANCE equal to **ZERO** → **GLOBAL BIFURCATION**

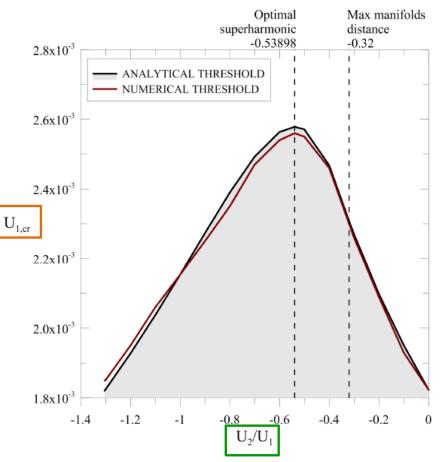


VALIDATION

HOMOCLINIC BIFURCATION OF HILLTOP SADDLE S_H



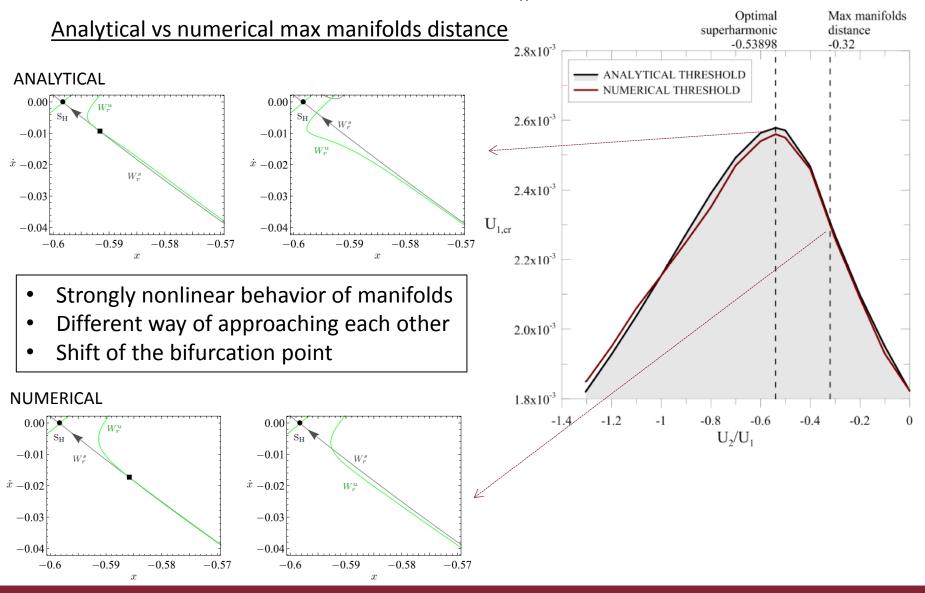
COMPARISON between analytical MELNIKOV method and NUMERICAL method (1 superharmonic, ω=0.7)



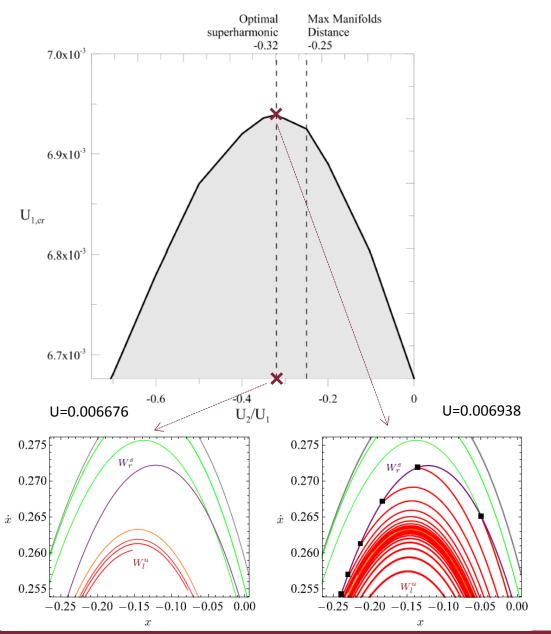
- Good ACCORDANCE between results
- The numerical method is able to DETECT the value of OPTIMAL SUPERHARMONIC to be added for shifting the global bifurcation to the highest value of forcing amplitude

VALIDATION

HOMOCLINIC BIFURCATION OF HILLTOP SADDLE S_H

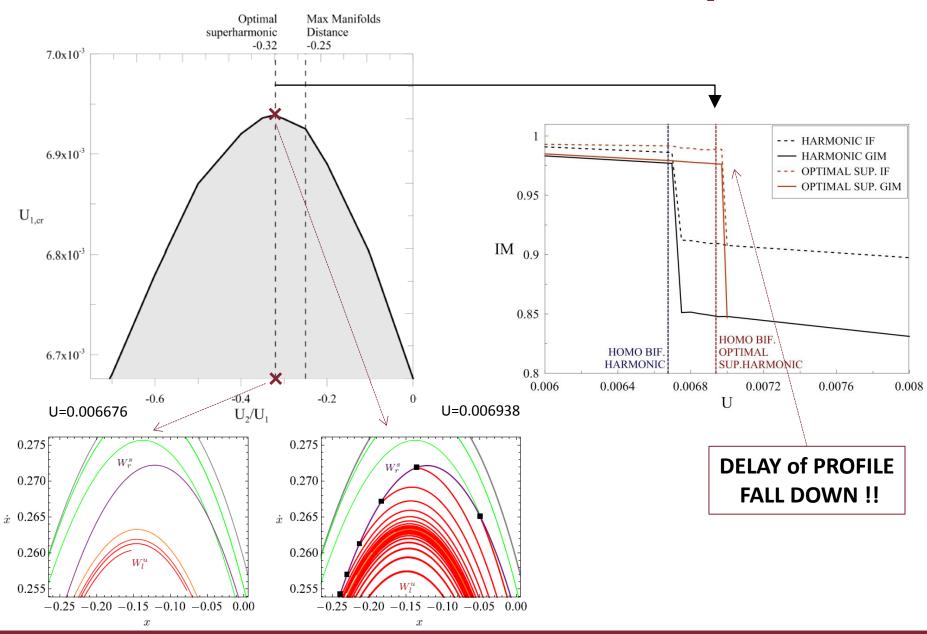


HOMOCLINIC BIFURCATION OF IN-WELL SADDLE S₁ - 1 -



3. NUMERICAL CONTROL PROCEDURE

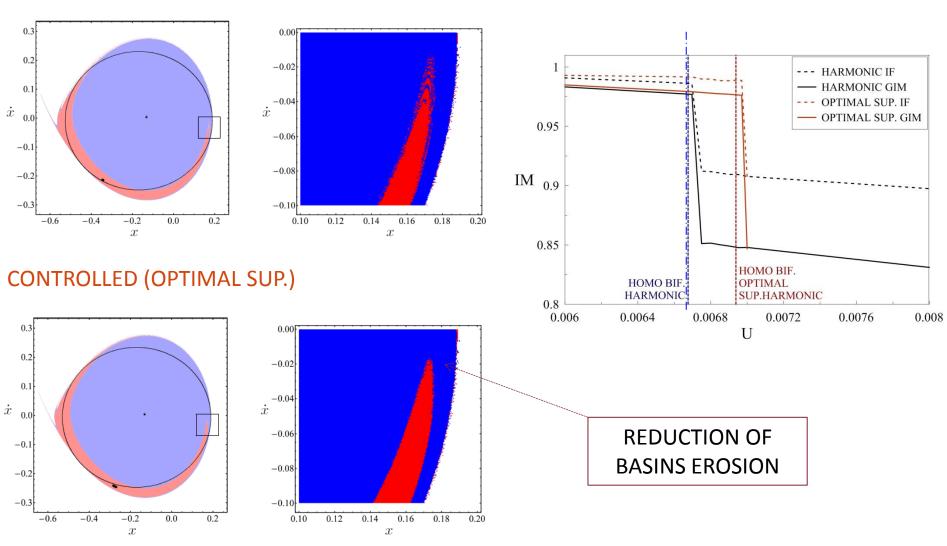
HOMOCLINIC BIFURCATION OF IN-WELL SADDLE S₁ - 1 -



3. NUMERICAL CONTROL PROCEDURE

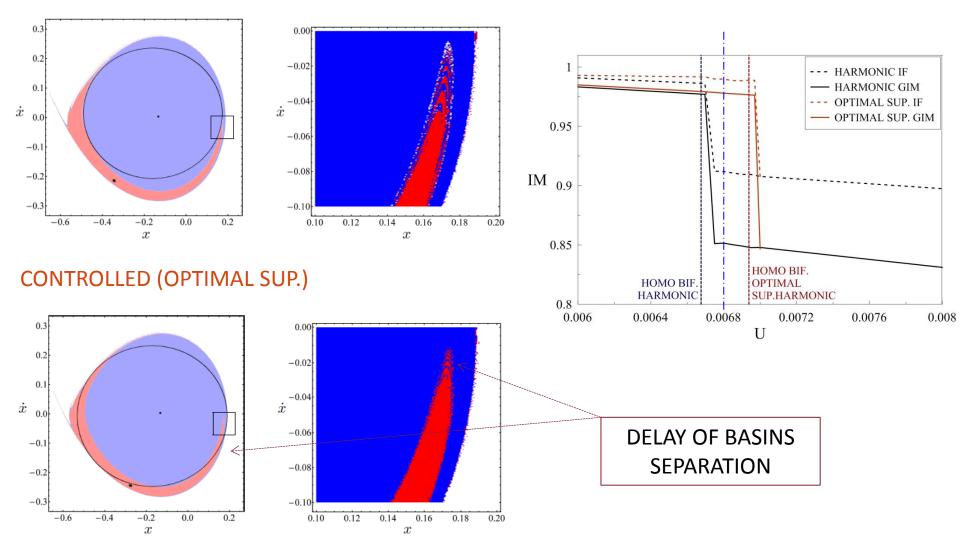
HOMOCLINIC BIFURCATION OF IN-WELL SADDLE S₁ - 2 -

UNCONTROLLED (HARMONIC)



HOMOCLINIC BIFURCATION OF IN-WELL SADDLE S₁ - 3 -

UNCONTROLLED (HARMONIC)



SUMMARY AND COMMENTS

- Transition from LOCAL to GLOBAL SAFETY in engineering design: major implications also as regards FEASIBILITY/EFFECTIVENESS of CONTROL
- GLOBAL control procedure EXPLOITING some associated GLOBAL BIFURCATION event to favorably affect system stability in terms of EROSION DELAY

MAIN PROBLEM: DETECTION of GLOBAL BIFURCATIONS/SADDLES involved in erosion triggering

 HILLTOP SADDLE: analytical asymptotic MELNIKOV METHOD to compute distance between perturbed stable and unstable manifolds
 OTHER INTERNAL SADDLES: need for a FULLY NUMERICAL METHOD

Cross-validation and differences