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Historical Framework  - A Global Dynamics Perspective in the Nonlinear 
Analysis of Systems/Structures 

15.00 -15.45 Achieving Load Carrying Capacity: Theoretical and Practical Stability 

16.00 -16.45 Dynamical Integrity: Concepts and Tools_1 
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14.00 -14.45 Dynamical Integrity: Concepts and Tools_2 

15.00 -15.45 Global Dynamics of Engineering Systems 

16.00 -16.45 Dynamical integrity: Interpreting/Predicting Experimental Response 
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14.00 -14.45 Techniques for Control of Chaos 

15.00 -15.45 A Unified Framework for Controlling Global Dynamics 

16.00 -16.45 Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics 
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14.00 -14.45 
A Noncontact AFM:  (a) Nonlinear Dynamics and Feedback Control  
                                     (b) Global Effects of a Locally-tailored Control  

15.00 -15.45 Exploiting Global Dynamics to Control AFM Robustness  

16.00 -16.45 Dynamical Integrity as a Novel Paradigm for Safe/Aware Design 
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OUTLINE of 12.1b 

A NONCONTACT AFM: GLOBAL EFFECTS OF A LOCALLY-TAILORED CONTROL G. REGA 

1.   STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM  

2. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM  

                   ………………. towards a GLOBAL DYNAMICS-BASED CONTROL  



NONCONTACT AFM WITH EXTERNAL FEEDBACK CONTROL  

1. BACKGROUND G. REGA 
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REFERENCE RESPONSE 

RESPONSE OF THE CONTROLLED SYSTEM 

ATOMIC 
INTERACTION 

• INCREASED D.O.F. : RICHER BIFURCATIVE SCENARIO 

• New TORUS and TRANSCRITICAL bifurcations:  STABILITY BOUNDARY REDUCTION 



STRONGLY NONLINEAR DYNAMICS 

• System nonlinear response as function of MOST RELEVANT DYNAMICAL PARAMETERS: 

  -  FORCING AMPLITUDE   U(V) 

  -  FORCING FREQUENCY   ωu (ωv ) 

  -  ATOMIC INTERACTION   Γ1 

  -  FEEDBACK CONTROL PARAMETER   kg 

• BIFURCATION DIAGRAMS and  RESPONSE CHARTS around FUNDAMENTAL and PRINCIPAL 

resonances 

• PARAMETRICALLY and EXTERNALLY forced system 

• COMPARISON with results obtained for UNCONTROLLED system 

INFLUENCE of EXTERNAL FEEDBACK CONTROL on DYNAMIC BEHAVIOR 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 



PARAMETRIC EXCITATION - 1 - 
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2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 
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NEW 
TRANSCRITICAL 

AND TORUS 
THRESHOLDS 

STABLE REGION: 
solutions for which 

FEEDBACK CONTROL 
WORKS PROPERLY 

DECREASE OF 
ESCAPE VALUE  
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PARAMETRIC EXCITATION - 1 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 



FUNDAMENTAL RESONANCE 

ωu-U 

FEEDBACK CONTROL 

kg = 0 : REFERENCE CONFIG. kg = 0.001 kg = 0.002 kg = 0.01 

TORUS AND TRANSCRITICAL THRESHOLDS • UNSTABLE TONGUES at LOW values of U 

• TRIANGLE region REDUCED 

• NO COEXISTENCE of P1L/P1H solutions 

TOTAL ESCAPE occurs at LOWER VALUES OF U 

WITH VARYING FEEDBACK CONTROL 

PARAMETRIC EXCITATION - 2 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 



ωu-U 

TRL: TORUS bif. of 
P1L 
TH: TRANSCRITICAL 
bif. of P1H 

z x 

BIFURCATION DIAGRAM at ωu = 0.7 and kg = 0.001 

PARAMETRIC EXCITATION - 3 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

FUNDAMENTAL RESONANCE 



ωu-U 

TRL: TORUS bif. of 
P1L 
TH: TRANSCRITICAL 
bif. of P1H 

From TRANSCRITICAL BIF.: new STABLE P1 solutions       INEFFICIENCY OF CONTROL 

z x 

BIFURCATION DIAGRAM at ωu = 0.7 and kg = 0.001 

PARAMETRIC EXCITATION - 3 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

FUNDAMENTAL RESONANCE 



TRL: TORUS bif. of 
P1L 
TH: TRANSCRITICAL 
bif. of P1H 

From TORUS BIF.: new STABLE QUASIPERIODIC  solutions     INEFFICIENCY OF CONTROL 

z x 

BIFURCATION DIAGRAM at ωu = 0.7 and kg = 0.001 

x z 

PARAMETRIC EXCITATION - 3 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

ωu-U 

FUNDAMENTAL RESONANCE 



ωu- kg 

U = 0.0001 

PARAMETRIC EXCITATION - 4 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

FUNDAMENTAL RESONANCE 



ωu- kg 

FROM QP TO P 

U = 0.0001 

PARAMETRIC EXCITATION - 4 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

FUNDAMENTAL RESONANCE 

PHASE LOCKING (from QP to P):  
synchronization of response frequency  
to forcing one 



ωu- kg 

PHASE LOCKING (from QP to P):  
synchronization of response frequency  
to forcing one 

FROM QP TO P 

RESONANCE FREQUENCY (from P to QP):  
increase of response amplitude that 
feedback control barely dominates 
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ωu = 0.8358  

U = 0.0001 

PARAMETRIC EXCITATION - 4 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

FUNDAMENTAL RESONANCE 



GOOD AGREEMENT between AMEs and ODEs 

STABILITY THRESHOLD: Hopf HB (Torus TR) bifurcation  

AROUND RESONANCE:  Transcritical T bifurcation 

PARAMETRIC EXCITATION - 5 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

•  BIFURCATION BEHAVIOR 

•  STABILITY THRESHOLD OF BOUNDED REFERENCE SOLUTION 

HB 
TR 

T 

T 

HB 

TR 



HB 
TR 

T 

T 

HB 

TR 

AMEs 

ODEs 

1-period REFERENCE Solution  S1 (P1)   ok control 
1-period NEW Solutions  S1’,S1’’(P1’,P1’’)  failure of control 
QUASIPERIODIC Solutions  C’,C’’  only AMEs  failure of control 

PARAMETRIC EXCITATION - 5 - 

GOOD AGREEMENT between AMEs and ODEs 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

•  BIFURCATION BEHAVIOR 

•  STABILITY THRESHOLD OF BOUNDED REFERENCE SOLUTION 



FUNDAMENTAL RESONANCE 

kg - U 

FORCING FREQUENCY 

ωu = 0.7 ωu = 0.76 ωu = 0.82 ωu = 0.9 

PRESENCE OF CONFINED STABLE REGIONS (P1H):   -  HIGH U 

  -  HIGH kG 

PARAMETRIC EXCITATION - 6 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

WITH VARYING FORCING FREQUENCY 



FUNDAMENTAL RESONANCE 

Γ1 - U 

kg = 0 : REFERENCE CONFIGURATION kg = 0.001 

UNCONTROLLED CONTROLLED 

PARAMETRIC EXCITATION - 7 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

WITH VARYING ATOMIC INTERACTION 



PRINCIPAL RESONANCE 

ωu-U 

P1+P2 SOLUTIONS 

P1 SOLUTION P2 SOLUTION 

PARAMETRIC EXCITATION - 8 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 



x z 

PRINCIPAL RESONANCE 

ωu-U 
BIFURCATION DIAGRAM at ωu = 1.64 and kg = 0.001 

PARAMETRIC EXCITATION - 9 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

Three P2 SOLUTIONS: from Subcritical Period Doubling (SbPD P1) P2’   

 from Supercritical Period Doubling (SpPD P1)  P2’’   

 disconnected P2   



x z 

ωu-U 
BIFURCATION DIAGRAM at ωu = 1.64 and kg = 0.001 

PARAMETRIC EXCITATION - 9 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

Three P2 SOLUTIONS: from Subcritical Period Doubling (SbPD P1) P2’ UNSTABLE  

 from Supercritical Period Doubling (SpPD P1)  P2’’ UNSTABLE  

 disconnected P2 STABLE  

PRINCIPAL RESONANCE 



Three P2 SOLUTIONS: from Subcritical Period Doubling (SbPD P1) P2’ UNSTABLE OK CONTROL 

 from Supercritical Period Doubling (SpPD P1)  P2’’ UNSTABLE NO CONTROL 

 disconnected P2 STABLE NO CONTROL 

x z 

ωu-U 
BIFURCATION DIAGRAM at ωu = 1.64 and kg = 0.001 

PARAMETRIC EXCITATION - 9 - 

Control works only on P2′, the only 2-period solution of uncontrolled system, here unstable 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

PRINCIPAL RESONANCE 



Three P2 SOLUTIONS: from Subcritical Period Doubling (SbPD P1) P2’ UNSTABLE OK CONTROL 

 from Supercritical Period Doubling (SpPD P1)  P2’’ UNSTABLE NO CONTROL 

 disconnected P2 STABLE NO CONTROL 

x z 

ωu-U 
BIFURCATION DIAGRAM at ωu = 1.64 and kg = 0.001 

PARAMETRIC EXCITATION - 9 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

ESCAPE THRESHOLD: RELATED ONLY TO P1 SOLUTION 

PRINCIPAL RESONANCE 



ωu- kg 
U = 0.0001 

• period-doubled solution  coherent with principal resonance 

• loop size increased  PRINCIPAL resonance : MAIN region for 
  PARAMETRIC system 

ωu = 1.6717 

x 

RESONANCE LOOP : PERIOD DOUBLING 

z 

PARAMETRIC EXCITATION - 10 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 

PRINCIPAL RESONANCE 

(with respect to 
fundamental resonance) 



EXTERNAL EXCITATION - 1 - 

ωv-V 
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2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 



ωv-V 

NEW 
TRANSCRITICAL 

AND TORUS 
THRESHOLDS 

STABLE REGION: 
solutions for which 

FEEDBACK CONTROL 
WORKS PROPERLY 

DECREASE OF 
ESCAPE VALUE  

SAME BEHAVIOR OF 
 PARAMETRIC CASE 
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EXTERNAL EXCITATION - 1 - 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 
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STABILITY REGIONS WITH/WITHOUT CONTROL 

MAIN RESONANCE FREQUENCIES:  deep  INSTABILITY TONGUES  

    reductions of  ≈ 99,9% 

due to a substantial increase of response amplitude that LOCAL feedback control barely 

dominates need of a GLOBAL control !?  

PARAMETRIC EXCITATION EXTERNAL EXCITATION 

stable region:  
solutions for which feedback 

control works properly 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 



PARAMETRIC EXCITATION EXTERNAL EXCITATION 

STABILITY of CONTROLLED SYSTEM:  ONLY solutions on which the CONTROL works PROPERLY 

 AROUND 2ω1 :  UNCONTROLLED :  governed by P2 response 

    CONTROLLED :   ESCAPE related to P1 solution 

    P2 solution NOT acceptable   

ADDITIONAL REDUCTION OF ESCAPE VALUE 

STABILITY REGIONS WITH/WITHOUT CONTROL 

2. STRONGLY NONLINEAR DYNAMICS OF THE CONTROLLED SYSTEM G. REGA 



• complete the evaluation of the GLOBAL PERFORMANCE of a LOCAL external 
feedback CONTROL technique 

• properly identify the DESIGN PARAMETERS RANGES able to guarantee the 
SECURE OPERATION of the AFM 

DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM  

AIM: 

NUMERICAL ANALYSES:  • BASINS EROSION PROCESS as a function of the most relevant 
dynamical parameters around the resonance frequency  

• EROSION PROFILES by means of two integrity measures (IF, GIM) 

• THRESHOLDS of RESIDUAL INTEGRITY in system parameters space 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 



3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 
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0 REFERENCE 
RESPONSE 

CONTROLLED SYSTEM UNDER PARAMETRIC EXCITATION (HARMONIC) 

Orders of magnitude of coefficients in commercial AFMs  feedback controls (η1, η2, ρ2) and 
the nonlinear term related to α2 can be neglected 

5 state variables   5-DIMENSIONAL BASINS OF ATTRACTION  

• COMPUTATIONALLY DEMANDING task 

• RESULTS INTERPRETATION  considerably DIFFICULT 

PLANAR SECTIONS in (x=xref, y=yref) plane with fixed z  

EXTERNAL 
FEEDBACK 
CONTROL 



INFLUENCE OF THE EXCITATION PARAMETERS - 1 -   

BASIN EROSION FOR INCREASING FORCING AMPLITUDE 

REFERENCE 
(UNCONTROLLED) 

SYSTEM 

CONTROLLED 
SYSTEM 

 z(0) = 0 
 zs = 0.01 

FORCING AMPLITUDE 

(ωu=0.8) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 



BASIN EROSION FOR INCREASING FORCING AMPLITUDE 

REFERENCE 
(UNCONTROLLED) 

SYSTEM 

CONTROLLED 
SYSTEM 

 z(0) = 0 
 zs = 0.01 

FORCING AMPLITUDE 

• CONTROL: TONGUES of the UNBOUNDED solution basin (white) inside the potential well 

• BASIN SEPARATION for LOW amplitude 

• NONRESONANT basin: strongly REDUCED   TOPOLOGICAL SCENARIO MODIFIED   

(ωu=0.8) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF THE EXCITATION PARAMETERS - 1 -   



BASIN EROSION FOR INCREASING FORCING AMPLITUDE Phase-plane of the 
uncontrolled system 

(ωu=0.8) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF THE EXCITATION PARAMETERS - 2 -   



BASIN EROSION FOR INCREASING FORCING AMPLITUDE 

NONRESONANT 
SOLUTION: 

z = zs 

 
 EFFICIENCY of 

CONTROL 
 

SAFE BASIN 

Phase-plane of the 
uncontrolled system 

(ωu=0.8) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF THE EXCITATION PARAMETERS - 2 -   



BASIN EROSION FOR INCREASING FORCING AMPLITUDE 

NONRESONANT 
SOLUTION: 

z = zs 

 
 EFFICIENCY of 

CONTROL 
 

SAFE BASIN 

RESONANT 
SOLUTION: 

z ≠ zs 

 
 INEFFICIENCY of 

CONTROL 
 

UNACCEPTABLE 

Phase-plane of the 
uncontrolled system 

(ωu=0.8) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF THE EXCITATION PARAMETERS - 2 -   



EROSION PROFILES FOR INCREASING FORCING AMPLITUDE 

INTEGRITY MEASURES 
 
Global Integrity Measure (GIM): 
normalized AREA of the safe basin 
 
Integrity Factor (IF):   
normalized RADIUS of the largest 
CIRCLE entirely BELONGING to the 
safe basin  (sole compact part) 

(ωu=0.8) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF THE EXCITATION PARAMETERS - 3 -   



CONTROLLED SYSTEM : much MORE DANGEROUS THAN the UNCONTROLLED one 

UNCONTROLLED system:  
RESONANT + 
NONRESONANT basins 

CONTROLLED system: 
NONRESONANT basin 

SAFE BASIN 

EROSION PROFILES FOR INCREASING FORCING AMPLITUDE 

INTEGRITY MEASURES 
 
Global Integrity Measure (GIM): 
normalized AREA of the safe basin 
 
Integrity Factor (IF):   
normalized RADIUS of the largest 
CIRCLE entirely BELONGING to the 
safe basin  (sole compact part) 

(ωu=0.8) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF THE EXCITATION PARAMETERS - 3 -   



RESIDUAL ISO-INTEGRITY CURVES 

AROUND RESONANCE FREQUENCY: severe WORSENING of PRACTICAL STABILITY    

(residual integrity from 90% to 10% in ΔU = 3.6∙10-3) 

SHIFT of LOWEST PEAK from nonlinear (uncontrolled) to linear (controlled) resonance frequency  

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF THE EXCITATION PARAMETERS - 4 -   



RESIDUAL ISO-INTEGRITY CURVES 

SHIFT of LOWEST PEAK from nonlinear (uncontrolled) to linear (controlled) resonance frequency 

RESONANT solution P1H:  no longer acceptable for the system  

NONRESONANT solution P1L:  solely governing the response robustness  

AROUND RESONANCE FREQUENCY: severe WORSENING of PRACTICAL STABILITY    

(residual integrity from 90% to 10% in ΔU = 3.6∙10-3) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF THE EXCITATION PARAMETERS - 4 -   

Meaningful loss of controlled (orange curves) stability domain with respect to  
uncontrolled (grey curves) one for given (e.g. 50%)  iso-integrity 



INFLUENCE OF TIP-SAMPLE DISTANCE 

INFLUENCE OF INTRINSIC PARAMETERS - 1 -   

• DEPENDENCE on the ROUGHNESS of the SAMPLE to be scanned    high VARIABILITY 

during the AFM scanning OPERATION 

• its EFFECT on the global behavior: particularly IMPORTANT to assess the system ACTUAL 

SAFETY in operating conditions 

 
TIP- SAMPLE DISTANCE (ZS) 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 



INFLUENCE OF TIP-SAMPLE DISTANCE 

TIP- SAMPLE DISTANCE (ZS) 

TIP-SAMPLE DISTANCE INCREASE    ENLARGEMENT of the UNBOUNDED solution basin (white) 

 REDUCTION of the NONRESONANT (controllable) basin 
(blue) up to its disappearance 

3. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM G. REGA 

INFLUENCE OF INTRINSIC PARAMETERS - 1 -   

• DEPENDENCE on the ROUGHNESS of the SAMPLE to be scanned    high VARIABILITY 

during the AFM scanning OPERATION 

• its EFFECT on the global behavior: particularly IMPORTANT to assess the system ACTUAL 

SAFETY in operating conditions 

 



INFLUENCE OF TIP-SAMPLE DISTANCE 

GIM more CONSERVATIVE than IF 

•  NONRESONANT profile:  much LOWER 

than RESONANT profile 

• BASIN EROSION: from the outer edge 

preserving the compact part of the basins 
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TIP-SAMPLE DISTANCE INCREASE    ENLARGEMENT of the UNBOUNDED solution basin (white) 

 REDUCTION of the NONRESONANT (controllable) basin    
(blue) up to its disappearance 



RESONANCE REGION: CRITICAL also with respect to VARIATION of the TIP-SAMPLE DISTANCE  

RESIDUAL ISO-INTEGRITY CURVES 
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RESONANCE REGION: CRITICAL also with respect to VARIATION of the TIP-SAMPLE DISTANCE  

zs from 0 (uncontrolled) to 0.01    DYNAMICAL INTEGRITY from 100% to 10% 

RESIDUAL ISO-INTEGRITY CURVES 
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INFLUENCE OF NONLINEAR INTERACTION  (Г1) 

• Depends on tip and sample materials and on their distance at nanoscale level  

• Characterizing ingredient of an AFM model 
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INFLUENCE OF NONLINEAR INTERACTION  (Г1) 

• INCREASE of Г1 or zs     evident NEGATIVE effect on the system ROBUSTNESS 

• Safe zs value becomes smaller as the atomic interaction Г1 increases 
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INFLUENCE OF NONLINEAR INTERACTION  (Г1) 

• Depends on tip and sample materials and on their distance at nanoscale level  

• Characterizing ingredient of an AFM model 

PRACTICAL CONSEQUENCES:  

• ROUGH sample SURFACE and/or a STRONG atomic  tip-sample INTERACTION represent 

DANGEROUS situations for the application of the external feedback control to an AFM 

• useful HINTS to CALIBRATE the tip-sample interaction (e.g., tip material choice) 

depending of the sample characteristics 
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• INCREASE of Г1 or zs     evident NEGATIVE effect on the system ROBUSTNESS 

• Safe zs value becomes smaller as the atomic interaction Г1 increases 



STRONGLY NONLINEAR DYNAMICS OF AFM WITH EXTERNAL FEEDBACK CONTROL 

• STRONGLY NONLINEAR DYNAMICS analysis for PARAMETRICAL and EXTERNAL excitation, 

around PRIMARY and SUBHARMONIC resonances 

• INCREASED D.O.F. : RICHER BIFURCATIVE SCENARIO 

•  New TORUS and TRANSCRITICAL bifurcations:  STABILITY BOUNDARY REDUCTION 

• ESCAPE THRESHOLD: DEPENDENT on the ACTUAL existence of SOLUTIONS 

which are the GOAL of  the CONTROL procedure  

• CONTROL WORKS PROPERLY for SPECIFIC DESIGN PURPOSES, but STRONGLY 

REDUCES ESCAPE THRESHOLD when operating at resonances 
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GLOBAL DYNAMICS OF  NONCONTACT AFM WITH EXTERNAL FEEDBACK CONTROL 

• DYNAMICAL INTEGRITY as a function of the most relevant system parameters  

• CROSS SECTIONS of 5D basins of attraction  

• BASIN EROSION and INTEGRITY CHARTS providing thresholds of constant residual integrity  

• COMPARISON with the results already obtained for the UNCONTROLLED system to highlight 

changes and criticalities in the system global response due to the control 

RESULTS: 

• Generalized DETRIMENTAL EFFECT of the CONTROL on the system ROBUSTNESS  

• RESONANCE REGION: CRITICAL  

COEXISTENCE of resonant and nonresonant solutions DISAPPEARS  

SMALL PERTURBATIONS of parameters   DRAMATIC CHANGES in the system SAFETY 

SUMMARY AND COMMENTS - 2 - 

G. REGA 4. SUMMARY AND COMMENTS 



GLOBAL DYNAMICS OF  NONCONTACT AFM WITH EXTERNAL FEEDBACK CONTROL 

• DYNAMICAL INTEGRITY as a function of the most relevant system parameters  

• CROSS SECTIONS of 5D basins of attraction  

• BASIN EROSION and INTEGRITY CHARTS providing thresholds of constant residual integrity  

• COMPARISON with the results already obtained for the UNCONTROLLED system to highlight 

changes and criticalities in the system global response due to the control 

RESULTS: 

• Generalized DETRIMENTAL EFFECT of the CONTROL on the system ROBUSTNESS  

• RESONANCE REGION: CRITICAL  

COEXISTENCE of resonant and nonresonant solutions DISAPPEARS  

SMALL PERTURBATIONS of parameters   DRAMATIC CHANGES in the system SAFETY 

SUMMARY AND COMMENTS - 2 - 

G. REGA 

NEXT LECTURE 

GLOBAL DYNAMICS-BASED CONTROL of AFM  

4. SUMMARY AND COMMENTS 


