DAY	TIME	LECTURE				
Monday 05/11	14.00 -14.45	Historical Framework - A Global Dynamics Perspective in the Nonlinear Analysis of Systems/Structures				
	15.00 -15.45	Achieving Load Carrying Capacity: Theoretical and Practical Stability				
	16.00 -16.45	Dynamical Integrity: Concepts and Tools_1				
Wednesday 07/11	14.00 -14.45	Dynamical Integrity: Concepts and Tools_2				
	15.00 -15.45	Global Dynamics of Engineering Systems				
	16.00 -16.45	Dynamical integrity: Interpreting/Predicting Experimental Response				
Monday 12/11	14.00 -14.45	Techniques for Control of Chaos				
	15.00 -15.45	A Unified Framework for Controlling Global Dynamics				
	16.00 -16.45	Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics				
Wednesday 14/11	14.00 -14.45	A Noncontact AFM: (a) Nonlinear Dynamics and Feedback Control (b) Global Effects of a Locally-tailored Control				
	15.00 -15.45	Exploiting Global Dynamics to Control AFM Robustness				
	16.00 -16.45	Dynamical Integrity as a Novel Paradigm for Safe/Aware Design				

12.1b – A Noncontact AFM: Global Effects of a Locally-tailored Control

Department of Structural and Geotechnical Engineering Sapienza University of Rome, Italy

Giuseppe.Rega@uniroma1.it

Coworker: V. Settimi

OUTLINE of 12.1b

1.	STRONGLY	NONLINEAR	DYNAMICS	OF THE	CONTROLLED	SYSTEM
----	-----------------	------------------	-----------------	--------	------------	--------

2. DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM

...... towards a **GLOBAL DYNAMICS-BASED CONTROL**

NONCONTACT AFM WITH EXTERNAL FEEDBACK CONTROL

RESPONSE OF THE CONTROLLED SYSTEM

$$\ddot{x}(1+\alpha_{2}x^{2}) + \alpha_{1}x + \alpha_{2}x\dot{x}^{2} + \alpha_{3}x^{3} = -\Gamma_{1}(1+x+V_{g}+z-z_{s})^{-2} - (\rho_{1}+\rho_{2}x^{2})\dot{x}$$

$$-(\ddot{V}_{g}+k_{g}(\dot{x}_{ref}-\dot{x})+V_{1}(\dot{V}_{g}+k_{g}(x_{ref}-x)))v_{2} + (x\mu_{1}+\mu_{2}x^{3})(\ddot{U}_{g}+\eta_{1}\dot{U}_{g}+\eta_{2}U_{g})$$

$$\dot{z}=k_{g}(x_{ref}-x)$$

REFERENCE RESPONSE

ATOMIC INTERACTION

$$\ddot{x}_{ref} \left(1 + \alpha_2 x_{ref}^{2} \right) + \alpha_1 x_{ref} + \alpha_2 x_{ref} \dot{x}_{ref}^{2} + \alpha_3 x_{ref}^{3} = -\Gamma_1 \left(1 + x_{ref} + V_g \right)^{-2}$$

$$-\rho_1 \dot{x}_{ref} - \rho_2 \dot{x}_{ref} x_{ref}^{2} - \left(\left(\ddot{V}_g + V_1 \dot{V}_g \right) \right) V_2 + \left(x_{ref} \mu_1 + \mu_2 x_{ref}^{3} \right) \left(\ddot{U}_g + \eta_1 \dot{U}_g + \eta_2 U_g \right)$$

- INCREASED D.O.F.: RICHER BIFURCATIVE SCENARIO
- New torus and transcritical bifurcations: STABILITY BOUNDARY REDUCTION

1. BACKGROUND G. REGA

STRONGLY NONLINEAR DYNAMICS

- System nonlinear response as function of MOST RELEVANT DYNAMICAL PARAMETERS:
 - FORCING AMPLITUDE U(V)
 - FORCING FREQUENCY $\omega_{\mu}(\omega_{\nu})$
 - ATOMIC INTERACTION Γ_1
 - FEEDBACK CONTROL PARAMETER k_q
- BIFURCATION DIAGRAMS and RESPONSE CHARTS around FUNDAMENTAL and PRINCIPAL resonances
- PARAMETRICALLY and EXTERNALLY forced system
- COMPARISON with results obtained for UNCONTROLLED system

INFLUENCE of EXTERNAL FEEDBACK CONTROL on DYNAMIC BEHAVIOR

$$\ddot{x} + \alpha_1 x + \alpha_3 x^3 = -\Gamma_1 \left(1 + x + z - z_s \right)^{-2} - \rho_1 \dot{x} - x \mu_1 U \omega_u^2 \sin(\omega_u t)$$

$$\dot{z} = k_g \left(x_{ref} - x \right)$$

$$\ddot{x} + \alpha_1 x + \alpha_3 x^3 = -\Gamma_1 \left(1 + x + z - z_s \right)^{-2} - \rho_1 \dot{x} - x \mu_1 U \omega_u^2 \sin(\omega_u t)$$

$$\dot{z} = k_g \left(x_{ref} - x \right)$$

FUNDAMENTAL RESONANCE

WITH VARYING FEEDBACK CONTROL

TORUS AND TRANSCRITICAL THRESHOLDS

- Unstable tongues at LOW values of U
- TRIANGLE region **REDUCED**
- No coexistence of P1L/P1H solutions

TOTAL **ESCAPE** occurs at **LOWER** VALUES OF U

FUNDAMENTAL RESONANCE

 ω_{u} -U

TRL: TORUS bif. of P1L

TH: TRANSCRITICAL

bif. of P1H

BIFURCATION DIAGRAM at ω_u = 0.7 and k_g = 0.001

FUNDAMENTAL RESONANCE

From **TRANSCRITICAL** BIF.: new **STABLE P1** solutions → INEFFICIENCY OF CONTROL

FUNDAMENTAL RESONANCE

ω_u-U

TRL: TORUS bif. of P1L

TH: TRANSCRITICAL

bif. of P1H

From **TORUS** BIF.: new **STABLE QUASIPERIODIC** solutions → INEFFICIENCY OF CONTROL

FUNDAMENTAL RESONANCE

FUNDAMENTAL RESONANCE

PHASE LOCKING (from QP to P):

synchronization of response frequency to forcing one

FUNDAMENTAL RESONANCE

PHASE LOCKING (from QP to P):

synchronization of response frequency to forcing one

RESONANCE FREQUENCY (from P to QP): increase of response amplitude that feedback control barely dominates

GOOD AGREEMENT between **AMEs** and **ODEs**

- BIFURCATION BEHAVIOR
- STABILITY THRESHOLD OF BOUNDED REFERENCE SOLUTION

STABILITY THRESHOLD: **Hopf HB** (**Torus TR**) bifurcation

AROUND RESONANCE: **Transcritical T** bifurcation

GOOD AGREEMENT between **AMEs** and **ODEs**

- BIFURCATION BEHAVIOR
- STABILITY THRESHOLD OF BOUNDED REFERENCE SOLUTION

FUNDAMENTAL RESONANCE

PRESENCE OF **CONFINED STABLE** REGIONS (P1H): - HIGH U

- HIGH k_G

FUNDAMENTAL RESONANCE

UNCONTROLLED

WITH VARYING ATOMIC INTERACTION

CONTROLLED

PRINCIPAL RESONANCE

P1+P2 SOLUTIONS

PRINCIPAL RESONANCE

BIFURCATION DIAGRAM at ω_u = 1.64 and k_g = 0.001 $\,$

Three P2 SOLUTIONS: from Subcritical Period Doubling (SbPD P1) P2'

from Supercritical Period Doubling (SpPD P1) P2"

disconnected P2

PRINCIPAL RESONANCE

PRINCIPAL RESONANCE

Control works only on P2', the only 2-period solution of uncontrolled system, here unstable

PRINCIPAL RESONANCE

Three P2 SOLUTIONS: from Subcritical Period Doubling (SbPD P1)

P2' UNSTABLE OK CONTROL

from Supercritical Period Doubling (SpPD P1)

P2" **UNSTABLE NO CONTROL**

disconnected

P2 STABLE

NO CONTROL

ESCAPE THRESHOLD: RELATED **ONLY** TO **P1** SOLUTION

PRINCIPAL RESONANCE

- period-doubled solution → coherent with principal resonance
- loop size increased → PRINCIPAL resonance : MAIN region for (with respect to fundamental resonance)
 PARAMETRIC system

EXTERNAL EXCITATION - 1 -

$$\ddot{x} + \alpha_1 x + \alpha_3 x^3 = -\Gamma_1 \left(1 + x + V \sin(\omega_v t) + z - z_s \right)^{-2} - \rho_1 \dot{x}$$

$$- \left(-\omega_v^2 V \sin(\omega_v t) + k_g \left(\dot{x}_{ref} - \dot{x} \right) + V_1 \left(\omega_v V \cos(\omega_v t) + k_g \left(x_{ref} - x \right) \right) \right) V_2$$

$$\dot{z} = k_g \left(x_{ref} - x \right)$$

 $k_g = 0.001$

 $z_{s} = 0.01$

EXTERNAL EXCITATION - 1 -

$$\ddot{x} + \alpha_1 x + \alpha_3 x^3 = -\Gamma_1 \left(1 + x + V \sin(\omega_v t) + z - z_s \right)^{-2} - \rho_1 \dot{x}$$

$$- \left(-\omega_v^2 V \sin(\omega_v t) + k_g \left(\dot{x}_{ref} - \dot{x} \right) + V_1 \left(\omega_v V \cos(\omega_v t) + k_g \left(x_{ref} - x \right) \right) \right) V_2$$

$$\dot{z} = k_g \left(x_{ref} - x \right)$$

SAME BEHAVIOR OF PARAMETRIC CASE

NEW
TRANSCRITICAL
AND TORUS
THRESHOLDS

DECREASE OF ESCAPE VALUE

STABLE REGION:

solutions for which FEEDBACK CONTROL WORKS PROPERLY

STABILITY REGIONS WITH/WITHOUT CONTROL

MAIN RESONANCE FREQUENCIES: deep **INSTABILITY TONGUES**

→ reductions of $\approx 99,9\%$

stable region:
solutions for which feedback
control works properly

due to a substantial increase of response amplitude that LOCAL feedback control barely dominates • need of a GLOBAL control !?

STABILITY REGIONS WITH/WITHOUT CONTROL

PARAMETRIC EXCITATION

EXTERNAL EXCITATION

STABILITY of CONTROLLED SYSTEM: ONLY solutions on which the CONTROL works PROPERLY

AROUND $2\omega_1$: **UNCONTROLLED**: governed by **P2** response

CONTROLLED: ESCAPE related to **P1** solution

P2 solution NOT acceptable

ADDITIONAL REDUCTION OF ESCAPE VALUE

DYNAMICAL INTEGRITY OF THE CONTROLLED SYSTEM

AIM:

- complete the evaluation of the GLOBAL PERFORMANCE of a LOCAL external feedback CONTROL technique
- properly identify the **DESIGN PARAMETERS** RANGES able to guarantee the **SECURE OPERATION** of the AFM

- **NUMERICAL ANALYSES: •** BASINS EROSION PROCESS as a function of the most relevant dynamical parameters around the resonance frequency
 - EROSION PROFILES by means of two integrity measures (IF, GIM)
 - THRESHOLDS of RESIDUAL INTEGRITY in system parameters space

CONTROLLED SYSTEM UNDER PARAMETRIC EXCITATION (HARMONIC)

Orders of magnitude of coefficients in commercial AFMs \rightarrow feedback controls (η_1 , η_2 , ρ_2) and the nonlinear term related to α_2 can be neglected

$$\begin{vmatrix} \dot{x} = y \\ \dot{y} = -\alpha_1 x - \alpha_3 x^3 - \frac{\Gamma_1}{(1 + x + z - z_s)^2} - \rho_1 y - x \mu_1 \omega_u^2 U \sin(\omega_u t)$$
 EXTERNAL FEEDBACK CONTROL
$$\begin{vmatrix} \dot{z} = k_g \left(x_{ref} - x \right) \\ \dot{x}_{ref} = y_{ref} \\ \dot{y}_{ref} = -\alpha_1 x_{ref} - \alpha_3 x_{ref}^3 - \frac{\Gamma_1}{(1 + x_{ref})^2} - \rho_1 y_{ref} - x_{ref} \mu_1 \omega_u^2 U \sin(\omega_u t) \end{vmatrix}$$
 REFERENCE RESPONSE

5 state variables → 5-DIMENSIONAL BASINS OF ATTRACTION

- COMPUTATIONALLY DEMANDING task
- RESULTS INTERPRETATION considerably DIFFICULT

PLANAR SECTIONS in $(x=x_{ref}, y=y_{ref})$ plane with fixed z

INFLUENCE OF THE EXCITATION PARAMETERS - 1 -

BASIN EROSION FOR INCREASING FORCING AMPLITUDE (ω_u =0.8)

REFERENCE (UNCONTROLLED) SYSTEM

CONTROLLED SYSTEM z(0) = 0 $z_s = 0.01$

INFLUENCE OF THE EXCITATION PARAMETERS - 1 -

BASIN EROSION FOR INCREASING FORCING AMPLITUDE (ω_u =0.8)

- CONTROL: TONGUES of the UNBOUNDED solution basin (white) inside the potential well
- BASIN SEPARATION for LOW amplitude
- NONRESONANT basin: strongly REDUCED → TOPOLOGICAL SCENARIO MODIFIED

INFLUENCE OF THE EXCITATION PARAMETERS - 2 -

INFLUENCE OF THE EXCITATION PARAMETERS - 2 -

INFLUENCE OF THE EXCITATION PARAMETERS - 2 -

INFLUENCE OF THE EXCITATION PARAMETERS - 3 -

EROSION PROFILES FOR INCREASING FORCING AMPLITUDE (ω_{IJ} =0.8)

INTEGRITY MEASURES

Global Integrity Measure (GIM): normalized AREA of the safe basin

Integrity Factor (IF):
normalized RADIUS of the largest
CIRCLE entirely BELONGING to the
safe basin (sole compact part)

INFLUENCE OF THE EXCITATION PARAMETERS - 3 -

EROSION PROFILES FOR INCREASING FORCING AMPLITUDE (ω_u =0.8)

RESONANT +

NONRESONANT basins

INTEGRITY MEASURES

Global Integrity Measure (GIM): normalized AREA of the safe basin

Integrity Factor (IF):
normalized RADIUS of the largest
CIRCLE entirely BELONGING to the
safe basin (sole compact part)

CONTROLLED system: NONRESONANT basin

CONTROLLED SYSTEM: much **MORE DANGEROUS** THAN the UNCONTROLLED one

INFLUENCE OF THE EXCITATION PARAMETERS - 4 -

RESIDUAL ISO-INTEGRITY CURVES

AROUND RESONANCE FREQUENCY: severe WORSENING of PRACTICAL STABILITY

(residual integrity from 90% to 10% in $\Delta U = 3.6 \cdot 10^{-3}$)

SHIFT of LOWEST PEAK from nonlinear (uncontrolled) to linear (controlled) resonance frequency

INFLUENCE OF THE EXCITATION PARAMETERS - 4 -

RESIDUAL ISO-INTEGRITY CURVES

AROUND **RESONANCE FREQUENCY**; severe **WORSENING** of **PRACTICAL STABILITY**

(residual integrity from 90% to 10% in $\Delta U = 3.6 \cdot 10^{-3}$)

SHIFT of LOWEST PEAK from nonlinear (uncontrolled) to linear (controlled) resonance frequency

RESONANT solution P1H: **no longer acceptable** for the system

Meaningful loss of controlled (orange curves) stability domain with respect to uncontrolled (grey curves) one for given (e.g. 50%) iso-integrity

INFLUENCE OF INTRINSIC PARAMETERS - 1 -

INFLUENCE OF TIP-SAMPLE DISTANCE

- DEPENDENCE on the ROUGHNESS of the SAMPLE to be scanned → high VARIABILITY during the AFM scanning OPERATION
- its EFFECT on the global behavior: particularly IMPORTANT to assess the system ACTUAL
 SAFETY in operating conditions

INFLUENCE OF INTRINSIC PARAMETERS - 1 -

INFLUENCE OF TIP-SAMPLE DISTANCE

- DEPENDENCE on the ROUGHNESS of the SAMPLE to be scanned → high VARIABILITY during the AFM scanning OPERATION
- its EFFECT on the global behavior: particularly IMPORTANT to assess the system ACTUAL
 SAFETY in operating conditions

- TIP-SAMPLE DISTANCE INCREASE -> ENLARGEMENT of the UNBOUNDED solution basin (white)
 - → **REDUCTION** of the **NONRESONANT** (controllable) basin (blue) up to its disappearance

INFLUENCE OF INTRINSIC PARAMETERS - 1 -

INFLUENCE OF TIP-SAMPLE DISTANCE

- **NONRESONANT** profile: much **LOWER** than **RESONANT** profile
- **BASIN EROSION**: from the outer edge preserving the compact part of the basins

GIM more **CONSERVATIVE** than IF

- TIP-SAMPLE DISTANCE INCREASE -> ENLARGEMENT of the UNBOUNDED solution basin (white)
 - → **REDUCTION** of the **NONRESONANT** (controllable) basin (blue) up to its disappearance

INFLUENCE OF INTRINSIC PARAMETERS - 2 -

RESIDUAL ISO-INTEGRITY CURVES

RESONANCE REGION: CRITICAL also with respect to VARIATION of the TIP-SAMPLE DISTANCE

INFLUENCE OF INTRINSIC PARAMETERS - 2 -

RESIDUAL ISO-INTEGRITY CURVES

RESONANCE REGION: CRITICAL also with respect to VARIATION of the TIP-SAMPLE DISTANCE

 z_s from 0 (uncontrolled) to 0.01 ightarrow DYNAMICAL INTEGRITY from 100% to 10%

INFLUENCE OF INTRINSIC PARAMETERS - 3 -

INFLUENCE OF NONLINEAR INTERACTION (Γ_1)

- Depends on tip and sample materials and on their distance at nanoscale level
- Characterizing ingredient of an AFM model

INFLUENCE OF INTRINSIC PARAMETERS - 3 -

INFLUENCE OF NONLINEAR INTERACTION (Γ_1)

- Depends on tip and sample materials and on their distance at nanoscale level
- Characterizing ingredient of an AFM model
- INCREASE of Γ_1 or $z_s \rightarrow$ evident **NEGATIVE** effect on the system **ROBUSTNESS**
- Safe z_s value becomes smaller as the atomic interaction Γ_1 increases

INFLUENCE OF INTRINSIC PARAMETERS - 3 -

INFLUENCE OF NONLINEAR INTERACTION (Γ_1)

- Depends on tip and sample materials and on their distance at nanoscale level
- Characterizing ingredient of an AFM model
- INCREASE of Γ_1 or $z_s \rightarrow$ evident **NEGATIVE** effect on the system **ROBUSTNESS**
- Safe z_s value becomes smaller as the atomic interaction Γ_1 increases

PRACTICAL CONSEQUENCES:

- ROUGH sample SURFACE and/or a STRONG atomic tip-sample INTERACTION represent
 DANGEROUS situations for the application of the external feedback control to an AFM
- useful HINTS to CALIBRATE the tip-sample interaction (e.g., tip material choice)
 depending of the sample characteristics

SUMMARY AND COMMENTS - 1 -

STRONGLY NONLINEAR DYNAMICS OF AFM WITH EXTERNAL FEEDBACK CONTROL

 STRONGLY NONLINEAR DYNAMICS analysis for parametrical and external excitation, around primary and subharmonic resonances

RESULTS:

- INCREASED D.O.F.: RICHER BIFURCATIVE SCENARIO
- New torus and transcritical bifurcations: STABILITY BOUNDARY REDUCTION
- ESCAPE THRESHOLD: DEPENDENT on the ACTUAL existence of SOLUTIONS
 which are the GOAL of the CONTROL procedure
- CONTROL WORKS PROPERLY for SPECIFIC DESIGN PURPOSES, but STRONGLY
 REDUCES ESCAPE THRESHOLD when operating at resonances

SUMMARY AND COMMENTS - 2 -

GLOBAL DYNAMICS OF NONCONTACT AFM WITH EXTERNAL FEEDBACK CONTROL

- **DYNAMICAL INTEGRITY** as a function of the most relevant system parameters
- CROSS SECTIONS of 5D basins of attraction
- BASIN EROSION and INTEGRITY CHARTS providing thresholds of constant residual integrity
- **COMPARISON** with the results already obtained for the **UNCONTROLLED** system to highlight changes and criticalities in the system global response due to the control

RESULTS:

- Generalized DETRIMENTAL EFFECT of the CONTROL on the system ROBUSTNESS
- RESONANCE REGION: CRITICAL
 - → COEXISTENCE of resonant and nonresonant solutions DISAPPEARS
 - → SMALL PERTURBATIONS of parameters → DRAMATIC CHANGES in the system SAFETY

SUMMARY AND COMMENTS - 2 -

GLOBAL DYNAMICS OF NONCONTACT AFM WITH EXTERNAL FEEDBACK CONTROL

- **DYNAMICAL INTEGRITY** as a function of the most relevant system parameters
- CROSS SECTIONS of 5D basins of attraction
- BASIN EROSION and INTEGRITY CHARTS providing thresholds of constant residual integrity
- **COMPARISON** with the results already obtained for the **UNCONTROLLED** system to highlight changes and criticalities in the system global response due to the control

RESULTS:

- Generalized DETRIMENTAL EFFECT of the CONTROL on the system ROBUSTNESS
- RESONANCE REGION: CRITICAL
 - → COEXISTENCE of resonant and nonresonant solutions DISAPPEARS
 - → SMALL PERTURBATIONS of parameters → DRAMATIC CHANGES in the system SAFETY

NEXT LECTURE

GLOBAL DYNAMICS-BASED CONTROL of AFM