Semi-Final Lectures

AN ILLUSTRATIVE THEORETICAL /NUMERICAL CASE-STUDY TO HIGHLIGHT A PATH ENCOMPASSING A VARIETY OF TOPICS

- MODELING FROM CONTINUOUS TO MINIMAL REDUCED ORDER
- ACCOUNTING FOR 'CLASSICAL' AND 'NON-CLASSICAL' NONLINEARITIES
- ANALYZING LOCAL BIFURCATION SCENARIOS AND WEAKLY/STRONGLY
 NONLINEAR RESPONSE
- EVALUATING DYNAMIC INTEGRITY
- APPLYING A LOCAL CONTROL AND ADDRESSING ITS GLOBAL EFFECTS
- EXPLOITING GLOBAL DYNAMICS TO SECURE/IMPROVE SAFETY

A NONCONTACT ATOMIC FORCE MICROSCOPE (AFM):

NONLINEAR DYNAMICS AND CONTROL FOR SAFE RESPONSE

DAY	TIME	LECTURE
Monday 05/11	14.00 -14.45	Historical Framework - A Global Dynamics Perspective in the Nonlinear Analysis of Systems/Structures
	15.00 -15.45	Achieving Load Carrying Capacity: Theoretical and Practical Stability
	16.00 -16.45	Dynamical Integrity: Concepts and Tools_1
Wednesday 07/11	14.00 -14.45	Dynamical Integrity: Concepts and Tools_2
	15.00 -15.45	Global Dynamics of Engineering Systems
	16.00 -16.45	Dynamical integrity: Interpreting/Predicting Experimental Response
Monday 12/11	14.00 -14.45	Techniques for Control of Chaos
	15.00 -15.45	A Unified Framework for Controlling Global Dynamics
	16.00 -16.45	Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics
day	14.00 -14.45	A Noncontact AFM: (a) Nonlinear Dynamics and Feedback Control (b) Global Effects of a Locally-tailored Control
/ednes 14/11	15.00 -15.45	Exploiting Global Dynamics to Control AFM Robustness
5	16.00 -16.45	Dynamical Integrity as a Novel Paradigm for Safe/Aware Design

12.1a – A Noncontact AFM: Nonlinear Dynamics and Feedback Control

Department of Structural and Geotechnical Engineering Sapienza University of Rome, Italy Giuseppe.Rega@uniroma1.it

Giuseppe Rega

Coworkers: V. Settimi, O. Gottlieb

OUTLINE OF 12.1a

SYSTEM

- **1. AFM PRINCIPLES**
- 2. MODELING

NONLINEAR DYNAMICS

- 3. BIFURCATION/RESPONSE SCENARIOS
- 4. GLOBAL DYNAMICS AND INTEGRITY

FEEDBACK CONTROL (a)

- 5. EXTERNAL FEEDBACK CONTROL
- 6. WEAKLY NONLINEAR DYNAMICS

ATOMIC FORCE MICROSCOPY (Binnig et al 1986)

- Devices to **TOPOLOGICALLY CHARACTERIZE SURFACES** up to **MICRO** and **NANO** RESOLUTION levels
- **TOPOGRAPHY**: sharp tip, fixed to the free end of a micro-cantilever vertically bending over the sample surface
 - \rightarrow MEASURE OF THE TIP DETECTION

TIP-SAMPLE INTERACTION: modifies beam dynamics and allows to image surfaces and measure sample physical properties.

Long- and Short-range contributions:

- VAN DER WAALS: long-range interaction arisen from electromagnetic field fluctuations
- ELECTROSTATIC FORCE: when tip and sample have electrostatic potential difference
- CHEMICAL FORCES: empirical model potentials (Morse p., Lenard-Jones p., Stillinger-Weber p., Tersoff p.)
- CAPILLARY FORCES: caused by adhesion layers on tip and sample in ambient conditions
- **CONTACT FORCES:** various approximations: Maugis, Muller at al., Hertz, JKR (Johnson-Kendall-Roberts), DMT (Derjaguin-Muller-Toporov)

DISCRETE/CONTINUUM-BASED MODELS

MATHEMATICAL MODELS

LUMPED-MASS SPRING DASHPOT SYSTEMS

Durig et al. (1992), Erlandsson and Olsson (1998), Ashhab et al. (1999), Couturier et al. (2002), Paulo and Garcia (2002), Yagasaki (2004),

CONTINUOUS MODELS

Rabe et al. (1996), Turner et al. (1997), Stark and Heckl (2000), Lee et al. (2002), Wolf and Gottlieb (2002), Turner (2004), Hornstein and Gottlieb (2008),

AFM OPERATING MODES

DYNAMIC AFM

 CONTACT-AFM: the tip is brought to a close proximity with the sample REPULSIVE FORCES dominate the tip-sample interactions

 NONCONTACT-AFM: no contact between the atoms, tip-sample interaction governed by an ATTRACTIVE POTENTIAL INTERACTION

• **TAPPING-AFM**: the tip operates in the **ATTRACTIVE** and **REPULSIVE** FORCE region, and **TOUCHES** the surface only **FOR SHORT PERIODS**, in order to reduce damages to potentially fragile samples.

AIMS OF INVESTIGATION

• NONCONTACT-AFM: no contact between atoms, tip-sample interaction governed by an ATTRACTIVE POTENTIAL INTERACTION.

The tip has to maintain a design gap from the sample such to ensure that the beam elastic

restoring force is stronger than the atomic attraction.

Otherwise → **INSTABILITY** of solution

"JUMP TO CONTACT", or ESCAPE

• **STUDY OF SYSTEM STABILITY** as a function of a varying excitation amplitude, or other (bifurcation) parameters: IMPORTANT ISSUE for NONCONTACT AFMs

- In view of involved dynamic scenarios, need to KEEP SYSTEM RESPONSE TO A SUITABLE REFERENCE ONE via an efficient CONTROL TECHNIQUE
- Verification of EFFECTIVENESS of control and its INFLUENCE ON SYSTEM OVERALL STABILITY

TECHNIQUES: Continuation, Asymptotic Solutions, Numerical Simulations, Dynamic Integrity Analysis

CONTINUUM MODEL FORMULATION - 1 -

- •MICROCANTILEVER with a sharp tip close to its free end
- PLANAR, INEXTENSIBLE, ELASTIC (Crespo da Silva (1979))
- •INTERACTION FORCE: Localized, Van der Waals like, derived from Lennard-Jones potential for a sphereplane system

$$F_{v}^{A} = \frac{A_{H}R_{T}}{6\sigma_{A}^{2}} \left[-\left(\frac{\sigma_{A}}{g+\overline{v}-h_{T}}\right)^{2} + \frac{1}{30}\left(\frac{\sigma_{A}}{g+\overline{v}-h_{T}}\right)^{8} \right]$$

Hornstein and Gottlieb (2008)

• Extended Hamilton principle \rightarrow TWO COUPLED PARTIAL DIFFERENTIAL EQUATIONS

(LONGITUDINAL AND TRANSVERSE):

 $m\bar{u}_{tt} - [EI\bar{v}_{rrr}\bar{v}_r - J_z\bar{v}_{ttr}\bar{v}_r + \lambda(1+\bar{u}_r)]_r = \bar{Q}_u$ $\bar{Q}_u = \bar{g}_1\bar{u}_t - \bar{g}_2\bar{u}_{trr} - \bar{g}_3\bar{u}$ $\bar{Q}_v = \delta(r-a_T)F_v^A - d\bar{v}_t$ $\bar{Q}_v = \delta(r-a_T)F_v^A - d\bar{v}_t$

+ BOUNDARY CONDITIONS: $\overline{v}(0,t) = \overline{V}(t) \quad \overline{v}_{rrr}(L,t) = 0 \quad \overline{v}_r(0,t) = 0$ $\overline{u}(0,t) = \overline{U}(t) \quad \overline{v}_{rr}(L,t) = 0 \quad \overline{u}_r(L,t) = 0$

CONTINUUM MODEL FORMULATION - 2 -

- Longitudinal u(r,t) as a function of transverse v(r,t) and U(t)
- Obtaining Lagrange multiplier
- Rescaling length/frequency and expanding multiplier to cubic order
- Obtaining modified transverse equation of motion (cubic term ignored)
- Transforming system to a moving reference frame : $v(s,\tau) = w(s,\tau) + V(\tau)$

SINGLE PARTIAL-DIFFERENTIAL EQUATION (VERTICAL)

$$w_{\tau\tau} + V_{\tau\tau} + w_{ssss} - \mu w_{\tau\tau ss} - Q_w = \left[-w_s (w_{ss} w_s)_s + \mu w_s (w_{\tau s} w_s)_\tau + w_s \left(\left(1 + \frac{1}{2} w_s^2 \right) \left(U_{\tau\tau} - \int_1^s Q_u ds \right) - \frac{1}{2} \int_1^s \left(\int_0^s w_s^2 ds \right)_{\tau\tau} ds \right) \right]_s$$

$$Q_{u} = -g_{1} \left(U_{\tau} - \frac{1}{2} \frac{d}{dt} \int_{0}^{s} w_{s}^{2} ds \right) + \frac{1}{2} g_{2} \left(\frac{d^{3}}{d\tau ds^{2}} \int_{0}^{s} w_{s}^{2} ds \right) - g_{3} \left(U - \frac{1}{2} \int_{0}^{s} w_{s}^{2} ds \right)$$
$$Q_{w} = \delta \left(s - \alpha \right) \overline{\Gamma}_{1} \left[\frac{1}{\left(\gamma + w + V \right)^{2}} + \frac{\overline{\Gamma}_{2}}{\left(\gamma + w + V \right)^{8}} \right] - v \left(w_{\tau} + V_{\tau} \right)$$

+ HOMOGENEOUS BOUNDARY CONDITIONS:

$$w(0,\tau) = 0$$
 $w_s(0,\tau) = 0$
 $w_{ss}(1,\tau) = 0$ $w_{sss}(1,\tau) = 0$

REDUCED ORDER MODEL

MODAL DYNAMICAL SYSTEM

• FIRST MODE approximation (Galerkin method):

$$w(s,\tau) = q_1(\tau) \cdot \Phi_1(s)$$

= 0

Basis function: CLAMPED-SPRING LINEAR BEAM:

$$\Phi_n(s) = \cosh(z_n s) - \cos(z_n s) - K_n(\sinh(z_n s) - \sin(z_n s))$$

$$K_n = \frac{\cos(z_n) + \cosh(z_n)}{\sin(z_n) + \sinh(z_n)}$$

$$\omega_n = z_n^2 : z_n^3 (1 + \cosh(z_n s) \cos(z_n s)) - f_1(\sin(z_n s) \cosh(z_n s) - \cos(z_n s) \sinh(z_n s))$$

f ₁

- Noncontacting microscopy \rightarrow REPULSION INTERACTION NEGLIGIBLE ($\overline{\Gamma}_2 = 0$)
- New state variable: $x(\tau) = q_1(\tau) \cdot \Phi_1(\alpha) / \gamma$
- Rescaling time: $t_N = \omega_1 \tau$

REDUCED ORDER MODEL

MODAL DYNAMICAL SYSTEM

• FIRST MODE approximation (Galerkin method):

$$w(s,\tau) = q_1(\tau) \cdot \Phi_1(s)$$

= 0

Basis function: CLAMPED-SPRING LINEAR BEAM:

$$\Phi_n(s) = \cosh(z_n s) - \cos(z_n s) - K_n(\sinh(z_n s) - \sin(z_n s))$$

$$K_n = \frac{\cos(z_n) + \cosh(z_n)}{\sin(z_n) + \sinh(z_n)}$$

$$\omega_n = z_n^2 : z_n^3 (1 + \cosh(z_n s) \cos(z_n s)) - f_1(\sin(z_n s) \cosh(z_n s) - \cos(z_n s) \sinh(z_n s))$$

f ₁

- Noncontacting microscopy \rightarrow REPULSION INTERACTION NEGLIGIBLE ($\overline{\Gamma}_2 = 0$)
- New state variable: $x(\tau) = q_1(\tau) \cdot \Phi_1(\alpha) / \gamma$
- Rescaling time: $t_N = \omega_1 \tau$

UNPERTURBED SYSTEM

EQUILIBRIUM SOLUTIONS

HAMILTONIAN SYSTEM

LOWER BRANCH: beyond the sample position → NO PHYSICAL MEANING

BIFURCATION/RESPONSE SCENARIOS

- **MAPPING** all **BIFURCATIONS** prior to escape for several forcing frequencies
- BIFURCATION DIAGRAMS with continuation techniques for VARYING FORCING AMPLITUDE
- Numerical simulations : HORIZONTAL PARAMETRIC or VERTICAL EXTERNAL excitation

• Analyses around **FUNDAMENTAL (PRIMARY)** $(\omega_u(\omega_v) = \omega_1)$ **PRINCIPAL (SUBHARMONIC)** $(\omega_u(\omega_v) = 2\omega_1)$

PARAMETRIC (EXTERNAL) resonances

- **ESCAPE THRESHOLD** as envelope of local bifurcation escape thresholds
 - amplitude value, for several forcing frequencies, at which basin annihilation occurs
 - ► from **physical viewpoint**, the (**unacceptable**) amplitude value that would bring **TIP** oscillation **BEYOND** the **SAMPLE** location (x=-1)

PARAMETRIC EXCITATION - 1 -

$$\ddot{\mathbf{x}} + \alpha_1 \mathbf{x} + \alpha_3 \mathbf{x}^3 = -\Gamma_1 (1 + \mathbf{x})^{-2} - \rho_1 \dot{\mathbf{x}} - \mathbf{x} \mu_1 U \omega_u^2 \sin(\omega_u t)$$

ESCAPE THRESHOLD as envelope of various LOCAL BIFURCATION ESCAPE THRESHOLDS

PARAMETRIC EXCITATION - 2 -

SUDDEN CHANGES in OVERALL THRESHOLD → DUE TO CHANGES in LOCAL STABILITY BOUNDARY

ASCENDING and DESCENDING BRANCHES ASSOCIATED with PARTICULAR BIFURCATION EVENTS

(localized sudden changes)

SAMPLE BOUNDED SOLUTIONS - 1 -

(A) SADDLE-NODE BIFURCATION - SUPERCRITICAL FLIP BIFURCATION OF 1-PERIOD (SN1L- SN1H – SpPD1H) ω_{μ} =0.7 - P1L, P1H solutions

G. REGA

SAMPLE BOUNDED SOLUTIONS - 2 -

(B) SUBCRITICAL FLIP BIFURCATION OF 1-PERIOD SOLUTION (SbPD1)

ω_{μ} =1.4 - P1, P2 SOLUTIONS

3. BIFURCATION/RESPONSE SCENARIOS

SAMPLE BOUNDED SOLUTIONS - 3 -

(C) SUPERCRITICAL FLIP BIFURCATION OF 2-PERIOD SOLUTION (SpPD2)

ω_u =1.6 – P2, P20 SOLUTIONS

3. BIFURCATION/RESPONSE SCENARIOS

RESPONSE CHARTS - 1 -

• **PRINCIPAL** RESONANCE (P1/P2)

SAME QUALITATIVE BEHAVIOR OF OTHER SOFTENING SYSTEMS (Helmholtz oscillator, MEMs...)

- V-shaped region of escape
- Triangle region with coexisting solutions
- Degenerated cusp bifurcation

INFLUENCE OF ATOMIC INTERACTION

RESPONSE CHART IN Γ_1 -U PLANE

FOR DESIGN PURPOSES

- Limiting values of forcing amplitude to be used depending on sample properties
- Calibration of tip-sample interaction (tip/sample material) depending on AFM operation settings

EXTERNAL EXCITATION

$$\ddot{x} + \alpha_1 x + \alpha_3 x^3 = -\Gamma_1 \left(1 + x + V \sin(\omega_v t) \right)^{-2} - \rho_1 \dot{x} - V_2 \left(V_1 \omega_v V \cos(\omega_v t) - \omega_v^2 V \sin(\omega_v t) \right)$$

- Absolute minimum shifted from subharmonic to primary resonance
- Same bifurcation scenarios at primary resonance, slightly different at subharmonic resonance

RESPONSE CHARTS

- UNSTABLE BUBBLE characterized by period doubling TRANSITION TO IN-WELL CHAOS
- P1 and P2 solutions regain stability through Reverse Supercritical Period Doubling bifurcations (RevSpPD)

G. REGA

EXTERNAL VS PARAMETRIC EXCITATION

FUNDAMENTAL RESONANCE (Parametric)

- PRIMARY (PRINCIPAL) RESONANCE: Dominant for externally (parametrically) forced system → typical dynamical behavior of literature
- SUBHARMONIC (FUNDAMENTAL) RESONANCE: slightly affected by ultrasuperharmonic response → birth of a period doubled superharmonic solution

SUBHARMONIC RESONANCE (External)

GLOBAL DYNAMICS AND INTEGRITY - 1 -

SAFETY of a nonlinear system **DEPENDS** not only on stability of its solution but also **on the UNCORRUPTED BASIN** surrounding each solution

- ATTRACTORS and BASINS OF ATTRACTION identification; EVOLUTION through local bifurcations and erosion profiles: subjects of THEORETICAL and PRACTICAL IMPORTANCE
- INTEGRITY CONCEPTS: → used to THEORETICALLY CHECK robustness of competing attractors and analyze erosion processes that bring to the escape from bounded regions
 - → **PRACTICAL TOOLS** to validate experimental results and to

furnish valuable information for **ENGINEERING DESIGN**

GLOBAL DYNAMICS AND INTEGRITY - 2 -

• TOOLS

SAFE BASIN: here, union of all classical basins of attraction; transient dynamics ignored **INTEGRITY MEASURES: GIM, LIM, IIM, IF, AGIM** (*Soliman and Thompson, 1989; Rega and Lenci, 2005*)

- GLOBAL INTEGRITY MEASURE (GIM): normalized hyper-volume (area in 2D) of the safe basin
- INTEGRITY FACTOR (IF): normalized radius of the largest hyper-sphere (circle in 2D) entirely belonging to the safe basin

• STEPS

- **1. INVESTIGATION** OF **BASIN EVOLUTION** due to variation of system parameters (excitation amplitude)
- 2. Integrity measure vs amplitude plot to provide the so-called **EROSION PROFILE**

BASINS OF ATTRACTIONS AND EROSION - 1 -

BASINS OF ATTRACTIONS AND EROSION - 1 -

BASINS OF ATTRACTIONS AND EROSION - 2 -

BASINS OF ATTRACTIONS AND EROSION - 2 -

DYNAMIC INTEGRITY

INTEGRITY CONTOUR PLOTS 10¹ 50% — 10% 90% 80% 40% — ESCAPE (0%) MELNIKOV STABILITY 70% 30% 0.8 60% 20% 10⁰ 0.6 IM 10⁻¹ 0.4 0.2 0.001 10⁻² 0.01 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 10⁻³ 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 0.5 1 $\omega_{\rm U}$

DYNAMIC INTEGRITY

EROSION: starts just ABOVE THE HOMOCLINIC BIFURCATION of hilltop saddle
 (GLOBAL EVENT)

DYNAMIC INTEGRITY

- EROSION: starts just ABOVE THE HOMOCLINIC BIFURCATION of hilltop saddle (GLOBAL EVENT)
- DOVER CLIFF EROSION SURFACE: slow decrease of safe basin volume, followed by sudden fall down to zero
- Two depressions near fundamental and principal resonance frequencies

THEORETICAL STABILITY BOUNDARIES - 1 -

- LOCAL ESCAPE: below GLOBAL in whole frequency range
- GLOBAL MINIMA: shifted left due to softening nonlinear system

THEORETICAL STABILITY BOUNDARIES - 2 -

- LOCAL ESCAPE: single trajectory → seemingly TOO CONSERVATIVE
- GLOBAL ESCAPE: BASIN ANNIHILATION → NO RESIDUAL SAFETY → UPPER BOUND

..... but

THEORETICAL VS PRACTICAL STABILITY BOUNDARIES

INTEGRITY CONTOUR PLOTS

LOCAL escape:

- strongly VARIABLE RESIDUAL INTEGRITY
- overestimation of system PRACTICAL SAFETY (0-30% of residual integrity left of resonance)

need of a GLOBAL analysis !!

TOWARDS CONTROL: EFFECTS OF TIP-SAMPLE DISTANCE VARIATION - 1-

- REFERENCE SYSTEM : confined UNSTABLE REGIONS
- AFM DYNAMICS: strongly related to **TIP SAMPLE DISTANCE**

$$\ddot{x} + \alpha_1 x + \alpha_3 x^3 = -\Gamma_1 \left(1 - \delta_g + x\right)^{-2} - \rho_1 \dot{x} - x \mu_1 U \omega_u^2 \sin(\omega_u t)$$

NONDIMENSIONAL

REDUCTION RATIO

OF TIP-SAMPLE GAP

NOR DIH

PDIH

TOWARDS CONTROL: EFFECTS OF TIP-SAMPLE DISTANCE VARIATION - 2-

- REFERENCE SYSTEM : confined UNSTABLE REGIONS
- AFM DYNAMICS: strongly related to **TIP SAMPLE DISTANCE**

$$\ddot{x} + \alpha_1 x + \alpha_3 x^3 = -\Gamma_1 \left(1 - \delta_g + x \right)^{-2} - \rho_1 \dot{x} - x \mu_1 U \omega_u^2 \sin(\omega_u t)$$

→ **ERRORS** in sample topography

AFM: IMPORTANCE OF MOTION CONTROL TO AVOID UNSTABLE/CHAOTIC RESPONSE

 $\delta_{g} = 0.03$

B

PDH

0.8

CONTROL OF COMPLEX RESPONSE

CHAOS CONTROL

STARTING POINT: Ott, Grebogi, Yorke (1990) → OGY METHOD Pyragas (1992) → EXTERNAL feedback control and DELAYED FEEDBACK CONTROL techniques

LAST TWO DECADES: several control techniques

- **STABILIZE** an **UNSTABLE ZONE** of parameter space
- **STABILIZE** a given, erratic **SOLUTION** (OGY method and its revisions/improvements)
- **OVERALL REGULARIZE** system **DYNAMICS**, irrespective of single solution behavior

CONTROL IN AFM : Techniques based mostly on **FEEDBACK CONTROL**:

- state feedback control based on Melnikov function
- positive feedback system
- inversion based feedback/feedforward control
- nonlinear delayed feedback control
- external feedback control of Tapping AFM Yagasaki (2010)
- Here: external feedback control of noncontact AFM (with O. Gottlieb)

MODELING WITH CONTROL-1 -

OBJECTIVE: keep the cantilever vibration to a reference one and simultaneously measure the

sample surface (a "local" control)

PERIODIC REFERENCE RESPONSE of uncontrolled system

NEW VARIABLE $\xi(t)$: distance of the cantilever fixed side from the horizontal reference axis NEW PARAMETER ξ_s : displacement of the sample surface from the selected reference position

MODELING WITH CONTROL-2 -

• **1 NEW D.O.F.** to the general relations of the uncontrolled system:

$$m\overline{u}_{tt} - [EI\overline{v}_{rrr}\overline{v}_{r} - J_{z}\overline{v}_{ttr}\overline{v}_{r} + \lambda(1+\overline{u}_{r})]_{r} = \overline{Q}_{u}$$

$$m\overline{v}_{tt} - [-EI(\overline{v}_{rrr} + \overline{v}_{r}\overline{v}_{rr}^{2}) + J_{z}(\overline{v}_{ttr} + \overline{v}_{tr}^{2}\overline{v}_{r}) + \lambda\overline{v}_{r}]_{r} = \overline{Q}_{v}$$

$$\overline{\xi}_{t} = \overline{k}(\overline{v}_{ref} - \overline{v})$$

$$F$$

$$BOUNDARY CONDITIONS:$$

$$\overline{v}(0,t) = \overline{V}(t) + \overline{\xi}(t) = \overline{W}(t), \quad \overline{v}_{rrr}(L,t) = 0,$$

$$\overline{v}(0,t) = 0, \quad \overline{u}(0,t) = \overline{U}(t),$$

$$\overline{v}_{r}(L,t) = 0, \quad \overline{u}_{r}(L,t) = 0.$$

MODIFIED INTERACTION FORCE:
$$F_{v}^{A} = \frac{A_{H}R_{T}}{6\sigma_{a}^{2}} \left[-\left(\frac{\sigma_{a}}{g + \overline{v} - h_{T} - \overline{\xi}_{s}}\right)^{2} + \frac{1}{30} \left(\frac{\sigma_{a}}{g + \overline{v} - h_{T} - \overline{\xi}_{s}}\right)^{8} \right]$$

NONDIMENSIONAL HOMOGENEOUS BOUNDARY SYSTEM

$$\begin{split} w_{\tau\tau} + W_{\tau\tau} + w_{ssss} - \mu w_{\tau\tauss} - Q_w &= \\ \left[-w_s (w_{ss} w_s)_s + \mu w_s (w_{\tau s} w_s)_\tau + w_s \left(\left(1 + \frac{1}{2} w_s^2 \right) \int_1^s U_{\tau\tau} ds - \frac{1}{2} \int_1^s \left(\int_0^s w_s^2 ds \right)_{\tau\tau} ds \right) - \left(1 + \frac{1}{2} w_s^2 \right) \int_1^s Q_u ds \right]_s \\ \xi_\tau &= k \left(w_{ref} - w \right) \\ \\ \text{WHERE} \qquad Q_w &= \delta \left(s - \alpha \right) \overline{\Gamma}_1 \left[\frac{1}{\left(\gamma + w + W - \xi_s \right)^2} + \frac{\overline{\Gamma}_2}{\left(\gamma + w + W - \xi_s \right)^8} \right] - v \left(w_\tau + B_\tau \right) \right]_s \\ \end{bmatrix}$$

MODELING WITH CONTROL-2 -

1 NEW D.O.F. to the general relations of the uncontrolled system: •

$$m\overline{u}_{tt} - [EI\overline{v}_{rrr}\overline{v}_{r} - J_{z}\overline{v}_{ttr}\overline{v}_{r} + \lambda(1+\overline{u}_{r})]_{r} = \overline{Q}_{u}$$

$$m\overline{v}_{tt} - [-EI(\overline{v}_{rrr} + \overline{v}_{r}\overline{v}_{r}^{2}) + J_{z}(\overline{v}_{ttr} + \overline{v}_{tr}^{2}\overline{v}_{r}) + \lambda\overline{v}_{r}]_{r} = \overline{Q}_{v}$$

$$\overline{\xi}_{t} = \overline{k}(\overline{v}_{ref} - \overline{v})$$
FEEDBACK REFERENCE
$$BOUNDARY CONDITIONS:$$

$$\overline{v}_{r}(0,t) = \overline{V}(t) + \overline{\xi}(t) = \overline{W}(t), \quad \overline{v}_{rrr}(L,t) = 0,$$

$$\overline{v}_{r}(0,t) = 0, \qquad \overline{u}(0,t) = \overline{U}(t),$$

$$\overline{v}_{rr}(L,t) = 0, \qquad \overline{u}_{r}(L,t) = 0.$$

MODIFIED INTERACTION FORCE:
$$F_{v}^{A} = \frac{A_{H}R_{T}}{6\sigma_{a}^{2}} \left[-\left(\frac{\sigma_{a}}{g + \overline{v} - h_{T} - \overline{\xi}_{s}}\right)^{2} + \frac{1}{30} \left(\frac{\sigma_{a}}{g + \overline{v} - h_{T} - \overline{\xi}_{s}}\right)^{8} \right]$$

NONDIMENSIONAL HOMOGENEOUS BOUNDARY SYSTEM ٠

$$\begin{split} w_{\tau\tau} + W_{\tau\tau} + w_{ssss} - \mu w_{\tau\tauss} - Q_{w} &= \\ \left[-w_{s}(w_{ss}w_{s})_{s} + \mu w_{s}(w_{\taus}w_{s})_{\tau} + w_{s} \left(\left(1 + \frac{1}{2}w_{s}^{2} \right) \int_{1}^{s} U_{\tau\tau} ds - \frac{1}{2} \int_{1}^{s} \left(\int_{0}^{s} w_{s}^{2} ds \right)_{\tau\tau} ds \right) - \left(1 + \frac{1}{2}w_{s}^{2} \right) \int_{1}^{s} Q_{u} ds \right]_{s} \\ \xi_{\tau} &= k \left(w_{ref} - w \right) \\ \\ \text{WHERE} \qquad Q_{w} = \delta \left(s - \alpha \right) \overline{\Gamma}_{1} \left[\frac{1}{\left(\gamma + w + W - \xi_{s} \right)^{2}} + \frac{\overline{\Gamma}_{2}}{\left(\gamma + w + W - \xi_{s} \right)^{8}} \right] - v \left(w_{\tau} + B_{\tau} + W_{\tau} + W_{$$

CONSTANT

MODELING WITH CONTROL-3 -

ATOMIC INTERACTION

MODAL DYNAMICAL SYSTEM

 $w(s,\tau) = q_1(\tau) \cdot \Phi_1(s)$ $w_{ref}(s,\tau) = q_{ref1}(\tau) \cdot \Phi_1(s)$

GALERKIN PROCEDURE + NONDIMENSIONAL FORM

$$\ddot{x}(1+\alpha_{2}x^{2}) + \alpha_{1}x + \alpha_{2}x\dot{x}^{2} + \alpha_{3}x^{3} = -\Gamma_{1}(1+x+V_{g}+z-z_{s})^{-2} - (\rho_{1}+\rho_{2}x^{2})\dot{x}$$

$$-(\ddot{V}_{g}+k_{g}(\dot{x}_{ref}-\dot{x})+v_{1}(\dot{V}_{g}+k_{g}(x_{ref}-x)))v_{2} + (x\mu_{1}+\mu_{2}x^{3})(\ddot{U}_{g}+\eta_{1}\dot{U}_{g}+\eta_{2}U_{g})$$

$$\dot{z} = k_{g}(x_{ref}-x)$$

$$z = \text{new control variable}$$

EXTERNAL EXCITATION

PERIODIC REFERENCE RESPONSE
$$x_{ref} = \overline{x}_{ref} + \widetilde{x}_{ref}(t)$$
MEAN COMPONENTTIME-DEPENDENTOSCILLATING COMPONENTOSCILLATING COMPONENT

EQUILIBRIUM ANALYSIS AND STABILITY - 1 -

• EQUILIBRIUM SOLUTIONS

$$\begin{aligned} &\tilde{x}_{ref}(t) = 0 \to x_{ref} = \overline{x}_{ref} & x = \overline{x}_{ref} \\ &\dot{x} = \ddot{x} = \dot{z} = 0 & \Rightarrow & z = z_s \end{aligned}$$

expected value of control variable

system equilibria not influenced by feedback control parameter k_a

 $\alpha_1 \overline{x}_{ref} + \alpha_3 \overline{x}_{ref}^3 + \Gamma_1 \left(\frac{1}{1 + \overline{x}_{ref}}\right)^2 = 0$

• STABILITY OF EQUILIBRIUM SOLUTIONS

IX
$$J = \begin{bmatrix} 0 & 1 & 0 \\ a_{21} & a_{22} & a_{23} \\ k_g & 0 & 0 \end{bmatrix} \qquad a_{21} = f(\Gamma_1, k_g), \quad a_{22} = f(k_g), \quad a_{23} = f(\Gamma_1)$$

CHARACTERISTIC POLYNOMIAL $p_J(\lambda) = \lambda^3 + C_1\lambda^2 + C_2\lambda + C_3 = 0 \rightarrow \lambda_{1,2} = \operatorname{Re}_{1,2} \pm i\operatorname{Im}_{1,2}, \quad \lambda_3 = \operatorname{Re}_3$

Asymptotical Stability : $\begin{cases} C_i > 0, \quad i = 1, 2, 3 \\ \Delta_2 = C_1 C_2 - C_3 > 0 \end{cases}$

EQUILIBRIUM ANALYSIS AND STABILITY - 2 -

EQUILIBRIUM ANALYSIS AND STABILITY - 3 -

EQUILIBRIUM ANALYSIS AND STABILITY - 3 -

EQUILIBRIUM ANALYSIS AND STABILITY - 3 -

NUMERICAL CHECK OF THE CONTROL TECHNIQUE

The system response is kept to the reference one, i.e. z is equal to the expected value z_s

5. EXTERNAL FEEDBACK CONTROL

WEAKLY NONLINEAR DYNAMICS: ASYMPTOTIC ANALYSIS VIA MSM - 1 -

Behavior of system around reference position
$$(x_{ref}, z_s)$$

$$\begin{cases}
y = x - x_{ref} = x - \overline{x}_{ref} - \widetilde{x}_{ref} \\
p = z - z_s
\end{cases}$$
Control works
when $p=0$

$$= 0$$

$$-\Gamma_1 \left(1 + \left(y + \overline{x}_{ref} + \widetilde{x}_{ref}\right)^2\right) + \left(\alpha_1 + \alpha_2 \dot{y}^2 + \alpha_3 \left(y + \overline{x}_{ref} + \widetilde{x}_{ref}\right)^2\right) \left(y + \overline{x}_{ref} + \widetilde{x}_{ref}\right) = 0$$

$$-\Gamma_1 \left(1 + \left(y + \overline{x}_{ref} + \widetilde{x}_{ref}\right) + V_g + p\right)^{-2} - \left(\rho_1 + \rho_2 \left(y + \overline{x}_{ref} + \widetilde{x}_{ref}\right)^2\right) \left(\dot{y} + \dot{\dot{x}}_{ref}\right) + \left(\ddot{V}_g - k_g \dot{y} + v_1 \left(\dot{V}_g - k_g y\right)\right) v_2$$

$$+ \left(\left(y + \overline{x}_{ref} + \widetilde{x}_{ref}\right) \mu_1 + \mu_2 \left(y + \overline{x}_{ref} + \widetilde{x}_{ref}\right)^3\right) \left(\ddot{U}_g + \eta_1 \dot{U}_g + \eta_2 U_g\right)$$

$$\dot{p} = -k_g y$$

METHOD OF MULTIPLE TIME SCALES: HIGH-ORDER SOLUTION

- INDEPENDENT TIME SCALES UP TO THE FOURTH ORDER $T_0 = t$, $T_1 = \varepsilon t$, $T_2 = \varepsilon^2 t$, $T_3 = \varepsilon^3 t$
- **SCALING** OF VARIABLES

$$y(T_{0},T_{1},T_{2},T_{3}) = \varepsilon y_{1}(T_{0},T_{1},T_{2},T_{3}) + \varepsilon^{2} y_{2}(T_{0},T_{1},T_{2},T_{3}) + \varepsilon^{3} y_{3}(T_{0},T_{1},T_{2},T_{3}) + \varepsilon^{4} y_{4}(T_{0},T_{1},T_{2},T_{3})$$
$$p(T_{0},T_{1},T_{2},T_{3}) = \varepsilon p_{1}(T_{0},T_{1},T_{2},T_{3}) + \varepsilon^{2} p_{2}(T_{0},T_{1},T_{2},T_{3}) + \varepsilon^{3} p_{3}(T_{0},T_{1},T_{2},T_{3}) + \varepsilon^{4} p_{4}(T_{0},T_{1},T_{2},T_{3})$$

- ORDERING $V = \varepsilon^3 V$ $U = \varepsilon^3 U$ $\rho_1 = \varepsilon^2 \rho_1$ $\rho_2 = \varepsilon^2 \rho_2$ $v_1 = \varepsilon^2 v_1$ $v_2 = \varepsilon^2 v_2$ $k_g = \varepsilon^2 k_g$
- **Detuning** parameters $\varepsilon^2 \sigma_u = \omega_u \omega_1 = \omega_1 (\Omega_u 1), \quad \varepsilon^2 \sigma_v = \omega_v \omega_1 = \omega_1 (\Omega_v 1), \quad \Omega_i = \omega_i / \omega_1$

WEAKLY NONLINEAR DYNAMICS: ASYMPTOTIC ANALYSIS VIA MSM - 2 -

REFERENCE SOLUTION \tilde{x}_{ref} : modulated response of uncontrolled system

solution of perturbed uncontrolled system

considered as a further variable:

 $\tilde{x}_{ref}\left(T_{0}, T_{1}, T_{2}, T_{3}\right) = \varepsilon \tilde{x}_{ref1}\left(T_{0}, T_{1}, T_{2}, T_{3}\right) + \varepsilon^{2} \tilde{x}_{ref2}\left(T_{0}, T_{1}, T_{2}, T_{3}\right) + \varepsilon^{3} \tilde{x}_{ref3}\left(T_{0}, T_{1}, T_{2}, T_{3}\right) + \varepsilon^{4} \tilde{x}_{ref4}\left(T_{0}, T_{1}, T_{2}, T_{3}\right)$

• Solving multiple scale equations at each order and eliminating secular terms

 $\begin{aligned} \dot{A} &= \beta_{6}AB + \beta_{9}A + \beta_{5}A_{un}B + \beta_{8}B\cos(\sigma_{u}t + \phi_{u}) - \beta_{10}B\sin(\sigma_{u}t + \phi_{u}) \\ &+ \beta_{11}B\cos(\sigma_{v}t) + i(\bar{A}_{un}(A^{2}(\beta_{1}B + \beta_{4}) + 2AA_{un}(\beta_{1}B + \beta_{4}) + \beta_{1}A_{un}B) \\ &+ A^{2}\bar{A}(\beta_{1}B + \beta_{4}) + 2\beta_{4}A\bar{A}A_{un} + AB(2\beta_{1}\bar{A}A_{un} + B(\beta_{2}B + \beta_{3}) + \beta_{7}) \\ &+ A_{un}(B(\beta_{1}\bar{A}A_{un} + B(\beta_{2}B + \beta_{3}) + \beta_{7}) + \beta_{4}\bar{A}A_{un}) \\ &+ B(\beta_{8}\sin(\sigma_{u}t + \phi_{u}) + \beta_{10}\cos(\sigma_{u}t + \phi_{u}) + \beta_{11}\sin(\sigma_{v}t))) \\ \dot{B} &= \frac{2C_{214}k_{g}}{\omega_{1}^{2}}(A\bar{A}_{un} + A\bar{A} + \bar{A}A_{un}) + \frac{C_{212}k_{g}}{\omega_{1}^{2}}B^{2} + \frac{C_{11}k_{g}}{\omega_{1}^{2}}B \end{aligned}$

WEAKLY NONLINEAR DYNAMICS: ASYMPTOTIC ANALYSIS VIA MSM - 3 -

VALIDITY OF ASYMPTOTIC SOLUTION

AMES EQUILIBRIUM POSITION $(a,b)=(0,0) \rightarrow \text{REFERENCE}$ STATE $(x,z)=(x_{ref},z_s)$

WEAKLY NONLINEAR DYNAMICS: ASYMPTOTIC ANALYSIS VIA MSM - 3 -

COMPARISON WITH NUMERICAL INTEGRATION OF SYSTEM EQUATION

