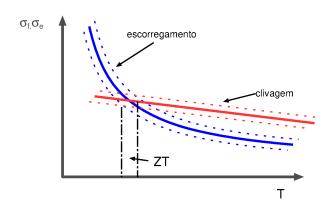
PMT3540 - Aula 9 - Fragilização, Fluência e Fadiga

Cláudio Geraldo Schön

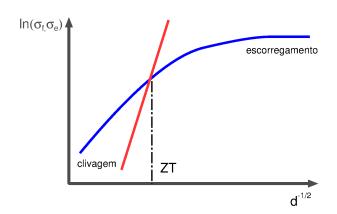
Departamento de Engenharia Metalúrgica e de Materiais Escola Politécnica da Universidade de São Paulo

14 de novembro de 2018

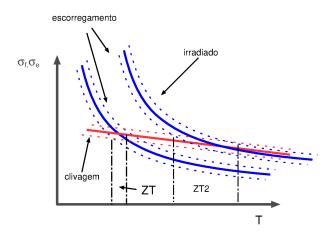
Um mecanismo de transição dúctil-frágil



Um mecanismo de transição dúctil-frágil



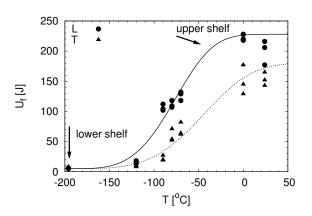
Modelo do efeito da irradiação



Efeito da irradiação sobre a transição dúctil-frágil

Fragilização de aços ferríticos por irradiação

Ensaio de impacto Revisão



Fonte: C. G. Schön, Mecânica dos Materiais, Rio de Janeiro: Elesevier, 2013.

Efeito da irradiação sobre a transição dúctil-frágil

Fragilização de aços ferríticos por irradiação

Ensaio de impacto

Revisão

Dois ensaios principais:

- Pêndulo de impacto
 - Corpos de prova padronizados (Charpy e Izod, dimensões padronizadas)
 - Energias da ordem de 300 J
 - Resulta em transição dúctil-frágil em menores temperaturas (restrição plástica não característica do uso)
 - Ambiguidade na definição da temperatura de transição (exemplo T₄₁)
- Queda de peso (Drop-weight test)
 - Realizado na própria chapa (restrição plástica característica do uso)
 - Energias da ordem de 300000 J
 - Resulta na NDT (Nil ductility temperature) que é muito maior que a temperatura crítica Charpy

Efeitos da irradiação sobre as propriedades de impacto

- A temperatura de transiccão no ensaio Charpy aumenta de forma não linear com o incremento de limite de escoamento (ou seja o aumento da fragilidade supera o incremento de resistência observado na irradiação).
- Efeitos secundários como RIS de fósforo e enxofre para o controno de grão podem també contribuir para a fragilização.
- Além do aumento da temperatura crítica, a irradiação também causa redução da energia do upper shelf.

Efeito da irradiação sobre a transição dúctil-frágil

Fragilização de aços ferríticos por irradiação

O método da Curva Mestre

- Irradiação causa deslocamento para maiores temperaturas da curva de tenacidade à fratura em função da temperatura
- Forma da função permanece inalterada → curva mestre.

Fragilização de aços ferríticos por irradiação

Curva Mestre

- Posição da curva é uniparamétrica $\rightarrow T_0$
- T₀: temperatura em que a mediana da tenacidade à fratura de um corpo de prova com 25 mm de espessura atinge 100 MPa m^{1/2} (corresponde a 41J absorvidos no ensaio Charpy)

$$K_{Jc(med)} = 30 + 70 \exp \left[0.019 \left(T - T_0\right)\right]$$

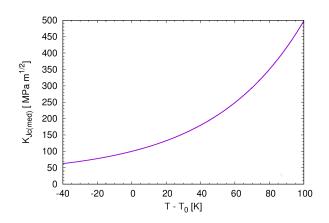
 K_{Jc(med)} é a mediana da tenacidade à fratura, definida como

$$K_{Jc(med)} = \sqrt{rac{J_c E}{\left(1 -
u^2
ight)}}$$

Efeito da irradiação sobre a transição dúctil-frágil

Fragilização de aços ferríticos por irradiação

Curva Mestre



Fragilização de aços ferríticos por irradiação

Efeitos da fluência de nêutrons

$$\Delta T_{41} = A (\phi_n t)^m$$

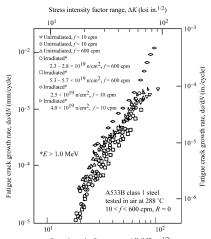
 $com m \approx 0.33 - 0.5$

Efeito da irradiação sobre a transição dúctil-frágil

Fragilização de acos ferríticos por irradiação

Fadiga em aços ferríticos

Não há efeito detectável na curva de Paris.



└ Temperaturas menores que 400°C

Efeitos sobre a tenacidade à fratura

Tenacidade à fratura no estado plano de deformação (K_{lc}) e módulo de rasgamento (T_m , tearing modulus), definido como

$$T_m = \frac{\mathrm{d}J}{\mathrm{d}a} \frac{E}{\sigma_0^2}$$

onde

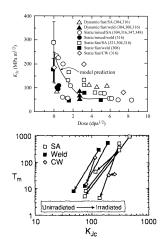
$$\sigma_0 = \frac{\sigma_u + \sigma_e}{2}$$

diminuem consideravelmente com a irradiação.

Temperaturas menores que 400°C

Modelo de Odette e Lucas

Fenomenologia



Por analise dimensional:

$$\begin{split} \mathcal{K}_{Jc} &\approx \mathit{C}_{1} \sqrt{\frac{\mathit{E}}{(1-\mathit{\nu}^{2})} \varepsilon_{\mathit{f}}^{*} \ell^{*} \sigma_{0}} \\ &\approx \mathit{C}_{2} \sqrt{\frac{\mathit{E}}{(1-\mathit{\nu}^{2})} \delta^{*} \sigma_{0}} \end{split}$$

onde ε_{ℓ}^{*} é um alongamento local característico. ℓ^{*} é uma distância característica e δ^* é um CTOD característico. Lei de escala (aproximada):

$$\frac{(K_{lc})_i}{(K_{lc})_0} = \sqrt{\frac{(\varepsilon_u)_i}{(\varepsilon_u)_0}} \, \frac{(\sigma_0)_i}{(\sigma_0)_0}$$

Carece de fundamentação física.

Fonte: Odette e Lucas, J. Nuclear Mater, 191 - 194

$$(1992) 50 - 57.$$

└ Temperaturas menores que 400°C

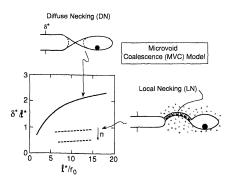
Modelo de Odette e Lucas

Mecanismos de fratura

- Baixa dose: fratura por coalescimento de microcavidades (dimples)
- Alta dose (>50 dpa): fratura por localização plástica e decoesão
- Doses intermediárias: bandas de cizalhamento em crescente frequência
- Alternativa: quase-clivagem em martensita induzida por deformação (improvável acima de 300°C)

Modelo de Odette e Lucas

Coalescimento de microcavidades



Fonte: Odette e Lucas, J. Nuclear Mater. 191 – 194 (1992) 50 – 57.

- Dois modos: estricção difusa (DN, diffuse necking) e estricção localizada (LN, local necking)
- é a distância característica do precipitado principal, de raio r

 0
- $J \approx 1.5\delta^* \sigma_0$

Resulta em:

$$\mathit{K_{Jc}} \approx \sqrt{1.5\beta\ell^*\sigma_0\frac{\mathit{E}}{(1-\nu^2)}}$$

com

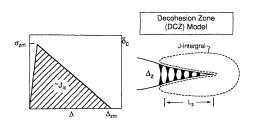
$$\beta = \frac{\delta_c}{\ell}$$

vale 2,0 para DN e 0,5 para LN.

Boa previsão para material sem irradiação, mas a previsão perde qualidade com o aumento da dose. ☐ Temperaturas menores que 400°C

Modelo de Odette e Lucas

Modelo de Zona decoesiva



Fonte: Odette e Lucas, J. Nuclear Mater. 191 - 194 (1992) 50 - 57.

$$K_{Jc} \approx \sqrt{0, 5 \frac{E}{(1 - \nu^2)} \sigma_{zm} \Delta_{zm}}$$

com

- $\sigma_{zm} < 3\sigma_0$
- Δ_{zm} depende da largura da banda h_z e da deformação da região localizada ε_z, que é alta (≈ 1)
- o modelo preve que a matriz (fora da região localizada) não se deforma, justificando a queda do coeficiente de encruamento (e de T_m)

└ Temperaturas menores que 400°C

Efeito da irradiação sobre a resistência à fadiga

- Irradiação provavelmente tem um grande efeito sobre a propagação da trinca no estágio III, que é controlado pela tenacidade à fratura
- Da mesma forma, espera-se que tenha um grande efeito reduzindo ΔK_{th} em analogia ao que se observa em aços não irradiados que apresentam mais propensidade à localização de deformação
- Entretanto, a maioria dos resultados disponíveis diz respeito ao estágio II (em que vale a lei de Paris), que é razoavelmente insensível a características microestruturais, logo não apresenta forte dependência com a dose.

Fratura em altas temperaturas

Reatores:

- Reatores rápidos
- Reatores avançados de fissão
- Reatores de fusão
- Reatores de transmutação de resíduos

Fratura em altas temperaturas

Materiais:

- Aços austeníticos
- Aços ferríticos-martensíticos
- Ligas de Vanádio

Fratura por fluência

Relembrando o estágio III da fluência (cavitação)

- Em altas temperaturas ($\tau_H = \frac{T}{T_f} > 0,3$) o contorno de grão se torna menos resistente que a matriz (temperatura equicoesiva, conceito obsoleto)
- Deslizamento de Contorno de Grão (GBS, grain boundary sliding) passa a ser um mecanismo de deformação relevante
- A fratura passa a ser intergranular
 - cavidades w, incompatibilidade de deformação entre grãos vizinhos, levando à abertura de trincas associadas a pontos triplos (latas cargas, mais baixas temperaturas)
 - cavidades r, nucleação de cavidades em contronos de grão, que se alinham e levam à fratura final (temperaturas mais altas, argas mais baixas)
 - fratura de fases frágeis e contínuas em contorno de grão

Efeito da irradiação

Supondo que o estágio dois (estado estacionário) domina a maior parte da vida em fluência do componente:

$$t_{\it f} pprox rac{arepsilon_{\it f}}{\dotarepsilon_{\it min}}$$

Irradiação afeta o tempo de ruptura reduzindo $\varepsilon_{\it f}$ e aumentando $\dot{\varepsilon}_{\it min}$.

Mecanismos

- Cavidades em contorno de grão
- Potencialização de GBS
- Fragilização por hélio (He)

Crescimento de cavidades e bolhas no CG

Irradiação e fluência tem efeito sinergético

- Cavidades e bolhas de irradiação naturalmente se alinham com CGs
- A deformação de fluência auxilia nessa formação
- A fratura ocorre ou por coalescimento dessas cavidades ou por fratura dos ligamentos entre as cavidades
- Na presença de gases de fissão (e, em particular, He) → aumento da pressão interna das bolhas, potencializando o seu crescimento

Crescimento difusivo de cavidades e bolhas

Modelo de Hull e Rimmer

Hipóteses:

- 1 Cavidades mantém forma esférica (difusão na superfície da cavidade é muito mais rápida que a de CG)
- 2 Difusão em CG domina o processo
- 3 O grão é rígido
- 4 Cavidade se encontra em equilíbrio com a tensão aplicada

$$\sigma = \frac{2\gamma_{\mathcal{S}}}{r_{\mathcal{C}}}$$

- 5 Cavidades distribuídas em uma rede quadrada com espaçamento 2b
- 6 O CG tem uma espessura dada por δ_{CG}
- 7 Lacunas são criadas na proximidade e migram para o CG

Crescimento difusivo de cavidades

Modelo de Hull e Rimmer

Concentração de equilíbrio de lacunas na superfície da cavidade:

$$c_{l}(r_{C}) = c_{l}^{0} \exp \left(\frac{2\gamma_{S}}{r_{C}} \frac{\Omega}{k_{B}T} \right)$$

O fluxo difusivo é (D_{CG} é a difusividade de lacunas em CG):

$$\mathbf{j} = \frac{D_{CG}}{\Omega k_B T} \nabla \mu$$

O gradiente de potencial químico é

$$\mu = \sigma \Omega \Rightarrow
abla \mu = rac{\Omega}{b} \left(\sigma - rac{2\gamma_{\mathcal{S}}}{r_{\mathcal{C}}}
ight)$$

Crescimento difusivo de cavidades

Modelo de Hull e Rimmer

Substituindo:

$$\mathbf{j} = \frac{D_{CG}}{bk_{B}T} \left(\sigma - \frac{2\gamma_{S}}{r_{C}} \right)$$

A taxa volumétrica de crescimento da cavidade é

$$\frac{\mathrm{d}V}{\mathrm{d}t} = (2\pi r_C \delta_{CG}) \,\mathbf{j}\Omega = \frac{2\pi D_{CG} \delta_{CG} \Omega r_C}{b k_B T} \left(\sigma - \frac{2\gamma_S}{r_C}\right)$$

e a taxa de creximento dos raios é

$$\dot{r}_{C} = \frac{D_{CG}\delta_{CG}\Omega}{r_{C}bk_{B}T}\left(\sigma - \frac{2\gamma_{S}}{r_{C}}\right)$$

Crescimento difusivo de cavidades

Modelo de Hull e Rimmer

Na presença de He (ou outro gás):

$$c_{l}\left(r_{C}
ight)=c_{l}^{0}\exp\left[\left(rac{2\gamma_{S}}{r_{C}}-
ho
ight)rac{\Omega}{k_{B}T}
ight]$$

е

$$\dot{r}_C = \frac{D_{CG}\delta_{CG}\Omega}{r_Cbk_BT}\left(\sigma - \frac{2\gamma_S}{r_C} + \rho\right)$$

Acoplamento entre fluência e crescimento de cavidades

Modelo de Cadek

- O deslocamento do grão provocado pelo crescimento da cavidade deve ser acomodado por fluência no grão para manter o equilíbrio de tensão
- Nas temperaturas e tensões que prevalecem em ambientes de reator, fluência ocorre por escorregamento de discordâncias (power-law creep)
- Se a taxa de fluência for insuficiente para acomodar o crescimento da cavidade, a tensão na vizinhança da mesma irá aumentar, reduzindo o potencial de crescimento da cavidade

$$\dot{r}_C = rac{1}{2,5} \left(rac{b}{r_C}
ight)^2 d_f \dot{arepsilon}_{min}$$

 d_f é o diâmetro da faceta do grão (aproximadamente igual ao tamanho de grão)

■ No power-law creep ($n \approx 2-3$)

$$\dot{\varepsilon}_{min} = A \left(\frac{\sigma}{B}\right)^n$$

levando a

$$\dot{r}_C = \frac{A}{2.5} \left(\frac{b}{r_C} \right)^2 \left(\frac{\sigma}{B} \right)^n d_f$$

Previsão de tempo para fratura

Modelo de Cocks e Ashby

$$t_f = \int_{r_C^0}^{r_C^f} \frac{\mathrm{d}r_C}{\dot{r}_C} = \int_{f_0}^{f_f} \frac{\mathrm{d}f}{\dot{f}}$$

com

$$f = \left(\frac{r_C}{b}\right)^2$$

correspondendo à fração de área das cavidades. o limite superior de integração, $f_f = \frac{\pi}{4}$, é estimado supondo que as cavidades se tocam no plano do contorno, mas como Was argumenta, a fratura ocorrerá antes, pois o ligamento não poderá suportar a tensão (portanto $f_f \approx 0,25$ é mais razoável).

Previsão de tempo para fratura

Modelo de Cocks e Ashby

Cocks e Ashby:

Crescimento difusional

$$t_{\rm f}\approx t_{\rm n}+\frac{0,17}{\alpha_0}\left(\frac{1}{\sigma}\right)$$

com

$$\alpha_0 = \frac{2D_{CG}\delta_{CG}\Omega}{b^3k_BT}$$

Crescimento restrito por power-law creep

$$t_f \approx t_n + \frac{1}{n\dot{\varepsilon}_{min}}$$

t_n: tempo de incubação.