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Abstract
The performance of inbred and hybrid genotypes is of interest in plant breeding and genetics. 
High-throughput sequencing of RNA (RNA-seq) has proven to be a useful tool in the study of the 
molecular genetic responses of inbreds and hybrids to environmental stresses. Commonly used 
experimental designs and sequencing methods lead to complex data structures that require careful 
attention in data analysis. We demonstrate an analysis of RNA-seq data from a split-plot design 
involving drought stress applied to two inbred genotypes and two hybrids formed by crosses 
between the inbreds. Our generalized linear modeling strategy incorporates random effects for 
whole-plot experimental units and uses negative binomial distributions to allow for overdispersion 
in count responses for split-plot experimental units. Variations in gene length and base content, as 
well as differences in sequencing intensity across experimental units, are also accounted for. 
Hierarchical modeling with thoughtful parameterization and prior specification allows for 
borrowing of information across genes to improve estimation of dispersion parameters, genotype 
effects, treatment effects, and interaction effects of primary interest.

1. INTRODUCTION
Over the past decade, many statistical methods have been developed for analyzing high 
throughput RNA sequencing (RNA-seq) data. RNA-seq enables the sequencing of entire 
transciptomes, yielding counts associated with the mRNA abundance corresponding to each 
gene or genetic feature. Due to the cost of RNA-seq, experiments typically have relatively 
few experimental units, yet still result in high dimensional data, since there are often tens of 
thousands of genetic features measured for each experimental unit. To detect Differentially 
expressed (DE) genes, RNA-seq data are commonly analyzed using frequentist or moderated 
frequentist methods, such as those implemented in edgeR (Robinson, McCarthy and Smyth, 
2010), DESeq (Anders and Huber, 2010), and limma (Smyth, 2005), but because of the high 
dimensionality, fully Bayesian methods are not often used.

edgeR and DESeq both use a negative binomial model with a generalized linear model 
(GLM) framework. This allows each package to accommodate arbitrary fixed-effects 
models, but neither allows for the use of random effects. The two packages differ in 
estimation of the negative binomial dispersion parameter, but both take a shrinkage 
approach, estimating a common or trended dispersion for the entire data set, then shrinking 
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the dispersion estimates of each feature towards that common estimate or trend. DESeq2 
extends the idea of shrinkage across genetic features to logarithmic fold change estimates to 
help account for high variance in fold change estimates for low-count genes (Love et al., 
2014).

Methods originally developed for the analysis of microarray data, including limma, have 
been adapted for RNA-seq data (Law et al., 2014). To extend to count data, limma uses the 
voom procedure, calculating a non-parametric estimate of the mean-variance relationship to 
generate weights for a linear model analysis of log transformed counts with empirical Bayes 
shrinkage of variance parameters. Law et al. (2014) argue that this procedure, and the use of 
log-transformed normal models, allows for more accurate modeling of the mean-variance 
relationship, while also yielding better small sample properties and permitting the use of a 
wider range of statistical tools than procedures based on count models.

Alternatives to both the count-based GLM and the transformed normal theory classes of 
methods include non-parametric approaches such as samr (Li and Tibshirani, 2013), and the 
empirical Bayes approach introduced by baySeq (Hardcastle and Kelly, 2010), which 
estimates posterior probabilities of a pre-specified set of models. Although also using the 
negative binomial distribution for the count data, model specification in baySeq essentially 
entails specifying different partitions of samples, where samples within each group share the 
same set of parameters. For a further introduction to these and other methods for Differential 
expression analysis of RNA-seq data, see Lorenz et al. (2014).

The most widely used statistical methods for RNA-seq data analysis discussed above have 
freely accessible software and are much more computationally efficient than fully Bayesian 
methods. The approach we pursue enjoys the flexibility and information-sharing capabilities 
of a fully Bayesian approach, while maintaining computational affordability via integrated 
nested Laplace approximation (INLA). INLA facilitates quick and accurate approximations 
of the marginal posteriors of latent Gaussian fields with a non-Gaussian response (Rue et al., 
2009). The R package ShrinkBayes leverages the speed of INLA and the potential of parallel 
computing to facilitate an empirical-Bayes-type analysis of RNA-seq data, approximating 
the marginal posteriors of interest relatively quickly (van de Wiel et al., 2012). The empirical 
Bayesian approach provides a natural mechanism for borrowing information across genes 
for estimation of means and dispersion parameters. A major advantage of ShrinkBayes over 
commonly used frequentist-based methods is its ability to share information across genetic 
features while accounting for random effects in models for complex experimental designs.

In this paper, we illustrate the use of INLA and ShrinkBayes for the analysis of data from a 
complex experimental design like others common in agricultural studies. We analyze an 
RNA-seq data set from maize. The data consist of counts associated with the abundance of 
nearly 30,000 genetic features for replicate plant samples of four different genotypes, each 
grown under two different treatments. The data collection process gives the data additional 
split-plot structure. After constructing an appropriate model and estimating the 
hyperparameters of prior distributions, we illustrate estimation and inference for simple 
effects, main effects, and interactions.
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The remainder of the paper is arranged as follows. Section 2 details the experimental design 
and structure of the data. Section 3 gives a brief review of INLA, the methods used in 
ShrinkBayes, and the model constructed for the analysis of the maize data. Section 4 reports 
results from fitting the model to the maize data. Section 5 summarizes a small simulation 
study, and we conclude with a discussion in Section 6.

2. DATA
Throughout this paper, we consider an RNA-seq data set from maize that includes eight 
RNA samples from each of two inbred lines (B73 and Mo17) and their hybrids (B73 × 
Mo17 and Mo17 × B73) formed by reciprocal crosses where the male and female parental 
genotypes are reversed. Throughout the remainder of the paper, we use BB, MM, BM, and 
MB as abbreviations for these four genotypes. From each genotype, RNA samples were 
drawn from each of four different plants subjected to drought stress conditions and from four 
other plants grown under control conditions. Plants were grown and processed in four 
blocks, with each combination of treatment and genotype represented in each block.

Although all samples were sequenced simultaneously, the manner in which they were 
prepared and arranged for sequencing added additional structure to the data that should be 
accounted for in modeling and analysis. All 32 RNA samples (4 blocks × 4 genotypes × 2 
treatments) were sequenced in the eight lanes of a single Illumina flowcell. (See Nettleton 
(2014) for a general introduction to sequencing on flowcells from a statistical perspective.) 
The BB, MM, BM, and MB RNA samples corresponding to any single block and treatment 
combination were sequenced together in a single lane. Each sample within each lane was 
associated with a different identifying “barcode” so that each sequenced RNA fragment 
(known as a read) could be attributed to the sample from which it originated. The concept of 
a Latin square was used to match barcodes with genotypes within each block. The layout of 
the sequencing design is depicted in Table 1, where C and D are used to designate the 
control and drought treatment conditions.

Based on the layout in Table 1, the experiment has a structure similar to that of a split-plot 
design. The whole-plot portion of the experiment is arranged as a randomized complete 
block design with four blocks, lane as the whole-plot experimental unit, and treatment (C vs. 
D) as the whole-plot factor. Genotype (BB, MM, BM, or MB) is the split-plot factor, and 
barcode is an additional blocking factor whose effects, though not expected to be large, will 
be accounted for in our modeling and analysis.

For each of the 32 samples represented by a cell in Table 1, a read count associated with 
RNA abundance for each of 29, 985 genetic features was derived from sequencing. The 
number of bases that compose each feature (length) and the proportion of the bases that are 
guanine or cytosine (GC content) of each feature were recorded. Our primary objective is to 
build a model for these count data and use Bayesian methods to identify Differentially 
expressed features via INLA and ShrinkBayes.
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3. METHODS
3.1 Model

For each i = 1, …, m = 29, 985 and each j = 1, …, n = 32, let Yij denote the observed read 
count for genetic feature i and experimental unit j, and let LLi and GCi be the log length and 
GC content of feature i, respectively. We consider a generalized linear mixed-effects model 
for the read count data. Such models are inherently hierarchical. At the data level of the 
hierarchy, we assume

where E(Yij) = e ij and Var(Yij) = E(Yij) + e i{E(Yij)}2. Conditional on all ij and i values, 
all the Yij counts are assumed to be mutually independent. At the next level of the hierarchy, 
we assume ij is a linear combination of feature-specific fixed effects (contained in a vector 

i), feature-specific random effects (contained in a vector ui), a smooth function (h) of 
feature length and GC content, and a sample-specific normalization factor (Tj) given by

(1)

The terms h(LLi, GCi) and Tj are offsets included for normalization purposes as described in 
Section 3.3. The other terms in equation (1) are defined as follows.

For k = 1, …, 8, the kth component of i ( ik) is a fixed effect for the kth combination of 
treatment and genotype as indicated in Table 2. If the experimental unit j is associated with 

the kth combination of treatment and genotype, then  is the kth row of the 8 × 8 identity 

matrix (I8×8) so that . The feature-specific vector of random effects ui contains 
eight random effects for lanes, four random effects for blocks, and four random effects for 
barcodes and is assumed to follow a multivariate Gaussian distribution with mean 0 and 

diagonal variance with blocks , and . The vector zj is a vector of 
length 16 indicating the lane, block, and barcode of experimental unit j. For example,

signifies that experimental unit 1 was sequenced in lane 1, was in block 1, and was 
associated with barcode 1.

At the final stage of our hierarchical model are priors for the feature-specific parameters:
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The unspecified hyperparameters µ , , µ , , L, and L, which we represent collectively 
by , are estimated from the data through the empirical Bayes procedure described in 
Section 3.2. We specify relatively diffuse priors for the precisions of the blocking factors 
(block and barcode), but we choose to estimate the parameters of the prior for the lane 
variance components because, as the whole-plot experimental units, lanes play an important 
role in inferences involving the whole-plot treatment factor.

3.2 INLA and ShrinkBayes
INLA is an alternative to Markov chain Monte Carlo methods for latent Gaussian models, 
with the advantage of greater computational speed without sacrificing accuracy. INLA 
provides a deterministic approximation to marginal posterior distributions, as well as an 
approximation of the marginal likelihood. Because it is common in RNA-seq analyses to 
assign a negative binomial likelihood to the observed counts, and to model some function of 
the mean using an additive linear predictor, we can readily apply INLA to RNA-seq data by 
assigning Gaussian priors to the coefficients in our linear predictors.

The methods introduced by van de Wiel et al. (2012), and implemented in the R package 
ShrinkBayes, utilize INLA to facilitate an empirical-Bayes-type analysis of RNA-seq data, 
making use of the high dimensionality of the data to shrink both dispersion and regression 
parameter estimates. ShrinkBayes aims to allow for flexibility in the count model and in 
experimental design, while facilitating shrinkage of multiple parameters and addressing 
multiple testing. We achieve shrinkage of the parameters of interest by estimating the 
hyperparameters of the distributions according to the following paradigm.

As an example, consider estimation of , the hyperparameters of the Gaussian 
prior for 1, …, m. For simplicity, initially suppose the hyperparameters in  other than 
are known. Let Yi be a vector containing the counts for genetic feature i, with distribution 
F (Yi) defined by the model in Section 3.1. We can express the Gaussian prior for 1, …, 

m as

(2)

where ( |Yi) is the posterior of i given Yi. Assuming Y1, …, Ym are draws from the 

distribution F , the above integral can be approximated by . van de Wiel 
et al. (2012) showed that finding  such that
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is approximately equivalent to the conventional empirical Bayes approach of choosing 
hyperparameters that maximize the marginal likelihood. ShrinkBayes finds such an 
through an iterative algorithm, first using initial values for  to approximate ( |Y1), …, 

( |Ym) via INLA, then drawing a large sample from the distribution defined by , 
finding the value of  that maximizes the likelihood of the sample according to , and 
repeating until convergence. In practice, all the elements of  are unknown, and the 
remaining elements of  are estimated concurrently using an analagous approach. See van 
de Wiel et al. (2012) for further details on updating the estimate of , theoretical properties 
of the iterative procedure, simultaneous shrinkage of parameters, and other features of 
ShrinkBayes. Upon convergence, INLA is again used to approximate marginal posterior 
distributions of interest for use in testing, which is explained in detail in Section 4.

For the maize data discused in Section 2, our interest is in identifying genetic features that 
substantially change expression level across combinations of treatment and genotype. In the 
context of the model specified in Section 3.1, we seek features for which |c i| is large for 
some contrast vector c that defines a comparison of interest. As an example, with c  = [1, −1, 
0, 0, 0, 0, 0, 0], the magnitude of c i = i1 − i2 measures the extent of Differential 
expression for between the parental genotypes BB and MM under control conditions for the 
ith feature. A contrast like i1 − i2 is often referred to as a log “fold change” because it 
represents a log ratio of means, appropriately adjusted for random effects and normalization 
factors. In addition to approximating marginal posteriors for individual feature-specific 
parameters, ShrinkBayes is able to estimate marginal posteriors for linear combinations of 
feature-specific parameters, including log fold changes and differences in log fold changes. 
This allows estimation and inference for a variety of contrasts that may be of interest. In 
Section 4, we show how to use the marginal posteriors estimated by ShrinkBayes to draw 
conclusions about three specific example contrasts in an analysis of the maize data.

3.3 Normalization
Normalization can account for differences in the total number of reads per sample and RNA 
composition of samples, and has been shown to be necessary for comparison across samples 
(Dillies et al., 2013; Robinson, Oshlack et al., 2010). Furthermore, biases introduced by the 
GC content and length of each feature have been well documented, but are not typically 
consistent across data sets (Oshlack et al., 2009; Benjamini and Speed, 2012). A common 
approach to normalization is including an offset in the linear predictor, as we have done in 
Section 3.1 by use of the h(LLi, GCi) and Tj terms. We use the log of the trimmed mean of 
M values (TMM) for Tj to normalize between samples (Robinson, Oshlack et al., 2010). 
However, we also include a gene-specific term h(LLi, GCi). Using the counts from all 
experimental units, we fit a smoothing spline to response log(count+1), with GC content and 
log feature length as explanatory variables, using the mgcv package in R. Some 
characteristics of the estimated function, displayed in Figure 1, show the nontrivial 
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relationship that exists between read count abundance and the length and GC content of 
genetic features. For each feature, the fitted value of the estimated function at the feature’s 
GC content and length is included in the linear predictor as h(LLi, GCi) in equation (1).

3.4 Prior Specification for ͤi

In Section 3.1, we assumed . Riebler et al. (2014) described 
techniques for using ShrinkBayes to estimate joint priors, but estimation of an unstructured 8 
× 8 covariance matrix  is currently intractable using these techniques. One natural 
simplification would be to assume the  is diagonal and to proceed with empirical Bayes 
hyperparameter estimation and approximate posterior inference under independent priors. 
We executed that strategy for the maize data using ShrinkBayes to obtain (for all i = 1, …, m 
and k = 1, …, 8) a posterior median ik for ik. Figure 2 shows a scatterplot of the points 
{( ik, ik*): i = 1, …, m} for each k < k* with k, k*  {1, …, 8}.

All the scatterplots show strong correlations between posterior medians. Although 
correlation between posterior medians does not, in general, imply a need for dependent 
priors, we would expect much less correlation in the scatterplots if  were truly diagonal. 
Instead, the scatterplots are consistent with the idea that variation in expression level across 
genetic features is a dominant source of variation in transcript abundance levels as measured 
by read counts. Lund et al. (2012) discussed this phenomenon for microarry-based measures 
of transcript abundance. In the maize RNA-seq data, some genetic features have many 
thousands of reads across all eight combinations of treatment and genotype. Other genetic 
features tend to have single-digit read counts regardless of treatment and genotype. 
Variations in expression level within genetic feature are often relatively small compared to 
differences in expression level across genetic features, even after accounting for variations 
due to gene length and GC content as discussed in Section 3.3. This suggests that  should 
have relatively large diagonal elements and positive off-diagonal elements that are non-
negligible in magnitude.

To estimate the hyperparameters in  in a more suitable way, we consider a 
reparameterization. Let the spectral decomposition of  be  = Q Q , where Q is an 
orthogonal 8 × 8 matrix and  is a diagonal 8 × 8 matrix. Then Q i has mean Q  and 
diagonal variance . Because  is unknown, we use , defined as the sample variance-
covariance matrix of 1, …, m from Figure 2, as an empirical approximation of . We then 
compute the spectral decomposition  = Q Q , and define a new parameter i = Q i for all 
i = 1, …, m. We can readily use ShrinkBayes to estimate hyperparameters and perform 
posterior inference for the maize data by specifying

where  is a positive definite, diagonal matrix. The implied prior for i = Q i is then 
multivariate Gaussian with mean µ  = Qµ  and variance  = Q Q , a non-diagonal 
positive definite matrix. Whereas model (1) has a single component of i for each treatment 
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and genotype, the elements of i in the alternative parameterization are orthogonal linear 
combinations of the i parameter vectors. For the given data,

Note that, as defined by the loadings in the first row of Q , i1 is approximately a constant 
times the average of the elements of i and, hence, is proportional to a general log expression 
level for gene i. Likewise, for gene i on the log scale, i2 corresponds roughly to the 
difference between the parents (BB minus MM) averaged over treatments, i3 may be 
interpreted as an approximate difference between hybrids and parents averaged over 
treatments, and i4 approximates the difference between treatments averaged over 
genotypes. According to the corresponding eigenvalues, the first linear combination 
accounts for 94.3% of the total variance in , and the first four linear combinations together 
account for over 99.5% of the total variance in . Figure 3 shows the analog of Figure 2 for 
the alternative parameterization and prior specification. The scatterplots of posterior medians 

1, …, m show very little correlation, indicating that the use of independent priors for the 
elements of i may be considerably more reasonable than using independent priors for the 
elements of i.

As another benefit of reparameterization, note that the “V” pattern of the 3 × 2 scatterplot 
in Figure 3 clearly differs from the remaining plots, and points us towards a possible set of 
DE genes where the expression level of one parent may differ from a common level of 
expression shared by the other parent and the hybrids. Since genes with large | 2| have a 
large difference between parents, and genes with large 3 have hybrids expressed more 
highly than parents, on average, the genes found at the top of the “V” may consist of one 
parent with low expression and one parent and both hybrids with high expression. Although 
this plot may miss features whose expression patterns differ across treatments, the 
intersection of genes with large | 2| and genes with large 3 may contain many features of 
interest.

4. ESTIMATION AND TESTING
Estimates of  under both the original and alternative parameterization are reported in Table 
3.

After estimating , we are able to approximate the marginal posterior distribution for each 
parameter and any desired linear combinations of parameters. To demonstrate testing for 
differential expression, we consider the three comparisons defined in Table 4, representing 
simple effects, main effects, and interactions, respectively. The simple effect T1 represents a 
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log fold change between the two parents under control conditions. The main effect T2 
examines the log fold change between treatments averaged over all four genotypes. The 
interaction effect T3 represents the change, across treatments, in the log fold change between 
hybrids. T1, T2, and T3 can be viewed as tests involving the split-plot factor, the whole-plot 
factor, and split-plot factor by whole-plot factor interaction, respectively. Although Table 4 
lists each test in terms of 1, …, 8, getting each contrast c i in terms of the alternative 
parameterization 1, …, 8 is straightforward, since c i = c (Q i) = (c Q) i.

The marginal posterior distributions of the linear combinations T1, T2, and T3 were 
approximated for each feature using ShrinkBayes and the model defined in Section 3.1 with 
the alternative parameterization discussed in Section 3.4. Posterior medians were computed 
to serve as point estimates of T1, T2, and T3. In addition to point estimates, we also 
calculated the posterior probability of Differential expression for each feature and each 
linear combination. As an example, we define a feature to be DE for T1 if |T1| ≥ log(1.25) 
for that feature. This definition of Differential expression corresponds to an increase of at 
least 25% in the expression level of one parent relative to the other. The threshold 1.25 is an 
arbitrary choice that we have made here simply for the sake of illustration. Depending on the 
goals of an investigator, smaller or larger thresholds could be selected. Based on the 1.25 
threshold, the null hypothesis of equivalent expression is then H0: |T1| < log(1.25). van de 
Wiel et al. (2012) recommended using a conservative adjustment to the posterior probability 
of the null hypothesis, P(H0|Y), given by

to avoid the case of an extremely vague posterior returning a small posterior probability of 
the null hypothesis. We denote this conservative estimate of posterior probability of 
equivalent expression, PII(H0|Y), as the local false discovery rate, lfdr. The posterior 
probability of Differential expression, 1 − PII(H0|Y) = 1 − lfdr, was calculated for every 
feature. This process was repeated with T2 and T3, using the same definition of Differential 
expression (|T2| ≥ log(1.25) and |T3| ≥ log(1.25)). Figure 4 shows a plot of the posterior 
probability of Differential expression vs. posterior median for each linear combination, with 
vertical lines representing a 1.25-fold change in either direction.

van de Wiel et al. (2012) recommended the use of Bayesian false discovery rate (BFDR) to 
control the experiment-wise false discovery rate (Lewin et al., 2007; Ventrucci et al., 2010). 
Making use of the local false discovery rate for the ith feauture (lfdri), we define BFDRi to 
be the average of all lfdr values for features with lfdr less than or equal to lfdri. If we wish to 
maintain a 0.05 FDR, we simply declare all features with BFDR ≤ 0.05 to be DE.

5. SIMULATION STUDY
To evaluate the properties of our approximated posterior probabilities and investigate the 
value of reparameterization in data similar to our motivating case, we conducted a sequence 
of brief simulation studies, differing only in how the expected counts and dispersion 
parameter of each genetic feature were determined. In each simulation, we generated data 
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from the negative binomial model, with a constant dispersion parameter within each genetic 
feature. For Simulation 1, we generated data using the model of Section 3.1 and the 
corresponding estimated hyperparameters from Section 4 as the true values. For Simulation 
2, we took the posterior means for each parameter obtained in Section 4 as the truth. For 
Simulation 3, we used the estimated means and dispersions from a standard edgeR analysis 
of the maize data as the truth. The edgeR analysis used TMM normalization (Robinson, 
Oshlack et al., 2010), Cox-Reid profile-adjusted likelihood to estimate dispersion parameters 
(McCarthy et al., 2012), and treated block and barcode as fixed effects, but omitted lane. 
Including both lane and genotype by treatment effects would result in a rank defficient 
design matrix, because each lane contains samples from only one of the treatments. So the 
column of the design matrix corresponding to the effect of drought, for example, would be 
equal to the sum of the columns corresponding to the effects of the lanes containing drought-
stressed samples (lanes two, four, six, and eight), and therefore the design matrix would not 
be of full column rank. Thus, for the given experimental design, lane cannot be modeled 
using fixed effects alongside genotype and treatment effects. Treating lane effects as random 
(as we have done in our model defined in Section 3.1) is not possible in the current version 
of edgeR. While Simulation 1 presents ideal conditions, with the model exactly matching the 
data generating mechanism, Simulations 2 and 3 represent progressively greater departures 
from our model in order to test the robustness of our methods.

In each setting, we simulated 10 data sets of identical dimensions and repeated the analysis 
of Section 4 under both the original parameterization and prior specification with diagonal 

 and the alternative parameterization and prior specification where  is non-diagonal. For 
each simulated data set, we estimated the smooth function h(LLi, GCi) and calculated the 
TMM normalization factors from the simulated data in the same manner as before. Then, for 
each parameterization/prior specification, we estimated new hyperparameters based on the 
simulated data, and used the hyperparameters to compute lfdr and BFDR values for all 
features. We evaluated performance using two measures: empirically estimated FDR when 
setting the nominal FDR at 0.05, and the partial area under the receiver operating 
characteristic curve (pAUC) for false positive rate ranging from 0 to 0.1.

Figure 5 depicts the mean pAUC of the test of each contrast (T1, T2, and T3) of interest 
under each simulation setting, accompanied by the corresponding standard error bars. For 
the first two simulation settings, we observe the ordering of genetic features from the 
analysis based on the alternative parameterization outperformed that of original 
parameterization. This relation does not hold for T2 and T3 in Simulation 3. The analogous 
plots of FDR in Figure 6 show a general tendency towards liberal testing under the original 
parameterization. However, under the alternative parameterization, we see adequate control 
of FDR, albeit erring towards lower than specified FDR, with the exception of T1 under 
Simulation 3.

To illustrate why the original parameterization leads to liberal testing and does not permit 
control of FDR, we consider the implied priors from the observed data on T2 under each 
parameterization. Using the left half of Table 3, it is straightforward to find that the implied 
prior on T2 under the original parameterization is Gaussian with mean −0.013 and standard 
deviation 1.315. This corresponds to a prior probability of Differential expression of 0.865. 
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Under the alternative parameterization, however, the implied prior on T2 is Gaussian with 
mean −0.011 and standard deviation 0.167. With a similar mean but much smaller standard 
deviation, the prior probability of Differential expression under the alternative 
parameterization is only 0.187. Given a prior probability of Differential expression almost 
five times greater for the original parameterization than for the alternative, it is not surprising 
to observe high false discovery rates for T2 under the original parameterization, but accurate 
or low false discovery rates under the alternative parameterization.

While Simulation 3 is intended to represent a greater departure from our model than the first 
two settings, it may in fact represent a systematically difficult case for methods such as the 
alternative parameterization that effectuate significant shrinkage of parameters. Simulation 3 
uses point estimates from an edgeR analysis to set true parameter values, but does not take 
into account the standard error of those point estimates. In negative binomial regression, 
maximum likelihood estimates of linear combinations of fixed effects (like those produced 
by edgeR) tend to have higher variances for low-count data. All else being equal, it is more 
likely that a higher variance point estimate will be far from zero. Therefore, many of the 
genes simulated in Simulation 3 as Differentially expressed are low-count genes. The 
analysis under the alternative parameterization shrinks the corresponding fold change 
estimates towards the prior mean, but under the original parameterization’s more variable 
priors seen in Table 3, less shrinkage occurs. Since we also observe more shrinkage in low-
count genes than in high-count genes, in a scenario such as Simulation 3 where many low-
count genes are DE, the lack of borrowing information across genes in the original 
parameterization actually works as an advantage. For high-count genes in Simulation 3, 
performance under the alternative parameterization is similar, if not superior, to that of the 
original parameterization.

6. DISCUSSION
We have carried out an empirical-Bayes-type analysis of RNA-seq data in order to identify 
differentially expressed genetic features. The computational efficiency of INLA and the 
additional tools of ShrinkBayes make this possible to do quickly and without advanced 
programming by the user, while still providing uncommon levels of modeling flexibility. We 
discussed how careful parameterization can lead to more appropriate model specification, 
and also demonstrated a simple method to control for variation arising from GC content and 
feature length by estimating a smooth function and including the fitted value as an offset in 
the linear predictor. Finally, we demonstrated how to use the marginal posterior distributions 
computed by ShrinkBayes to test whether a feature is DE, and conducted a simple 
simulation experiment to show the importance of parameterization and that we can 
adequately control for FDR in a conservative manner, assuming a reasonable model 
specification.

The methods of ShrinkBayes allow for a fast Bayesian analysis of high-dimensional data via 
simplified functions and pre-compiled routines. While models commonly used for RNA-seq 
data readily fit into the INLA framework, INLA’s requirement of a latent Gaussian field 
does somewhat limit modeling choices, and its inability to compute marginal posterior for 
nonlinear combinations of parameters limits the number of types of testable hypotheses. We 
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furthermore find that performance varies both under different tests and under departures 
from the model, and further work is required to increase the robustness of these methods.
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Figure 1. 
Estimated mean log(count +1) as a function of GC content for selected log lengths (left), and 
as a function of log length for selected GC contents (right).
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Figure 2. 
Scatterplot matrix of posterior medians of each k (the parameter for the kth combination of 
genotype and treatment as defined in Table 2) for every gene when assuming a diagonal 
under the original parameterization.
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Figure 3. 
Scatterplot matrix of posterior medians of each k (the kth orthogonal combination of 
genotype-treatment parameters) for every gene using the alternative parameterization of 
Table 2. Note the reduced correlations and the “V” pattern of the 3 × 2 cell.

Lithio and Nettleton Page 16

J Agric Biol Environ Stat. Author manuscript; available in PMC 2016 April 22.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Figure 4. 
Posterior probabilities of fold change greater than 1.25 against posterior medians for 
contrasts T1, T2, and T3. We have little power for contrast T3 and declare very few genes 
DE.
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Figure 5. 
Mean partial area under the ROC curve (pAUC) using ShrinkBayes over 10 simulated data 
sets for each of three contrasts (T1, T2, and T3) in Simulations 1, 2, and 3.
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Figure 6. 
Mean false discovery rates using ShrinkBayes over 10 simulated data sets while attempting 
to control FDR at .05 for each of three contrasts (T1, T2, and T3) in Simulations 1, 2, and 3.
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Table 2

Model parameters for each treatment and genotype combination

Treatment Genotype Model (1) Parameter

C BB 1

C MM 2

C BM 3

C MB 4

D BB 5

D MM 6

D BM 7

D MB 8
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Table 4

Example comparisons of interest

Label Comparison Linear Combination

T1 Control BB vs. Control MM Simple Effect 1 – 2

T2 Control vs. Drought Main Effect

T3 Treatment × Hybrid Interaction 3 – 4 – 7 + 8
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