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Overall aims 

Investigating the dynamical integrity of different 

nonlinear mechanical oscillators  

● showing practical examples of erosion profiles 

● discussing specific mechanical issues 

● discussing dynamical issues 

different dynamical phenomena different systems 

● safe basin of steady dynamics always used 



Mechanical and dynamical issues 

● hardening (Duffing) vs softening (Helmholtz, rigid block, 

MEMS) systems 

● symmetric (Duffing, rigid block) vs asymmetric (Helmholtz, 

MEMS) systems 

● smooth (Helmholtz, Duffing, MEMS) vs non-smooth (rigid 

block) systems 

● various “failure” phenomena: capsizing (Helmholtz), 

overturning (rigid block), pull-in (MEMS) 

● erosion of system without (rigid block) and with (Helmholtz, 

Duffing, MEMS) internal frequency 

● GIM vs IF (rigid block, MEMS) 

● harmonic and other excitations 



1. Integrity of in-well dynamics (Helmholtz, 

Duffing, Rigid block, MEMS, Augusti’s model, 

Guyed Tower) → dynamical integrity and 

control 

2. Robustness/Integrity of competing (in-in/in-out) 

attractors (Duffing, Parametrically excited 

pendulum, Parametrically excited cylindrical 

shell) 

Contents 



Helmholtz oscillator 
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1 = overall excitation amplitude 

j/1; j = parameters governing the shape of the excitation 



Helmholtz 
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harmonic 

harmonic + 1 super. 

harmonic + 2 super. 

regularization by adding (clever) superharmonics 



Helmholtz 

harmonic 

harmonic + 1 super. 

harmonic + 2 super. 

strong reduction for fixed excitation amplitude 
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Helmholtz: erosion profiles 


=
0
.7

0
 

• safe basin: classical basin of attraction; integrity through GIM 

• =0.81 is the vertex of the escape V-region in parameter plane 
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Helmholtz: excitation phase-amplitude chart 

contour plot of the GIM with harmonic excitation 
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● “Dover cliff” profiles 

● starting points of erosion = homoclinic bifurcations (OK!) 

● sharpness close to the vertex, dullness elsewhere 



Duffing oscillator 
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1= overall excitation amplitude 

j/1; j= parameters governing the shape of the excitation 



harmonic 

harmonic + 1 sym. super. 

harmonic + 1 unsym. super. 

localized vs scattered reduction of fractality 
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Duffing: erosion profiles 

(a) harmonic, (b) harmonic + 1 sym. super.,  

(c) harmonic + 1 unsym. super. (in the two different wells) 
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• safe basin: classical basin of attraction; integrity through IF 

• =0.80 is very close to the vertex of the escape V-region 



Rigid block 
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Heteroclinic bifurcation 
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Rigid block: erosion profiles, different measures 

● no resonance frequency 

around which focusing 

numerical analyses 

● likely effect of a secondary 

global bifurcation 

● GIM misses sharp fall of erosion profile 

● high values after fall: absence of resonance? 

● homoclinic bifurcation slowly triggers erosion 

● effects of non-smoothness 

=0.2, =0.02, r=0.95, =3.5 (slightly damped) – harmonic excitation 



Rigid block: example of basins erosion 

1=0.20              =0.2, =0.5, r=0.7, =1.5          1=0.35  



Rigid block: erosion with different excitations 
=0.2, =0.5, r=0.7, =1.5 (strongly damped) 

0.6

0.7

0.8

0.9

1

1.1

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

1

I.F.

harmonic

harmonic + 1 good 

superharmonic

harmonic + 1 bad 

superharmonic



Micro-electro-mechanical systems (MEMS) 

● nonlinear dynamics of a thermoelastic microbeam 

● axial load, modeling residual stresses 

● geometric nonlinearity due to membrane stiffness 

● ultra-high vacuum environment 

● concentrated electrodynamic transverse force applied at 

mid-span (the actuation) 

● both ends are fixed 



MEMS: single-d.o.f. model 

microbeam

rigid substrate
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ηj>0 and Ψj : relative amplitudes and phases of the j-th harmonic of the electrodynamic force, i.e., of the 

oscillating (AC) voltage  

substrate at x=1 overall excitation amplitude 

•  small electrodynamic force 

•  small visco- and thermo-elastic damping 

  temperature condensation 
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MEMS: reference response chart (harmonic excitation) 
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● many bifurcation diagrams built 

● same qualitative 

features of the 

Helmholtz oscillator 

● V-shaped region of 

escape (dynamic pull-

in), vertex at Ω=0.655 

● degenerate cusp 

bifurcation at Ω=0.737 

and  η=0.000461 



● classical basins of attraction (stationary regime) 

MEMS: basins erosion (harmonic excitation) 
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MEMS: erosion profiles (harmonic excitation) 

● comparison of erosion profiles with Integrity Factor (I.F.) and 

Global Integrity Measure (G.I.M.) 

● I.F. better takes into account 

the instantaneous fractal 

tongues penetration 

● I.F.<G.I.M. → I.F. more 

conservative → more reliable 

for practical applications  

Harmonic

excitation
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confirms rigid block results 



MEMS: basin erosion (1) (fixed amplitude) 

0.7,  =0.0025 2/1=-1.5 

● effects of a single added superharmonic (N=2) 

2/1=0 

2/1=0.5 2/1=1.66 

● the superharmonic may have dangerous effects if not 

properly designed 

● good results also for non optimal superharmonic 

● marginal increments around optimality 

harmonic 

optimal 

bad 

good 



MEMS: basin erosion (2) (fixed amplitude)  
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● sharpness (I.F.) vs dullness (G.I.M.) due to different detection of instantaneous 

fractal penetration 

optimum at η2/η1=1.66 

0.7,  =0.0025 

G = numerical (practical gains normalized to 

1 (harmonic excitation) vs superharmonic 

relativeamplitude 
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results 



MEMS: basin erosion (3) (varying amplitude) 

0.7 ● effects of superharmonics on erosion profiles 

● shifting of erosion profiles 

● same horizontal shift for both measures, different vertical 

shift (due to sharpness) 

● profiles shapes maintained by superharmonics 

I.F.
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Augusti’s 2-d.o.f model (4D)  
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Perfect  

Augusti’s 2-d.o.f. model (4D) 
(static load l  0.9)  

Equilibrium 

paths 

• four symmetric saddles          four unstable postbuckling descending branches  

• minimum point                        stable prebuckling solution 
 

invariant manifolds of saddles separate i.c. leading to bounded solutions that 

surround the prebuckling configuration, and identify the safe region, from  

unbounded escape solutions 



Perfect case (  0.465, l  0.9 and x  0.0) 

F=0.60 

Erosion proceeds for increasing excitation amplitude F 

F=0.66 F=0.70 

Augusti: Integrity 2D (on s.d.o.f. ROM) 



(l  0.9 and x  0.0) 

 Map of the local bifurcations in the fundamental 

resonance region prior to escape: 

Imperfect 

case (u10 = 1°) 

Perfect case 

Augusti: Integrity 2D (on s.d.o.f. ROM) 



(l  0.9 and x  0.0) 

 Integrity profiles: 

Critical situations 

Augusti: Integrity 2D (on s.d.o.f. ROM) 



(l  0.9) 

Perfect case (heteroclinic orbit)  

global control (addition of a super-

harmonic of order 3 to the 

harmonic excitation of the system) 

Imperfect case (homoclinic orbit)  

one-side control (addition of a super-

harmonic of order 2 to the harmonic 

excitation of the system) 

Augusti’s model: control strategy 



Perfect case (heteroclinic orbit)  

global control (addition of one 

super-harmonic of order 3 to the 

harmonic excitation of the system) 

Imperfect case (homoclinic orbit)  

one-side control (addition of one 

super-harmonic of order 2 to the 

harmonic excitation of the system) 
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Augusti’s model: control excitations 



(l  0.9 and x  0.0) 

Uncontrolled model  

Controlled model  
05289.0F

 Theoretical gain of 15.47% 

Augusti’s model: local effectiveness of control 



Uncontrolled 

model 

Controlled 

model 

Perfect case (  0.465, l  0.9 and x  0.0) 

Both GIM and IF show 

the effectiveness of control 

Augusti’s model: comparison of integrity profiles 



Uncontrolled 

model 

Controlled 

model 

Perfect case (  0.465, l  0.9 and x  0.0) 

Augusti’s model: comparison of integrity profiles 



Uncontrolled 

model 

Controlled 

model 

Perfect case (  0.465, l  0.9 and x  0.0) 

Augusti’s model: comparison of integrity profiles 



Uncontrolled model  

Controlled model  
02561.0F

Imperfect case (l  0.9, u10 = 1° and x  0.0) 

 Theoretical gain of 41.42% 

Augusti’s model: local effectiveness of control 



Uncontrolled 

model 

Controlled 

model 

Imperfect case (  0.54, l  0.9, u10 = 1° and x  0.0) 

Augusti’s model: comparison of integrity profiles 



Uncontrolled 

model 

Controlled 

model 

Imperfect case (  0.54, l  0.9, u10 = 1° and x  0.0) 

Augusti’s model: comparison of integrity profiles 



Uncontrolled 

model 

Controlled 

model 

Imperfect case (  0.54, l  0.9, u10 = 1° and x  0.0) 

Augusti’s model: comparison of integrity profiles 



Comparison of the perfect and imperfect systems: 

 Imperfection strongly reduces the system load carrying capacity 

 Control is more effective where most needed (imperfect model) 

Augusti’s model 
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  The simplified model of a guyed tower 

is stabilized by three linear springs, k1, k2 

and k3, initially inclined at 45° and located 

symmetrically by 120° 

 The model is under a harmonic base 

excitation Db(t) acting at an angle   with 

respect to the x axis 

Guyed tower 2-dof model (4D)  



(l  0.7 and x  0.0) 

 Map of the local bifurcations in the fundamental 

resonance region prior to escape: 

Imperfect 

case (u10 = 1°) 

Perfect case 

Guyed tower: Integrity 2D (on reduced order model) 



(l  0.7 and x  0.0) 

 Integrity profiles: 

Critical situations 

Guyed tower: Integrity 2D (on reduced order model) 



(l  0.7) 

Control strategy: 

Homoclinic orbits  one-side 

control (addition of one super-

harmonic of order 2) 

Perfect case Imperfect case (u10 = 1°) 

New excitation 
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Guyed tower: one-side control 



Perfect case (  0.547, l  0.7 and x  0.0) 

 Both GIM and IF show the increment of integrity of the 

controlled system 

Guyed tower: comparison of integrity profiles 



Imperfect case (  0.505, l  0.7, u10 = 1° and x  0.0) 

 Again, both GIM and IF show the increment of integrity of the 

controlled system 

Guyed tower: comparison of integrity profiles 



 No major differences between perfect and imperfect cases (as 

instead occurs in the Augusti’s model) 

 

 

 

 

 Consequence of the fact that a homoclinic bifurcation is always 

involved (whereas in the Augusti’s model there is a heteroclinic 

bifurcation in the perfect case and a homoclinic bifurcation in the 

imperfect case) 

Guyed tower: perfect vs imperfect cases 



1. Integrity of in-well dynamics (Helmholtz, 

Duffing, Rigid block, MEMS, Augusti’s model, 

Guyed Tower) 

2. Robustness/Integrity of competing (in-in/in-

out) attractors (Duffing, Parametrically excited 

pendulum, Parametrically excited cylindrical 

shell) → dynamical integrity only, no control 

Contents 



Duffing: competing non-resonant/resonant attractors (1) 
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a) F = 0.027                           b) F = 0.029      

competing basins for increasing 

excitation amplitude: 

a) only non-resonant attractor 

b) onset of resonant attractor (at snB): 

sudden fall down of Sn vs new born Sr 
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c) F = 0.041                           d) F = 0.060      

c) fractalization of left/right  well basin 

boundaries (hbh): no effect  on 

compact basins 

d) maximum basin of Sr 
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Duffing: competing non-resonant/resonant attractors (2) 
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e) F = 0.065                           f) F = 0.130      

e) penetration of fractal tongues inside Sr  

basin  

smoothly decreasing profiles till 

f)    near disappearance of Sn  (at snA) and 

residual integrity of Sr  
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Duffing: competing non-resonant/resonant attractors (3) 



The parametrically excited mathematical pendulum 

rotating

oscillating

0)sin()]2cos(1[1.0  xtpxx 

● “an antique but evergreen physical                                 

model” [Butikov] 

● benchmark for main features of robustness and 

dynamical integrity of competing attractors 

● permits a cross-study of in-well attractors (oscillations)           

and out-of-well attractors (rotations) 

● has been recently shown to be of interest for practical 

applications [Xu et al., 2007] 



Pendulum: bifurcation diagram and main events 
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O6
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p event comment 

0.196 H the rest position loses stability. O2 appears 

0.367 HOM1 homoclinic bifurcation of HS 

0.418 SN R1 appear through a SN bifurcation 

0.655 HOM2 homoclinic bifurcation of DR1 

0.888 SN R3 appear through a SN bifurcation 

0.935 HET heteroclinic bifurcation of DR1 and Ir 

0.948 PD R3 undergo a PD bifurcation followed by a PD cascade 

0.961 CR the PD cascade of R3 ends by a CR. R3 disappear 

1.082 SN O6 appears through a SN bifurcation 

1.111 PF 

O6 undergoes a PF bifurcation, and two oscillating solutions of 

period 6, still named O6, appear 

1.116 PD O6 undergo a PD bifurcation followed by a PD cascade 

1.118 CR the PD cascade of O6 ends by a CR. O6 disappear 

1.260 PF 

O2 undergoes a PF bifurcation, and two oscillating solutions of 

period 2, still named O2, appear 

1.332 PD O2 undergo a PD bifurcation followed by a PD cascade 

1.342 CR the PD cascade of O2 ends by a CR. O2 disappear 

1.349 PD R1 undergo a PD bifurcation followed by a PD cascade 

1.809 CR 

the PD cascade of R1 ends by a CR. R1 disappear, and tumbling 

chaos becomes the unique attractor 

attractors 

O2 main oscillating solution of period 2  

R1 main rotating solutions of period 1  

R3 secondary rotating solutions of period 3 

O6 secondary oscillating solution of period 6  

main saddles 

HS hilltop saddles  

DR1 direct saddles born at the SN bifurcation where R1 appear 

IR1 inverse saddles after the PD bifurcation of R1  

Ir inverse saddle replacing the rest position at the H bifurcation  

bifurcations 

SN, PD saddle-node, period-doubling  

PF, H pitchfork (or symmetry breaking), Hopf  

CR crisis  

HOM/HET homoclinic/heteroclinic  

● four main competing 

attractors (O2, R1, O6, R3) 

● ω=2 (parametric resonance) 

last oscillating attractor first rotating attractor 



Pendulum: integrity profiles at parametric res., =2 
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(1) (1) 

(1) starts when R1 are born by a SN 

(2) 

(2) 

(2) 

(2) 

(2) R1 basins grow up against the O2 basin. This is 

described by IF and GIM, to a different extent 

(3) 

(3) 

(3) both integrity curves of O2 have the classical “Dover 

cliff” behaviour 

(4) (4) 

(4) IF and GIM integrity curves of R1 have a different 

qualitative behaviour 
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Pendulum: sudden falls 
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(5) 
(5) 

(5) sharp fall due to the homoclinic bifurcation of DR1: 

evidenced by IF but not by GIM 

(6) 

(6) 

(6) sharp fall due to the het. bif. of DR1 and Ir: drastic 

reduction of the compact core of O2 basin clearly 

revealed by IF. With GIM this event is hardly 

recognizable (somehow hidden by the almost simultaneous appearance of 

R3) 
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Pendulum: final part of the erosion 
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(9) 

(9) O6 suddenly disappears, and O2 recovers a residual 

integrity by increasing the GIM and by keeping the IF 

constant 

(10) 

(10) 

(10) no further special events up to 

the end of the  integrity profiles 
(by the BC of the respective attractors) 

0

0.2

0.4

0.6

0.8

1

0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

p

GIM

O2

R1

R3 O6

-



.00 p

x

( =0.1, =2)h 

rest

O2

R1

R3

SN

H

PF sym. break.( )

PD

SN

O2

HOM1 HOM2 HET

O6

O6



Pendulum: oscillating solutions 
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● IF and GIM erosion profiles of O2 

are qualitatively similar. Differences 

in the final part: GIM→0 rapidly, IF 

→0 slowly 

● GIM>>IF in the final part, thus 

GIM overestimates integrity of O2, 

which is residual 
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Pendulum: rotating solutions (1) 
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● R1 change ‘status’ for growing  p. 

Initially they erode other (passive) 

attractors. Then, they are eroded by 

the secondary attractors, and finally 

they disappear by a reciprocal (self-) 

erosion -4
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Pendulum: rotating solutions (2) 
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● differences between the IF and the GIM of R1 are much 

more marked than those of O2 

● GIM is (almost monotonically) increasing up to 0.5 

● IF initially increases, reaches a maximum, starts a dull 

decrement, undergoes a sudden falls due to R3, slightly 

increases and then slowly decreases again up to the end 
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Pendulum: attractor robustness and basin integrity 
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● qualitative difference of IF and GIM: GIM is basically 

also a measure of attractor robustness, whereas IF is a 

measure of basin integrity, of major interest for safe 

design 

● sharp (O2) vs flat (R1) IF profiles 

● optimal operating conditions for R1 
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Parametrically excited cylindrical shell (2-dof model)  

( )

0188199.0274896.0043914.1

cos040775.1274215.9043914.1150761.0

2

0211

3

11110

1110211111111







 

( )

0094099.0318554.2

756712.69cos16310.416310.402086.0

02

2

11

2

02

020210200202







 

11, 02 basic, axisymm. mode with twice number of half waves in axial direction   
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post-buckling response path 

(0 , static load) 

five equilibrium points for 0=0.4     

(two heteroclinic and two homoclinic orbits)  

pre-buckling  

potential well 

two post- 

buckling  

wells 



Shell, sub-critical scenario: bifurcation diagram  

increasing  

axial load 

amplitude 1  

in the main  

parametric  

instability  

region 

five different broad classes of solution: 

(1) trivial pre-buckling,  

(2) non-trivial 2T within the pre-buckling well,  

(3) small amplitude vibrations within each of the post-buckling wells,  

(4) medium amplitude cross-well, 

(5) very large-amplitude cross-well period three, robust in the range 



Shell, sub-critical: attractor-basin portrait (1) 

cross-sections of 4D basins of attraction: in-well pre-buckling attractors 

Black: trivial.  Light and dark blue: period two.  White: escape 



Shell, sub-critical: attractor-basin portrait (2)  

Topological complexity of in-well and out-of-well attractors. 

Remark: Being basins of attraction in a 4D hyper-volume, it is not easy to 

detect touching of the hypersphere with the nearest competing basin  



Shell, sub-critical scenario: dynamic integrity  

erosion profiles of competing attractors 


