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Historical Framework  - A Global Dynamics Perspective in the Nonlinear 
Analysis of Systems/Structures 

15.00 -15.45 Achieving Load Carrying Capacity: Theoretical and Practical Stability 

16.00 -16.45 Dynamical Integrity: Concepts and Tools_1 
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14.00 -14.45 Dynamical Integrity: Concepts and Tools_2 

15.00 -15.45 Global Dynamics of Engineering Systems 

16.00 -16.45 Dynamical integrity: Interpreting/Predicting Experimental Response 
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14.00 -14.45 Techniques for Control of Chaos 

15.00 -15.45 A Unified Framework for Controlling Global Dynamics 

16.00 -16.45 Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics 
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14.00 -14.45 
A Noncontact AFM:  (a) Nonlinear Dynamics and Feedback Control  
                                     (b) Global Effects of a Locally-tailored Control  

15.00 -15.45 Exploiting Global Dynamics to Control AFM Robustness  

16.00 -16.45 Dynamical Integrity as a Novel Paradigm for Safe/Aware Design 



Invariant (stable and unstable) manifolds 

Stable manifold of a saddle point: the set 

of initial conditions that approach the saddle 

forward in time along its stable eigenvector 

forward in time  

Practically: backward iteration of stable eigenvector 

Unstable manifold of a saddle point: the 

set of initial conditions that approach the saddle 

backward in time along its unstable eigenvector 

forward in time 

Practically: forward iteration of unstable eigenvector 

If stable and unstable manifolds intersect in one point, they 

intersect in infinitely many points (forward and backward in 

time) 



Relevance of invariant manifolds 

Invariant manifolds “provide a useful stepping stone in 

the understanding of the overall system dynamics” [Katz & 

Dowell, 1994] even if they are structurally unstable sets that 

cannot be “seen” directly 

• stable manifold (insets) are boundaries of basins of 

attractions (this is why they are so important for 

dynamical integrity) 

• responsible for fractal basin boundaries (when stable and 

unstable manifolds intersect) 

• involved in many topological phenomena 



The Smale-Birkhoff (or Moser) homoclinic theorem 

Let a (2D) map (i.e. the Poincaré map of a continuous 

system) has a saddle. Let the stable and unstable 

manifolds of the saddle intersect transversally. Then 

an iteration of the map has an invariant Cantor set on 

which it is topologically conjugate to a full shift on N 

symbols 

• Apart from technicalities, this theorem proves that 

homoclinic intersection is responsible for “chaos” 

• Smale horseshoe (shift) map: at the heart of chaos 

• Similar results for heteroclinic orbits (manifolds of different saddles) 



Relevance of invariant manifolds 

“…it is not an exaggeration to claim that in virtually 

every manifestation of chaotic behaviour known thus 

far, some type of homoclinic behaviour is lurking in the 

background…” [Kovacic & Wiggins, 1992]  

• skeleton of chaotic attractors (maybe) 

• responsible for chaotic transient (certainly) 

So, now the question is: how to check if the stable and 

unstable manifolds intersect (transversally)? 

• Graphically 

• By measuring their distance -0.75 -0.75

0.75 0.75

1.6

1.6-0.4

-0.4

x

y
A

W
s

W
u



Manifolds distance 

• How to measure the distance? 

(i) Exactly. The best solution, but unfortunately this is 

possible only in few cases 

(ii) Approximately, for example by the perturbative 

Melnikov method. Most commonly used, but valid 

only in certain circumstances (e.g. only hilltop 

saddle) 

(iii)Numerically, when no other options are available 



An example: inverted pendulum 
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Manifolds distance 

• How to measure the distance? 

(i) Exactly. The best solution, but unfortunately this is 

possible only in few cases, e.g. piece-wise linear 

systems 

(ii) Approximately, for example by the perturbative 

Melnikov method. Most commonly used, but valid 

only in certain circumstances (e.g. only hilltop 

saddle) 

(iii)Numerically, when no other options are available 



An example: Helmholtz 

Phase space  

(without excitation and damping) 

Equation of motion 

Manifold distance 

(up to the first order) 
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Manifolds distance 

• How to measure the distance? 

(i) Exactly. The best solution, but unfortunately this is 

possible only in few cases, e.g. piece-wise linear 

systems 

(ii) Approximately, for example by the perturbative 

Melnikov method. Most commonly used, but valid 

only in certain circumstances (e.g. only hilltop 

saddle) 

(iii)Numerically, when no other options are available 



An example: Duffing 
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Manifolds distance: summary 

• The distance can “always” be written in the form 
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the difference between the various systems is due to the 

1) different definition of h
1,cr()  

2) different relations between the hj (amplitudes of the 

superharmonics in the distance) and j (amplitudes of 

the superharmonics in the excitation) 

• The structure of the distance is system-independent 

• The relations between hj and j, and the function 

h
1,cr(), are system-dependent 



Stable and unstable manifolds distance: an example 
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• No intersection if the distance does not change sign, i.e. d is 

positive 

• Intersection if the distance changes sign, i.e. if the minimum 

distance d is negative 

• h
1,cr() critical excitation amplitude with harmonic excitation 

      (for the Helmholtz oscillator h
1,cr() =            ) 

• For harmonic excitation h(m)=cos(m) 
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Basic idea of control (1) 

• Suppose to have homoclinic                                            

intersections 

• Then there is fractal basin                                                 

boundaries (bad for dynamical                                                         

integrity), chaotic transient and                                               

possibly chaotic attractor 

• Suppose to have an harmonic excitation. The distance is 

then 

 

 

 and d is negative for some values of m (since we have 

intersection) 
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• What to do to get out from                                                            

this situation? Or, in other                                             

words, how to detach the manifolds? 

1) Increasing the damping, which entails increasing h
1,cr() 

(for the Helmholtz oscillator h
1,cr() =           ) 

2) Reducing the excitation amplitude 1 

3) Changing the system parameters (e.g. ω) 

• All good, but “trivial” (while of course useful, if 

possible) 
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• It is possible to do better, by varying the excitation 

(keeping fixed the amplitude, of course) 

• HOW?  

→ Adding external/parametric                                    

excitation 

→ Adding superharmonic, i.e. keeping                                            

fixed the period but changing the                                                         

shape of the excitation 

→ Adding subharmonic (which entail                                                     

reshaping the excitation and                                                  

changing its period) 
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• Let us try by adding a superharmonic in the excitation 

• With given (harmonic excitation) we have 

 

 

• Adding a single superharmonic (to fix ideas) we get 

 

 

• h2 and Ψ2 can be chosen so that d=minm{d(m)} becomes 

positive, which corresponds to detached manifolds ! 
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A main point 

• The control method just illustrated is system-

independent (we have chosen h2 = 0.4 and Ψ2 =0 

without referring to a specific system), and thus 

general, “universal” 

• The practical implementation of control, which 

require computing γ2 from h2  is instead system-

dependent, since the function γ2(h2) changes from 

system to system (for the Helmholtz oscillator we 

have                   ) 
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Generalizations 

• More superharmonics 

• Subharmonics 

• Adding parametric/external excitations 

• Optimization 

• More homo/heteroclinic bifurcations 

• …. 

 

We are going to see some of them 



A step ahead: homoclinic bifurcation 

• If, by varying a parameter of the system, the stable 

and unstable manifolds pass from intersection to 

detachment (or viceversa), we have a homoclinic 

bifurcation  

• The same for the heteroclinic bifurcation 

• At the bifurcation the manifolds are tangent (i.e 

they intersect NON transversally), so that the 

Smale-Birkhoff (or Moser) homoclinic theorem 

does not apply 



Relevance of homo/heteroclinic bifurcations 

Homo/heteroclinic bifurcations of selected saddles are 

the mechanisms responsible for: 

• starting of fractalization of basin boundaries and 

sensitivity to initial conditions 

• appearance/disappearance of chaotic attractors or their sudden 

enlargement/reduction 

• triggering phenomena of basins erosion suddenly 

leading to out-of-well dynamics: 

• transition from single-well to cross-well chaos in multi-well 

systems 

• escape from potential well in single-well systems 



Homoclinic bifurcation and basins of attraction 
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Out-of-well dynamics: Escape from a potential well 

  effects of overcoming a potential hill: 
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• destroying the structure 

by fatigue 

 

• failure of the structure 

dynamical effects practical effects 

capsizing overturning 

http://www.gearthblog.com/images/images906/maemiship.jpg


Homoclinic bifurcation 

• The homoclinic bifurcation occurs when  

d=minm{d(m)} 

 passes from negative to positive values, i.e. when 

 d = 0 → 

   

homoclinic bifurcation threshold 

• With harmonic excitation h(m)=cos(m) →                       

–minm{h(m)}=1 → 

•           is the homoclinic bifurcation threshold for 

harmonic excitation 
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Control of homoclinic bifurcation: Basic idea 

• Act on the excitation to control the occurrence of 

homoclinic bifurcation (the same for heteroclinic) 

• But  

 

thus, controlling the homoclinic bifurcation threshold 

requires changing 

M = – minm{h(m)}, 

which is system-independent 

• In particular, increasing γ1,cr entails decreasing M 
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Control of homo/heteroclinic bifurcation 

key idea: controlling homo/heteroclinic bifurcations 
([Lima & Pettini, 90], [Cicogna & Fronzoni, 93], [Kivshar et al., 94], [Chacón & Díaz Berjarano, 93], [Sanjuán, 98], [Shaw, 90], [Lenci & 

Rega, 98a,b; 00, 03], [Cao et al., 03], [Nana Nbendjo et al., 03])  

modifications of the system 

modifications of the excitation 

specific objective versus practical strategies 

modifying frequency/amplitude [Blazejczyk et al., 93] 

adding parametric/external excitations [Lima & Pettini, 90] 

modifying the shape ([Shaw, 90], [Lenci & Rega, 98a,b,00,03]) 



The performance of control 

• How better the control excitation is with respect to 

the reference harmonic excitation? 

 

 

• G is called the gain 

• Other reference excitations can be chosen, without 

any conceptual difference 

• Saved region: homoclinic intersection with 

harmonic excitation, homoclinic detachment with 

control excitation, i.e where the control is effective 
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Example of saved regions 
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Optimal control (1) 

key idea: Choosing the “optimal” excitation 

  For fixed system parameters (,,1), maximize the 

distance between stable and unstable manifolds 

 (i) dynamical system point of view, (ii) used in numerical approach to control 

What is “optimal”? 

  For varying system parameters (in particular 1), shift as 

much as possible the bifurcation threshold 

 (i) engineering point of view, (ii) used in analytical approach to control,               

(iii) equivalent to enlarging as much as possible the saved region 



Optimal control (2) 

• In any case, optimization entails maximing G by 

varying h(m) 

• The optimization problem is then 

Maximize G 

by varying the coefficients hj and Ψj 

• Is equivalent to maximize M by varying h(m) 

• The optimization problem is then 

Maximize minm{                                      } 

by varying the coefficients hj and Ψj 

• This problem is system-independent 
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Optimal solution (1) 

• To fix ideas, let us start with the simple example 

N=2, i.e. only one superharmonic added to the 

reference harmonic excitation (Ψ2 = 0) 
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Optimal solution (2) 

• The “universal” optimal solution is given by Ψj = 0 

and 
N NG  NM  2h  3h  4h  5h  6h  7h  8h  9h  
2 1.4142 0.7071 0.353553        

3 1.6180 0.6180 0.552756 0.170789       

4 1.7321 0.5773 0.673525 0.333274 0.096175      

5 1.8019 0.5550 0.751654 0.462136 0.215156 0.059632     

6 1.8476 0.5412 0.807624 0.567084 0.334898 0.153043 0.042422    

7 1.8794 0.5321 0.842528 0.635867 0.422667 0.237873 0.103775 0.027323   

8 1.9000 0.5263 0.872790 0.706011 0.527198 0.355109 0.205035 0.091669 0.024474  

9 1.9130 0.5227 0.877014 0.705931 0.518632 0.341954 0.195616 0.091497 0.031316 0.005929 

… … … … … … … … … … … 

 2 0.5 1 1 1 1 1 1 1 1 
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Remark. The coincidence of the minima of the optimal h(m) has 

important consequences in terms of homoclinic bifurcation. In fact, 

while in the case of harmonic excitation there is only one minimum of 

h(m) and there is only one homoclinic point at the bifurcation value, in 

the case of optimal excitations there are more minima of h(m) and 

more distinct homoclinic points, so that the Birkhoff signature is 

different and the corresponding homoclinic bifurcation is degenerate 

and structurally unstable. 



Unified framework for control 

Investigation of how a generic dynamical property (homo/ 

heteroclinic bifurcations) entails a generic approach to control: 

The “core” of control is generic 

The differences between various systems are of 

technical nature and are due to different values of 

relevant coefficients, i.e. from the hj to the γj 

• System-independent structure of the distance between 

stable and unstable manifolds 

• System-independent optimization problems 

• System-independent solutions 



Some considerations 

• From the previous developments we obtain the 

physical optimal excitation fopt(ωt), which is system-

dependent 

• If in the uncontrolled case the excitation is harmonic, 

γ1sin(ωt), the control excitation is 

fcon(ωt) = fopt(ωt) – γ1sin(ωt) 

• More generally, if the uncontrolled excitation is 

generic, the control excitation is simply given by 

fcon(ωt) = fopt(ωt) – funcon(ωt) 

• Open-loop control method 

• Only periodic excitations considered 



Controlling more homoclinic intersections 

• What happens when there are more (e.g. two) 

possible homoclinic intersections to be controlled? 

• Example: the symmetric                                          

Duffing oscillator 

 

 

• More involved example: the                                         

asymmetric Helmholtz-Duffing                                   

oscillator 
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Distances 

• There are more (e.g. two) distances, one per 

homoclinic intersection to be controlled 

 

 

• Symmetric Duffing 

 

 

• Asymmetric Helmholtz-Duffing 
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Saved regions 

• There are more (e.g. two) saved regions, one per 

homoclinic intersection to be controlled 

• Asymmetric Helmholtz-Duffing 
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Gains 

• There are more (e.g. two) gains, one per             

homoclinic intersection to be controlled 
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The optimization problem (1) 

• We can apply the previous control separately to each 

Gi, giving up to control the other possible homoclinic 

intersections → “local” (or “one-side”) control 

• Or, we can try to control all the gains simultaneously 

→ “global” control 

• In the latter case the (new) optimization problem is 

Maximize min{G1,G2,G3,….} 

by varying the functions h1(m), h2(m), h3(m),…. 

• Practically corresponds to increasing the lowest gain 

up to the second lowest, than increasing both up to 

the third last, etc. 
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The optimization problem (2) 

• The global optimization problem is system-

dependent, contrarily to the local one 

• This is due to the fact that all h1(m), h2(m), h3(m),…. 

are related to the same excitations (with system-

dependent equations), and thus cannot be varied 

independently 

• For example, for the asymmetric Duffing-Helmholtz: 

 

 

and we can vary only hr
j (for example), and then hl

j  

varies accordingly (with system-dependent law) 
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The optimization problem (3) 

• The “global” optimization problem is much more 

complicated than the “local” one (not only because it 

is no longer system-independent) 

• The “local” optimization problem can be seen as a 

particular case of the “global” optimization problem, 

where the restraints coming from the other gains are 

removed 

• This implies that the “global” optimum is lesser than 

(or equal to) the “local” optimum 



The optimization problem (4) 

• Only in special cases also the “global” optimization 

problem is system-independent 

• This happens when there are system-independent 

relations between homoclinic bifurcations to be 

controlled 

• A remarkable case is that of symmetric systems, for 

example the Duffing oscillator 

• In this example we have                    , i.e. hr
j = – hl

j  
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Global control for symmetric systems (1) 

• For symmetric systems hr(m) = – hl(m) 

• – minm{hr(m)} = – minm{– hl(m)} = maxm{hl(m)} 

 

 

• The optimization problem is then 

Maximize min{Gl,Gr} 

by varying the function hl(m) 

• The optimal is obtained when Gl = Gr, namely when        

– minm{hl(m)} = maxm{hl(m)} 
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Global control for symmetric systems (2) 

• The optimization problem can then be reformulated as 

Maximize minm{h(m)},  

h(m)=                                        , 

by varying the coefficients hj and Ψj                                         

under the constraint – minm{hl(m)} = maxm{hl(m)} 

• The constraint is automatically satisfied by considering 

only odd harmonics, i.e. h2=h4=h6=…=0 

• This is again a system-independent optimization 

problem, since the constraint is system-independent 
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Generalization 

• When the asymmetry of the system is given, we arrive 

at the following optimization problem 

Maximize minm{h(m)},  

h(m)=                                        , 

by varying the coefficients hj and Ψj                                         

under the constraint – minm{hl(m)} = α maxm{hl(m)} 

• α ≠1 is the asymmetry parameter 

• This is again a system-independent optimization 

problem, since the constraint is system-independent, as 

α is assumed to be system-independent 
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Optimal solutions 

• The “universal” optimal solution is given by Ψj = 0 

and 
N NG  NM  2h  3h  4h  5h  6h  7h  8h  9h  
2 1 1 0        

3 1.1547 0.8660 0 -0.166667       

4 1.1547 0.8660 0 -0.166667 0      

5 1.2071 0.8284 0 -0.232259 0 0.060987     

6 1.2071 0.8284 0 -0.232259 0 0.060987 0    

7 1.2310 0.8123 0 -0.264943 0 0.100220 0 -0.028897   

8 1.2310 0.8123 0 -0.264943 0 0.100220 0 -0.028897 0  

9 1.2440 0.8038 0 -0.284314 0 0.125257 0 -0.053460 0 0.0163649 

… … … … … … … … … … … 

 1.2732 0.7854 0 -0.333333 0 0.200000 0 -0.142857 0 0.1111111 

 

N NG  NM  2h  3h  4h  5h  6h  7h  8h  9h  
2 1.4142 0.7071 0.353553        

3 1.4472 0.6910 0.352786 0.029180       

4 1.5000 0.6667 0.388672 0.000000 -0.055339      

5 1.5669 0.6382 0.441927 0.007496 -0.123186 -0.061735     

6 1.5771 0.6340 0.431789 -0.007810 -0.135928 -0.078875 -0.016550    

7 1.5834 0.6315 0.438843 -0.007077 -0.142507 -0.080418 -0.009175 0.006199   

8 1.5903 0.6288 0.443799 -0.001783 -0.140034 -0.079330 -0.005682 0.012261 0.004333  

9 1.5935 0.6275 0.446347 -0.002890 -0.145983 -0.083588 -0.004504 0.015251 0.005398 -0.000152 

… … … … … … … … … … … 

 1.6540 0.6046 0.500000 0.000000 -0.250000 -0.200000 0.000000 0.142857 0.125000 0.000000 

 

the symmetric 

case =1 (only odd 

superharmonics!) 

an asymmetric 

case, =0.5 



Numerical control 

• What to do when it is not possible to have an 

analytical (not even approximate, by the Melnikov 

method) expression for the distances between the 

stable and unstable manifolds? 

• We have to measure it numerically 

• Of course, even if the idea of the control method 

remains the same, its application, including the 

optimization problem, are system-dependent 



Numerical control 

• What to do when it is not possible to have an 

analytical (not even approximate, by the Melnikov 

method) expression for the distances between the 

stable and unstable manifolds? 

• We have to measure it numerically 

• Of course, even if the idea of the control method 

remains the same, its application, including the 

optimization problem, are system-dependent 

• A “guideline” for application of (numerical) control 

illustrated: more important than the specific example  



The mechanical model 

• The Duffing equation 

 

A: excitation amplitude 

c1: relative amplitude of the control superharmonic (physical amplitude is Ac1) 

c2: the phase 

 

• only a single control superharmonic is added to the 

basic harmonic excitation to perform reasonable 

analyses 

• practical interest: archetype of the 1 d.o.f. smooth 

hardening nonlinear oscillators with two potential 

wells, buckled beams, magnetoelastic pendulum, etc. 
[Moon, 1992] 
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Tools and dynamical phenomena of interest 

• Saddles are determined by a modified Newton 

method [Nusse & Yorke, 98] 

• Invariant manifolds are detected by standard 

numerical algorithms based on forward and 

backward iterations of the unstable and stable 

eigenvectors, respectively ([You et al., 91], [Hobson, 93], [Chan & 

Wang, 00]) 

• Specific dynamical phenomena to be controlled: 

transitions from single-well chaos to cross-well 

chaos, due to a homoclinic bifurcation of a P3 saddle 
([Katz & Dowell, 94], [Ueda et al., 90]) 



System response under harmonic excitation 

• Preliminary analysis needed to understand the 

dynamical behaviour of the system 

-1.0 -1.0

0.6 0.6

0.45

0.450.00

0.00

A

x

PF

small
amplitude

large
amplitude

h
o
m

. 
b
if

u
r.

h
il

lt
o
p

 s
a
d

d
le

small
amplitude

small
amplitude

hilltop
saddle

     Ahom=0.0765 (numerical), Ahom=0.0738 (Melnikov), error 3.6% due to 

         high damping 

 rest positions x1,3 get back their initial stability for large value of A, 

were they are period 1, confined and small amplitude oscillations 

 they coalesce by a pitchfork (PF) symmetry breaking bifurcation 

 leaving a unique P1, scattered and small amplitude attractor 

 coexistence with another P1, scattered and large amplitude attractor 

 in the range of instability of P1 oscillations the scenario is quite 

 involved (sequences of confined/scattered periodic/chaotic attractors) 

 we focus attention on the last scattered to confined transition, at 

 A=Aesc0.3252 



Bifurcation diagram around the interval of interest 

• for A>Aesc confined periodic/chaotic and scattered 

periodic attractors 

• for A<Aesc scattered periodic and chaotic attractors  

• the scattered periodic solution is not affected by the 

crisis 
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• it has been studied by Katz & 

Dowell [94] and Ueda et al. [90] 



Dynamical event triggering the transition 

• homoclinic bifurcation of a P3 saddle – non hilltop, 

that’s why we cannot use Melnikov method 
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Boundary crises 

• the illustrated phenomenon corresponds to a boundary 

crisis 
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Dynamical behaviour 

• Topological mechanism of transition from confined to 

scattered dynamics: connection with the heteroclinic 

intersection of the unstable manifold of D3
1 and the 

stable manifold of the hilltop D1;  
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• The neighborhood of the formerly 

confined chaotic attractor is mapped  

(1)  along the unstable manifold of D3
1, 

(2)  along the stable manifold of D1,  

(3)  up to near D1, and finally  

(4) along the branch of the unstable                                                                                

manifold of D1,  

(5) up to entering the other potential well  



Preliminary euristic example (1) 

• Fixed excitation amplitude A=0.3246<Aesc0.3252 

Harmonic excitation 

 

 

 

 

 

• A<Aesc → manifold intersection → cross-well chaos 

(+ scattered P1) 
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Preliminary euristic example (2) 

Symmetric control excitation (c1=0.6, c2=, n=3) 

 

 

 

 

 

• Elimination of manifold intersection (theoretical 

effectiveness of control) → two confined chaotic 

attractors (+ scattered P1) (practical effectiveness: 

confinement of the dynamics) 

D
3
1

W
s

W
s

W
u

W
u

-1.5 -1.5

1.5 1.5

1.5

1.5-1.5

-1.5

x

x



Preliminary euristic example (2) 

Symmetric control excitation (c1=0.6, c2=, n=3) 

 

 

 

 

 

• Cross-well chaos has been eliminated, though 

chaoticity survives to a minor extent and can be 

possibly eliminated by better calibration of control 

(see the following) 
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Preliminary euristic example (2) 

Symmetric control excitation (c1=0.6, c2=, n=3) 

 

 

 

 

 

• The basin boundaries of the two confined attractors 

are very intertwined and are numerically fractal (due 

to homoclinic intersection of D1) 
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Preliminary euristic example (3) 

Asymmetric control excitation (c1=0.3, c2=3/2, n=2) 

 

 

 

 

 

• elimination of manifold intersection (theoretical 

effectiveness of control) → one confined P2 attractors 

(+ scattered P1) (practical effectiveness: confinement 

and regularization of the dynamics) 
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Optimal control with symmetric excitation (1) 

• The distance between stable and unstable manifolds 
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Grey: manifolds intersection 

White: manifolds detached 

the optimal 

excitation has 

c21.08 and the 

largest possible c1 



Optimal control with symmetric excitation (2) 

c2=1.08 and c1=0.4                                c2=1.08 and c1=0.8 
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• Effectiveness of control, that increases for increasing c1 



Optimal control with asymmetric excitation (1) 

• The distance between stable and unstable manifolds 

Grey: manifolds intersection 

White: manifolds detached 

• the left optimal 

excitation has 

c21.65 and the 

largest possible c1  

• the right optimal 

excitation has 

c20.65 and the 

largest possible c1 
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Optimal control with asymmetric excitation (2) 

c2=1.65 and c1=0.2                                c2=1.65 and c1=0.4 

• Left optimal excitation 

• Better performances that the symmetric excitation: 

asymmetric excitations 15 times more efficient 

• Same results for the right optimal excitation 
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