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15.00 -15.45 A Unified Framework for Controlling Global Dynamics 

16.00 -16.45 Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics 
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A Noncontact AFM:  (a) Nonlinear Dynamics and Feedback Control  
                                     (b) Global Effects of a Locally-tailored Control  

15.00 -15.45 Exploiting Global Dynamics to Control AFM Robustness  

16.00 -16.45 Dynamical Integrity as a Novel Paradigm for Safe/Aware Design 
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Background (1) 

Controlling nonlinear 

dynamics and chaos 

Huge number of publications (90s-2010) 

Monographs 

Journal Special Issues 

Dedicated Web sites (Fradkov, Chen) 

“Control of chaos”  
today is commonly used for both 

 “True” control of chaos 
exploiting chaos for its control 

Suppression of chaos 
chaos eliminated “tout court” 

“…some techniques merely suppress or remove chaotic behavior… 

…others actually exploit chaotic behavior…” Linder and Ditto [1995] 



Background (2) 

Simple elimination of 

chaotic effects 

Classical control techniques [Sifakis & Elliott, 2000] 

Empirical methods [Singer et al., 1991] 

Keen approaches [Pyragas, 1992] 

“Suppression of Chaos” 



Background (2) 

Simple elimination of 

chaotic effects 

Classical control techniques [Sifakis & Elliott, 2000] 

Empirical methods [Singer et al., 1991] 

Keen approaches [Pyragas, 1992] 

“Suppression of Chaos” 

Pioneering work:  Ott, Grebogi & Yorke [1990] 

   although other works appeared at about the same time 

Seminal idea: exploiting the chaotic behaviour of 

      systems to control their dynamics 

      from analysis to synthesis of nonlinear dynamics and chaos 

“Control of Chaos” 



Background (3) 

• First of all. What is "control of chaos"? 

• Eliminating chaos. But how? 

• Two main approaches have been developed and 

used: 

1) transforming a given, single chaotic attractor into a 

 non-chaotic (equilibrium, periodic, quasi-periodic) 

 solution – a "local" approach 

2) regularizing the overall chaotic dynamics, by 

 exploiting the chaotic properties of the systems – a 

 "global" approach 



Classification of control methods (1) 

Possible classifications of the matter 

    Phenomenologically based classification: 

(i) Ott-Grebogi-Yorke method (OGY) [Ott et al. 1990] 

(ii) classical methods of control theory (CM) [Isidori, 1995] 

(iii) “control by system design” (CSD) [Blazejczyk et al., 1993] 

(iv) “parametric variation methods” (PVM) [Chen and Dong, 1998] 

1. Acting on the system parameters 



Classification of control methods (2) 

    Phenomenologically based classification: 

(i) classical methods where a modified input is applied (CM) 
[Sifakis and Elliott, 2000], [Pyragas, 1992], [Isidori, 1995], [Pinto and Gonçalves, 2000] 

(ii) “control through operating conditions” (COC) [Blazejczyk et al., 

1993] 

(iii) methods based on combining parametrical/eternal excitations 

(PEE) [Lima and Pettini, 1990] 

or applying weak periodic perturbations (WPP) [Chacon, 2005] 

or modifying the excitation shape (SE) [Shaw, 1990], [Lenci and Rega, 1998, 2004] 

2. Acting on the excitation  

Possible classifications of the matter 



Classification of control methods (3) 

    Performance based classifications: 

(i) stabilizing an unstable zone of parameter space (CSD, COC, PVM) 

(ii) moving away from known chaotic zones (CSD, COC) 

(iii) stabilizing a given, erratic solution (CM, OGY) 

(iv) overall regularizing the system dynamics (PEE, WPP, SE) 

Possible classifications of the matter 



Classification of control methods (4) 

    Dynamical system based classification. Exploiting: 

(i) the saddles embedded in the chaotic attractor (OGY) 

(ii) the ergodicity of the chaotic attractor [Shinbrot et al. 1990], [Boccaletti et al., 1997], 

[Bird and Aston, 1998] 

(iii) the sensitivity to initial conditions (S.I.C.) [Shinbrot et al., 1992] 

(iv) homo/heteroclinic bifurcations (PEE, WPP, SE)  

Possible classifications of the matter 



Applications of control methods 

Cross-disciplinarity of “Control of Chaos” 

    Various application fields, including: 

(i) mathematics, physics 

(ii) chemistry, biology, medicine 

(iii) economics 

(iv) engineering   



Applications of control methods 

Cross-disciplinarity of “Control of Chaos” 

    Various application fields, including: 

(i) mathematics, physics 

(ii) chemistry, biology, medicine 

(iii) economics 

(iv) engineering, mechanics 

pendulums, beams and plates, systems with friction and/or 

impacts, spacecraft, vibroformers, microcantilevers, ship 

oscillations, tachometers, rate gyros, Duffing oscillators, 

robot-manipulator arms, earthquake civil engineering, 

milling processes, whirling motions under mechanical 

resonances, systems with clearance …   



Chaos control in mechanics (1) 

    Difficult categorization due to high variety 

(i) of the systems (mechanical complexity) 

Discrete systems    /    Continuous systems 

to be validated with experiments, refined 

theoretical and numerical models 

Archetypal nonlinear 

oscillators idealization 

Minimal discretized 

representations 



Chaos control in mechanics (2) 

    Difficult categorization due to high variety 

(i) of the systems (mechanical complexity) 

(ii) of the involved dynamical processes (dynamical complexity) 

In the last 30 years: several nonlinear dynamic phenomena 

(chaotic/regular) highlighted in mechanical systems   

 

“Control of chaos”  
 Regular nonlinear phenomena 

nonlinear, wanted or unwanted, phenomena 

Chaotic nonlinear phenomena 
in strict sense 



Chaos control in mechanics (3) 

    Difficult categorization due to high variety 

(i) of the systems (mechanical complexity) 

(ii) of the involved dynamical processes (dynamical complexity) 

(iii) of the specific control goals 

Rich and intriguing framework! 



Chaos control in mechanics (3) 

    Difficult categorization due to high variety 

(i) of the systems (mechanical complexity) 

(ii) of the involved dynamical processes (dynamical complexity) 

(iii) of the specific control goals 

Rich and intriguing framework! 

A qualitative look at  

OGY Method 



The OGY method 

• Introduction 

• Fundamental attributes of chaos 

• Chaos control goals 

• Controlling Steadily Running Chaotic System 

• Targeting 

• OGY Method in Mechanics 

• From Local to Global Control 



OGY Method 

• First formulated in E. Ott, C. Grebogi and J.A. 

Yorke, 1990, Controlling Chaos, Phys. Rev. Lett. 

E, 64, 1196 

(University of Maryland Chaos Group) 

• Paradigmatic method: thousands of papers 

referring to it, providing explanations, 

clarifications, extensions, improvements on 

theoretical and computational aspects, 

experiments… in both hard and soft science 



Fundamental attributes of chaos (1) 

Based on two fundamental aspects of chaos: 

(1) Exponential sensitivity to small perturbations 
(largest Lyapunov exponent) 

Difficulty in prediction of future states of the system 



Fundamental attributes of chaos (1) 

Based on two fundamental aspects of chaos: 

(1) Exponential sensitivity to small perturbations 
(largest Lyapunov exponent) 

Difficulty in prediction of future states of the system 

For control purposes: 

large changes in location of orbit 

points can be produced by only 

small changes in control variable 



Fundamental attributes of chaos (2) 

Based on two fundamental aspects of chaos: 

(2) Complex orbit structure 
(entropy measures) 

Infinite set of unstable periodic orbits (UPOs) embedded 

within chaotic attractors 

[Shinbrot et al., 1993] 



Fundamental attributes of chaos (2) 

Based on two fundamental aspects of chaos: 

(2) Complex orbit structure 
(entropy measures) 

Infinite set of unstable periodic orbits (UPOs) embedded 

within chaotic attractors 

[Shinbrot et al., 1993] 

For control purposes: 

Very diverse dynamical changes. 

Great flexibility in dynamical 

behavior 



Chaos control goals (1) 

• Control = feedback control 
measurements of the state of the system are regularly taken, and, 

based on them, some controllable parameter (or set of parameters) 

is adjusted so as to achieve some goal 

(i) Control  :    Stabilizing selected unstable orbits 

(ii) Targeting :  Bringing an orbit to a desired location 

• Two ways of effectively using chaos: 

• Thanks to chaos attributes (1) e (2) both goals can be 

achieved with small perturbations 

low-energy/low-force controllers   



Chaos control goals (2) 

(i) Controlling a Steadily Running Chaotic System 

• Related to attribute (2) Complex Structure   

• Goal: improve the averaged performance of the system 



Chaos control goals (2) 

(i) Controlling a Steadily Running Chaotic System 

• Related to attribute (2) Complex Structure  

• Goal: improve the averaged performance of the system 

• Depends on its state x(t) and its history 

• P = <f(x(t))> : time average of some quantity f function of the state 

• For each UPO i:  Pi=<f(xi(t))> 

• For the chaotic orbit c: Pc= weighted average of Pi 

For some UPO: Pi > Pc  

 

Control the system to such UPO = improve system performance 

System Performance P 



Chaos control goals (3) 

(i) Controlling a Steadily Running Chaotic System 

• Two issues: 

(a) Determination of UPOs 

- If accurate analytical model available: 

standard numerical techniques  

(e.g., Newton’s method) 

- If analytical model not available 

(experiments): state space embedding 

and attractors reconstruction techniques  
[So et al., 1997],  [Pierson and Moss, 1995] 

[Witvoet, DCT 2005.36] 

UPOs 



Chaos control goals (4) 

(i) Controlling a Steadily Running Chaotic System 

• Two issues: 

(b) UPO control 

• Steps: 

- Small kick to the chaotic orbit to place it very near to the UPO  
Local linear return map around the UPO  

[Shinbrot et al., Nature 1993] 

Applied only to discrete data  
Continuous time systems: discrete time (Poincaré map)  



Chaos control goals (4) 

(i) Controlling a Steadily Running Chaotic System 

• Steps: 

- Small kick to the chaotic orbit to place it very near to the UPO  
Local linear return map around the UPO  

- Continually do small kicks to maintain the orbit close to the UPO 

[Witvoet, DCT 2005.36] 

• Two issues: 

(b) UPO control Applied only to discrete data  
Continuous time systems: discrete time (Poincaré map)  



Chaos control goals (5) 

(i) Controlling a Steadily Running Chaotic System 

• Two issues: 

(a) Determination of UPOs 

(b) UPO control 

Algorithms: 

• Original OGY technique [Ott et al., 1990] 

• “Pole-placement” technique [Romeiras et al., 1992 ] 

• Time-series measurements of a single scalar state variable 
[Dressler and Nitsche , 1992], [So and Ott ,1995] 

• Control of very fast dynamics [Socolar et al., 1994] 



Chaos control goals (5) 

(i) Controlling a Steadily Running Chaotic System 

• Application: Duffing Oscillator 

3
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xF = fixed point of Poincaré map 

corresponding to periodic orbit 

A = matrix of linearized coefficients 

mT = period of UPO to be controlled 

 

• Poincaré Map 

    1 1 0, ,n n n nx x F x x p c  

• Taylor expansion around xF 

• Eigenvalues and eigenvectors of A 

 

Control 
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λu = unstable eigenvalue of A 

b = δxF/δp relative shift of the fixed point as 

the driving amplitude is perturbed by δp 

fu = corresponding unstable eigenvector of A 



Chaos control goals (5) 

(i) Controlling a Steadily Running Chaotic System 

• Application: Duffing Oscillator 

Uncontrolled 

Control 

[Sifakis and Elliott, 2000] 
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Chaos control goals (6) 

(ii) Targeting 

• Related to attribute (1)  

     Exponential Sensitivity 

• Goal: quickly bring an orbit to a 

selected location in state space 
TARGET 

MOST 

FREQUENTLY 

VISITED 

NEIGHBORHOOD 



Chaos control goals (6) 

(ii) Targeting 

• Related to attribute (1)  

     Exponential Sensitivity  

• Goal: quickly bring an orbit to a 

selected location in state space 

[Boccaletti et al., Phys. Rev. E, 1997] 

TARGET 

MOST 

FREQUENTLY 

VISITED 

NEIGHBORHOOD 

• Perturbations carefully chosen: small controls 

• Several techinques  
[Shinbrot et al., 1990] 

[Kostelich et al., 1993]  

[Bollt and Meiss, 1995] 

[Schroer and Ott, 1997] 



OGY Method in Mechanics (1) 

• For OGY control, two attributes are needed: 

(i) Presence of one or more unstable fixed points 

(saddle-node type) within the strange attractor, to 

be possibly stabilized 

(ii) Accessible system parameter for changing 

location of the unstable fixed point in phase plane 



OGY Method in Mechanics (2) 

• To overcome them: 

Several improvements of OGY method, e.g.: 

-  SOGY method [Shinbrot et al., 1990] 

- Control of high periodic/high unstable UPO 
 [Hubinger et al., 1994], [Ritz et al., 1997]  

- Time delay coordinate method 
 [Dressler and Nitsche, 1992], [So and Ott, 1995], [DeKorte et al., 1995] 

• Limitations: 

- Systems with large noise  

- Sensitive systems (e.g., quickly changes in dynamics)  

- Systems with long chaotic transient  



OGY Method in Mechanics (3) 

• Applications: 

(i) Pendulum System [Hübinger et al., 1994], [DeKorte et al., 1995], [Starrett and Tagg, 1995], [Baker, 

1995], [Bishop at al., 1996], [Christini et al., 1996], [Yagasaki and Uozumi, 1997], [Yagasaki and Yamashita, 1999], 

[Wang and Jing, 2004], [Pereira-Pinto et al., 2004, 2005], [Alasty and Salarieh, 2007]  

(ii) Smooth Archetypal Oscillators [Ditto et al., 1990], [Moon, 1992], [Moon et al., 

1996], [Hunt, 1991], [Ding at al., 1994], [Dressler et al., 1995], [Ding et al., 1996], [Sifakis and Elliott, 2000] 

(iii) Vibro-Impact and Friction Systems [Nordmark, 1991], [Kalagnanam, 1994], 

[Chatterjee et al., 1995], [Bishop et al., 1998], [Lenci and Rega, 2000], [Galvanetto, 2001], [Gutiérrez and Arrowsmith, 

2004], [Moon et al., 2003], [ de Souza and Caldas, 2004], [de Sounza et al., 2005]  

(iv) Coupled Mechanical Systems [Feudel et al., 1998], [Alvarez et al., 1999], [Agiza, 

2002], [González-Hernández et al., 2001, 2004] 

(v) Targeting in Astrodynamics [Macklay et al., 1984], [Lai et al., 1993], [Lai et al., 1993], 

[Macau, 1998,2000,2003] 

(vi) Atomic Force Microscopy [Ashhab et al., 1999], [Basso et al., 2000], [Jamitzky et al., 

2006], [Arjmand et al., 2008], [Misra et al., 2008] 



2010 

OGY Method in Mechanics (4) 



From Local to Global Control  (1) 

• OGY method: "local" approach 

Exploiting chaotic properties to stabilize a selected 

unstable saddle embedded in chaotic attractor 

 

• In alternative: "global" approach 

Exploiting chaotic properties to eliminate (shift) a 

homoclininc/heteroclinic intersection triggering 

unwanted phenomena 



From Local to Global Control  (2) 

• Different methods for "global" approach: 

-  Modifying system parameters 

-  Adding controlling parametric excitation to the 

external one, o viceversa [Lima and Pettini, 1990] 

-  Modifying the excitation by adding controlling   

terms (i.e. controlling sub/superharmonics) [Chacon, 

2005], [Lenci and Rega, 1998-……. ] 



From Local to Global Control  (2) 

• Different methods for "global" approach: 

- Modifying system parameters 

- Adding controlling parametric excitation to the 

external one, o viceversa [Lima and Pettini, 1990] 

- Modifying the excitation by adding controlling   

terms (i.e. controlling sub/superharmonics) [Chacon, 

2005], [Lenci and Rega, 1998-… ] 

To be addressed in the next lecture ! 




