11.1 -

Techniques for Control of Chaos

Department of Structural and Geotechnical Engineering Sapienza University of Rome, Italy

Giuseppe.Rega@uniroma1.it

Coworkers: S. Lenci, V. Settimi

DAY		TIME	LECTURE			
Monday	05/11	14.00 -14.45	Historical Framework - A Global Dynamics Perspective in the Nonlinear Analysis of Systems/Structures			
		15.00 -15.45	Achieving Load Carrying Capacity: Theoretical and Practical Stability			
		16.00 -16.45	Dynamical Integrity: Concepts and Tools_1			
day	07/11	14.00 -14.45	Dynamical Integrity: Concepts and Tools_2			
Wednesday		15.00 -15.45	Global Dynamics of Engineering Systems			
>		16.00 -16.45	Dynamical integrity: Interpreting/Predicting Experimental Response			
١٨	12/11	14.00 -14.45	Techniques for Control of Chaos			
Monda		15.00 -15.45	A Unified Framework for Controlling Global Dynamics			
		16.00 -16.45	Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics			
Wednesday	14/11	14.00 -14.45	A Noncontact AFM: (a) Nonlinear Dynamics and Feedback Control (b) Global Effects of a Locally-tailored Control			
		15.00 -15.45	Exploiting Global Dynamics to Control AFM Robustness			
		16.00 -16.45	Dynamical Integrity as a Novel Paradigm for Safe/Aware Design			

Contents

- Background
- Classification of control methods
- Chaos control in mechanics
- The OGY method

Background (1)

Controlling nonlinear dynamics and chaos

Huge number of publications (90s-2010)

Monographs

Journal Special Issues

Dedicated Web sites (Fradkov, Chen)

"Control of chaos"

today is commonly used for both

Suppression of chaos

chaos eliminated "tout court"

"True" control of chaos

exploiting chaos for its control

"...some techniques merely suppress or remove chaotic behavior...

... others actually exploit chaotic behavior... "Linder and Ditto [1995]

Background (2)

"Suppression of Chaos"

Classical control techniques [Sifakis & Elliott, 2000]

Background (2)

"Suppression of Chaos"

Simple elimination of chaotic effects Classical control techniques [Sifakis & Elliott, 2000] Empirical methods [Singer et al., 1991] Keen approaches [Pyragas, 1992]

"Control of Chaos"

Pioneering work: Ott, Grebogi & Yorke [1990]

although other works appeared at about the same time

Seminal idea: *exploiting* the chaotic behaviour of systems to control their dynamics

from analysis to synthesis of nonlinear dynamics and chaos

Background (3)

- First of all. What is "control of chaos"?
- Eliminating chaos. But how?
- Two main approaches have been developed and used:
- 1) transforming a given, **single** chaotic attractor into a non-chaotic (equilibrium, periodic, quasi-periodic) solution a **''local''** approach
- 2) regularizing the **overall** chaotic dynamics, by exploiting the chaotic properties of the systems a **''global''** approach

Classification of control methods (1)

- Phenomenologically based classification:
 - 1. Acting on the system parameters
 - (i) Ott-Grebogi-Yorke method (OGY) [Ott et al. 1990]
 - (ii) classical methods of control theory (CM) [Isidori, 1995]
 - (iii) "control by system design" (CSD) [Blazejczyk et al., 1993]
 - (iv) "parametric variation methods" (PVM) [Chen and Dong, 1998]

Classification of control methods (2)

- Phenomenologically based classification:
 - 2. Acting on the excitation
 - (i) classical methods where a modified input is applied (CM) [Sifakis and Elliott, 2000], [Pyragas, 1992], [Isidori, 1995], [Pinto and Gonçalves, 2000]
 - (ii) "control through operating conditions" (COC) [Blazejczyk et al., 1993]
 - (iii) methods based on combining parametrical/eternal excitations (PEE) [Lima and Pettini, 1990] or applying weak periodic perturbations (WPP) [Chacon, 2005] or modifying the excitation shape (SE) [Shaw, 1990], [Lenci and Rega, 1998, 2004]

Classification of control methods (3)

- **Performance** based classifications:
 - (i) stabilizing an unstable zone of parameter space (CSD, COC, PVM)
 - (ii) moving away from known chaotic zones (CSD, COC)
 - (iii) stabilizing a given, erratic solution (CM, OGY)
 - (iv) overall regularizing the system dynamics (PEE, WPP, SE)

Classification of control methods (4)

- Dynamical system based classification. Exploiting:
 - (i) the saddles embedded in the chaotic attractor (OGY)
 - (ii) the ergodicity of the chaotic attractor [Shinbrot et al. 1990], [Boccaletti et al., 1997], [Bird and Aston, 1998]
 - (iii) the sensitivity to initial conditions (S.I.C.) [Shinbrot et al., 1992]
 - (iv) homo/heteroclinic bifurcations (PEE, WPP, SE)

Applications of control methods

Cross-disciplinarity of "Control of Chaos"

- Various application fields, including:
 - (i) mathematics, physics
 - (ii) chemistry, biology, medicine
 - (iii) economics
 - (iv) engineering

Applications of control methods

Cross-disciplinarity of "Control of Chaos"

- Various application fields, including:
 - (i) mathematics, physics
 - (ii) chemistry, biology, medicine
 - (iii) economics
 - (iv) engineering, mechanics

pendulums, beams and plates, systems with friction and/or impacts, spacecraft, vibroformers, microcantilevers, ship oscillations, tachometers, rate gyros, Duffing oscillators, robot-manipulator arms, earthquake civil engineering, milling processes, whirling motions under mechanical resonances, systems with clearance ...

Chaos control in mechanics (1)

- Difficult categorization due to high variety
 - (i) of the systems (mechanical complexity)

to be validated with experiments, refined theoretical and numerical models

Chaos control in mechanics (2)

- Difficult categorization due to high variety
 - (i) of the systems (mechanical complexity)
 - (ii) of the involved dynamical processes (dynamical complexity)

In the last 30 years: several nonlinear dynamic phenomena (chaotic/regular) highlighted in mechanical systems

"Control of chaos"

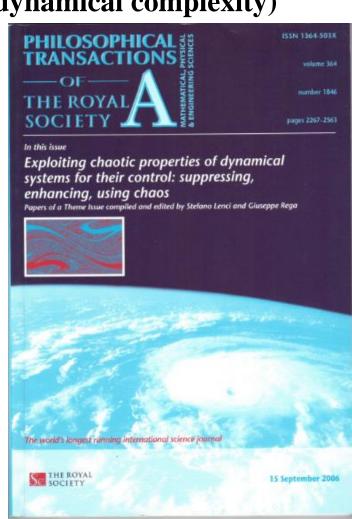
Chaotic nonlinear phenomena in strict sense

Regular nonlinear phenomena nonlinear, wanted or unwanted, phenomena

Chaos control in mechanics (3)

- Difficult categorization due to high variety
 - (i) of the systems (mechanical complexity)
 - (ii) of the involved dynamical processes (dynamical complexity)
 - (iii) of the specific control goals

Rich and intriguing framework!

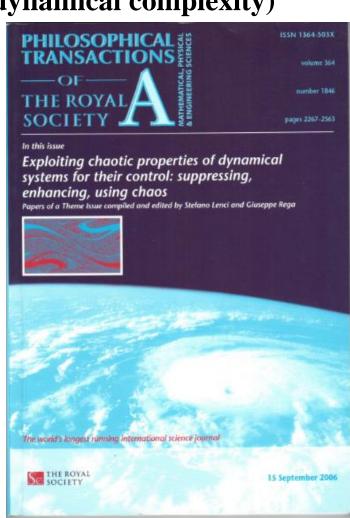


Chaos control in mechanics (3)

- Difficult categorization due to high variety
 - (i) of the systems (mechanical complexity)
 - (ii) of the involved dynamical processes (dynamical complexity)
 - (iii) of the specific control goals

Rich and intriguing framework!

A qualitative look at **OGY Method**



The OGY method

- Introduction
- Fundamental attributes of chaos
- Chaos control goals
 - Controlling Steadily Running Chaotic System
 - Targeting
- OGY Method in Mechanics
- From Local to Global Control

OGY Method

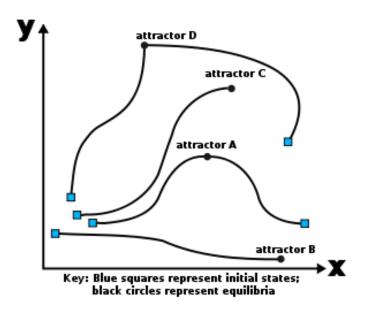
- First formulated in E. Ott, C. Grebogi and J.A.
 Yorke, 1990, Controlling Chaos, *Phys. Rev. Lett.* E, 64, 1196
 (University of Maryland Chaos Group)
- Paradigmatic method: thousands of papers referring to it, providing explanations, clarifications, extensions, improvements on theoretical and computational aspects, experiments... in both hard and soft science

Fundamental attributes of chaos (1)

Based on two fundamental aspects of chaos:

(1) Exponential sensitivity to small perturbations (largest Lyapunov exponent)

Difficulty in prediction of future states of the system



Fundamental attributes of chaos (1)

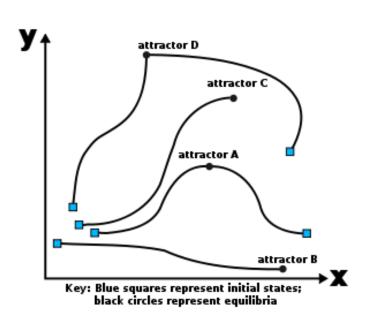
Based on two fundamental aspects of chaos:

(1) Exponential sensitivity to small perturbations (largest Lyapunov exponent)

Difficulty in prediction of future states of the system

For control purposes:

large changes in location of orbit points can be produced by only small changes in control variable



Fundamental attributes of chaos (2)

Based on two fundamental aspects of chaos:

(2) Complex orbit structure

(entropy measures)

Infinite set of unstable periodic orbits (UPOs) embedded

within chaotic attractors

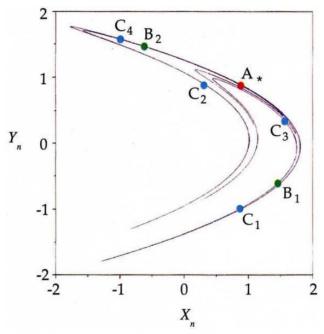


FIG. 1 Hénon attractor, with period-1 point, A_* ; period-2 points, B_1 and B_2 ; and period-4 points, C_1 , C_2 , C_3 and C_4 .

Fundamental attributes of chaos (2)

Based on two fundamental aspects of chaos:

(2) Complex orbit structure (entropy measures)

Infinite set of unstable periodic orbits (UPOs) embedded

within chaotic attractors

For control purposes:

Very diverse dynamical changes. Great flexibility in dynamical behavior

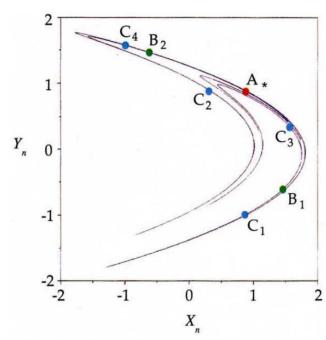


FIG. 1 Hénon attractor, with period-1 point, A_* ; period-2 points, B_1 and B_2 ; and period-4 points, C_1 , C_2 , C_3 and C_4 .

Chaos control goals (1)

Two ways of effectively using chaos:

(i) Control: Stabilizing selected unstable orbits

(ii) Targeting: Bringing an orbit to a desired location

Thanks to chaos attributes (1) e (2) both goals can be achieved with small perturbations
 low-energy/low-force controllers

• Control = *feedback control*measurements of the state of the system are regularly taken, and, based on them, some controllable parameter (or set of parameters) is adjusted so as to achieve some goal

Chaos control goals (2)

- (i) Controlling a Steadily Running Chaotic System
 - Related to attribute (2) *Complex Structure*
 - Goal: improve the averaged performance of the system

Chaos control goals (2)

(i) Controlling a Steadily Running Chaotic System

- Related to attribute (2) Complex Structure
- Goal: improve the averaged performance of the system

System Performance P

- Depends on its state x(t) and its history
- $P = \langle f(x(t)) \rangle$: time average of some quantity f function of the state
- For each UPO *i*: $P_i = \langle f(x_i(t)) \rangle$
- For the chaotic orbit $c: P_c$ = weighted average of P_i

For some UPO: $P_i > P_c$

Control the system to such UPO = improve system performance

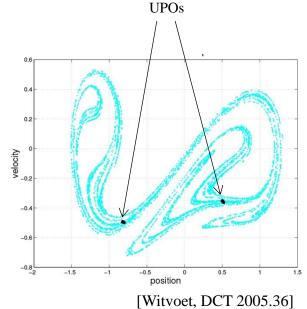
Chaos control goals (3)

(i) Controlling a Steadily Running Chaotic System

• Two issues:

(a) Determination of UPOs

- If accurate **analytical model available**: standard numerical techniques (e.g., Newton's method)
- If analytical model not available (experiments): state space embedding and attractors reconstruction techniques



[So et al., 1997], [Pierson and Moss, 1995]

Chaos control goals (4)

(i) Controlling a Steadily Running Chaotic System

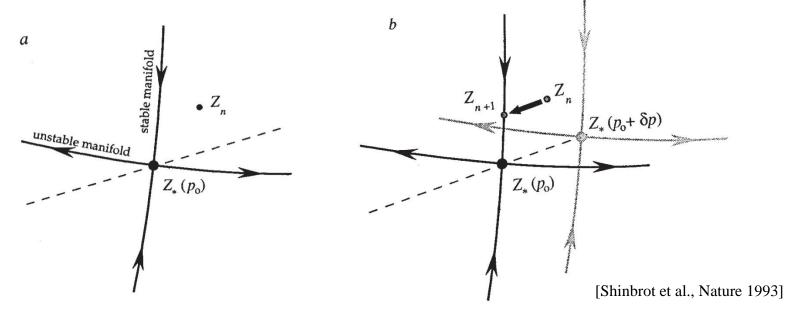
- Two issues:
 - (b) UPO control Applied only to discrete data

Continuous time systems: discrete time (Poincaré map)

• Steps:

- Small kick to the chaotic orbit to place it very near to the UPO

Local linear return map around the UPO



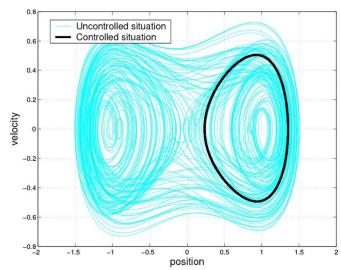
Chaos control goals (4)

(i) Controlling a Steadily Running Chaotic System

- Two issues:
 - **(b) UPO control** Applied only to discrete data

Continuous time systems: discrete time (Poincaré map)

- Steps:
- Small kick to the chaotic orbit to place it very near to the UPO Local linear return map around the UPO
- Continually do small kicks to maintain the orbit close to the UPO



Chaos control goals (5)

- (i) Controlling a Steadily Running Chaotic System
 - Two issues:
 - (a) Determination of UPOs
 - (b) UPO control

Algorithms:

- Original OGY technique [Ott et al., 1990]
- "Pole-placement" technique [Romeiras et al., 1992]
- Time-series measurements of a single scalar state variable [Dressler and Nitsche, 1992], [So and Ott, 1995]
- Control of very fast dynamics [Socolar et al., 1994]

Chaos control goals (5)

(i) Controlling a Steadily Running Chaotic System

Application: Duffing Oscillator

$$\ddot{x}(t) + c\dot{x}(t) - x(t) + x^{3}(t) = p \cos(\omega_{0}t)$$

Poincaré Map

$$\begin{bmatrix} x_{n+1} & \dot{x}_{n+1} \end{bmatrix} = F(\begin{bmatrix} x_n & \dot{x}_n \end{bmatrix}, p_0, c)$$

• Taylor expansion around x_F

$$\begin{bmatrix} x_{n+m} & \dot{x}_{n+m} \end{bmatrix} - \begin{bmatrix} x_F & \dot{x}_F \end{bmatrix} = \mathbf{A} \begin{pmatrix} \begin{bmatrix} x_n & \dot{x}_n \end{bmatrix} - \begin{bmatrix} x_F & \dot{x}_F \end{bmatrix} \end{pmatrix}$$

Eigenvalues and eigenvectors of A

Control

$$p = p_0 + C(x - x_F) f^u$$
, $C = \frac{\lambda_u}{(\lambda_u - 1)} \frac{1}{(\mathbf{b} f^u)}$

 x_F = fixed point of Poincaré map corresponding to periodic orbit

A = matrix of linearized coefficients

mT = period of UPO to be controlled

 λ_{ij} = unstable eigenvalue of **A**

 $\mathbf{b} = \delta x_F / \delta p$ relative shift of the fixed point as the **driving amplitude is perturbed** by δp

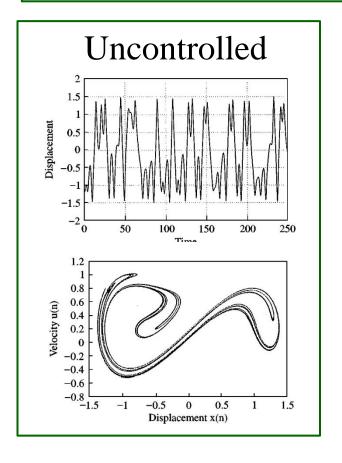
 f^{μ} = corresponding unstable eigenvector of **A**

Chaos control goals (5)

(i) Controlling a Steadily Running Chaotic System

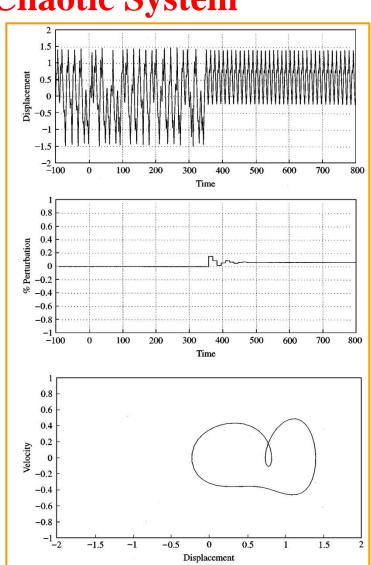
Application: Duffing Oscillator

$$\ddot{x}(t) + c\dot{x}(t) - x(t) + x^{3}(t) = p \cos(\omega_{0}t)$$



Control

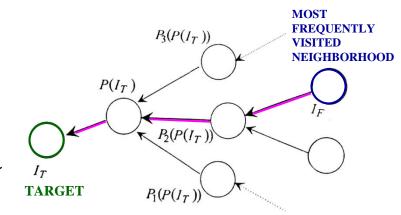
[Sifakis and Elliott, 2000]



Chaos control goals (6)

(ii) Targeting

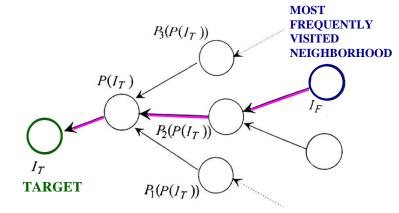
- Related to attribute (1)
 Exponential Sensitivity
- Goal: quickly bring an orbit to a selected location in state space



Chaos control goals (6)

(ii) Targeting

- Related to attribute (1)
 Exponential Sensitivity
- Goal: quickly bring an orbit to a selected location in state space



Perturbations carefully chosen: small controls

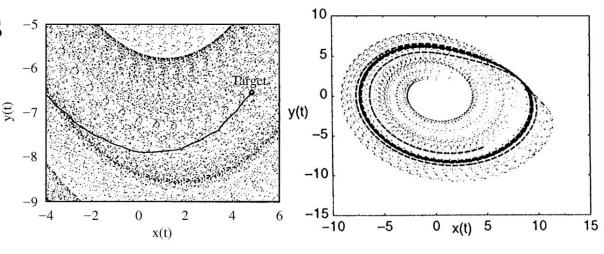
Several techinques

[Shinbrot et al., 1990]

[Kostelich et al., 1993]

[Bollt and Meiss, 1995]

[Schroer and Ott, 1997]



[Boccaletti et al., Phys. Rev. E, 1997]

OGY Method in Mechanics (1)

- For OGY control, two attributes are needed:
 - (i) Presence of one or more unstable fixed points (saddle-node type) within the strange attractor, to be possibly stabilized
 - (ii) Accessible system parameter for changing location of the unstable fixed point in phase plane

OGY Method in Mechanics (2)

Limitations:

- Systems with large **noise**
- Sensitive systems (e.g., quickly changes in dynamics)
- Systems with long chaotic transient

To overcome them:

Several improvements of OGY method, e.g.:

- **SOGY method** [Shinbrot et al., 1990]
- Control of high periodic/high unstable UPO

[Hubinger et al., 1994], [Ritz et al., 1997]

Time delay coordinate method

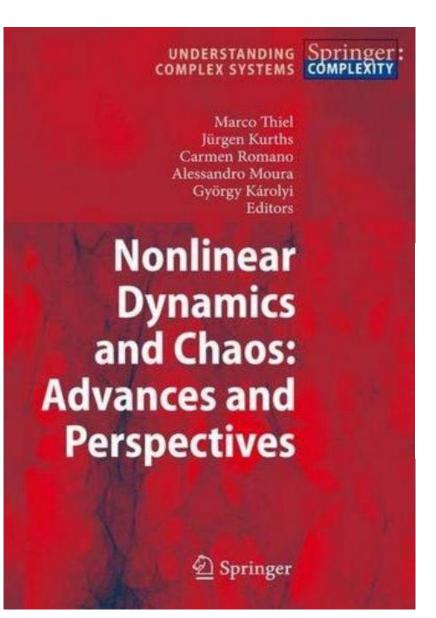
[Dressler and Nitsche, 1992], [So and Ott, 1995], [DeKorte et al., 1995]

OGY Method in Mechanics (3)

Applications:

- (i) Pendulum System [Hübinger et al., 1994], [DeKorte et al., 1995], [Starrett and Tagg, 1995], [Baker, 1995], [Bishop at al., 1996], [Christini et al., 1996], [Yagasaki and Uozumi, 1997], [Yagasaki and Yamashita, 1999], [Wang and Jing, 2004], [Pereira-Pinto et al., 2004, 2005], [Alasty and Salarieh, 2007]
- (ii) Smooth Archetypal Oscillators [Ditto et al., 1990], [Moon, 1992], [Moon et al., 1996], [Hunt, 1991], [Ding at al., 1994], [Dressler et al., 1995], [Ding et al., 1996], [Sifakis and Elliott, 2000]
- (iii) Vibro-Impact and Friction Systems [Nordmark, 1991], [Kalagnanam, 1994], [Chatterjee et al., 1995], [Bishop et al., 1998], [Lenci and Rega, 2000], [Galvanetto, 2001], [Gutiérrez and Arrowsmith, 2004], [Moon et al., 2003], [de Souza and Caldas, 2004], [de Sounza et al., 2005]
- (iv) Coupled Mechanical Systems [Feudel et al., 1998], [Alvarez et al., 1999], [Agiza, 2002], [González-Hernández et al., 2001, 2004]
- (v) Targeting in Astrodynamics [Macklay et al., 1984], [Lai et al., 1993], [Lai et al., 1993], [Macau, 1998,2000,2003]
- (vi) Atomic Force Microscopy [Ashhab et al., 1999], [Basso et al., 2000], [Jamitzky et al., 2006], [Arjmand et al., 2008], [Misra et al., 2008]

OGY Method in Mechanics (4)



Controlling Chaos: The OGY Method, Its Use in Mechanics, and an Alternative Unified Framework for Control of Non-regular Dynamics

G. Rega, S. Lenci, and J.M.T. Thompson

From Local to Global Control (1)

OGY method: "local" approach
 Exploiting chaotic properties to stabilize a selected unstable saddle embedded in chaotic attractor

In alternative: "global" approach
 Exploiting chaotic properties to eliminate (shift) a homoclininc/heteroclinic intersection triggering unwanted phenomena

From Local to Global Control (2)

- Different methods for 'global' approach:
 - Modifying system parameters
 - Adding controlling parametric excitation to the external one, o viceversa [Lima and Pettini, 1990]
 - Modifying the excitation by adding controlling terms (i.e. controlling sub/superharmonics) [Chacon, 2005], [Lenci and Rega, 1998-.....]

From Local to Global Control (2)

- Different methods for 'global' approach:
 - Modifying system parameters
 - Adding controlling parametric excitation to the external one, o viceversa [Lima and Pettini, 1990]
 - Modifying the excitation by adding controlling terms (i.e. controlling sub/superharmonics) [Chacon, 2005], [Lenci and Rega, 1998-...]

To be addressed in the next lecture!