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Notes on the replica symmetric solution of the classical and quantum SK

model, including the matrix of second derivatives and the spin glass

susceptibility.

A. P. Young

University of California Santa Cruz, CA 95064, USA

A review of the replica symmetric solution of the classical and quantum, infinite-range,

Sherrington-Kirkpatrick spin glass is presented.

I. INTRODUCTION

These notes assemble together many results on the replica symmetric (RS) solution of the

infinite-range Sherrington-Kirkpatrick [1] (SK) model. The quantum version, in which a transverse

field is added, will be discussed in detail, as well as the original classical version. Little here is

original, and the bibliography indicates original sources. Some of the material is taken from an old

review article [2].

In fact, the (RS) solution is unstable below the critical point, and the correct solution, which

is much more complicated, was found by Parisi [3, 4], several years after the model was originally

proposed. In a magnetic field, there is a line of transitions, first found by de Almeida and Thou-

less [5], in the temperature-field plane below which the RS solution is unstable. This is known

as the AT line. Almeida and Thouless obtained this line by looking at the stability of the RS

solution with respect to fluctuations in the order parameters. Here, we shall discuss this stability

matrix, both in the quantum and classical cases. At the point where the RS solution goes unstable,

a response function called the spin glass susceptibility, χ
SG

, diverges. We shall compute χ
SG

for

both the classical and quantum case. Our expression for χ
SG

in the quantum case, seems to be

new; probably the only new result in these notes.

II. THE CLASSICAL SK MODEL

The Sherrington Kirkpatrick (SK) [1] model aims to provide a mean field solution of the spin

glass problem as the exact solution of an infinite range model. The Hamiltonian is

H = −
∑

〈i,j〉
JijSiSj , (1)

http://arxiv.org/abs/1706.07315v1
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where the Si are Ising spins, si = ±1, and the Jij are independent random variables with the same

distribution for all pairs i and j,

P (Jij) =
1

J

√

N

2π
exp

(

−NJ2
ij/2J

2
)

, (2)

so the mean is zero and the standard deviation is J . The spin glass transition temperature is at

Tc = J. (3)

The model is solved by the replica trick, see e.g. [6], according to which one calculates the

average free energy, i.e. the average of the log of the partition function Z, from the average of the

n-th power of Z in the limit n → 0. One has

[Zn]av =
∏

〈i,j〉

[∫ ∞

−∞
P (Jij) dJi,j

]

∑

{Sα
i =±1}

exp



β
∑

〈i,j〉
Jij

n
∑

α=1

Sα
i S

α
j



 , (4a)

=
∑

{Sα
i =±1}

exp





(βJ)2

2N

∑

〈i,j〉

n
∑

α,β=1

Sα
i S

α
j S

β
i S

β
j



 , (4b)

where [· · · ]av denotes an average over the quenched bond disorder. Separating out the α = β terms,

and dropping some 1/N corrections gives

[Zn]av = exp
[

1

4
(βJ)2Nn

]

∑

{Sα
i =±1}

exp





(βJ)2

2N

∑

α<β

(

∑

i

Sα
i S

β
i

)2


 . (5)

We decouple the square using the Hubbard-Stratonovich transformation for each pair of indices

α < β,

eλa
2/2 =

√

λ

2π

∫ ∞

−∞
dx exp

[

−λ
x2

2
+ aλx

]

(6)

with

λ = N, a =
βJ

N

∑

i

Sα
i S

β
i , x = (βJ) qαβ (7)

which gives

[Zn]av = exp
[

1

4
(βJ)2Nn

]

∏

α<β

[
√

N

2π
(βJ)

∫ ∞

−∞
dqαβ

]

×

exp



−N
(βJ)2

2

∑

α<β

q2αβ +N ln Tr exp[−H]



 ,

(8)
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where

H = −(βJ)2
∑

α<β

qαβS
αSβ , (9)

and the trace is now over the n Ising spins Sα. The N sites i have been decoupled and so the trace

over each spin gives the same result, namely Tr exp(−H). We can write Eqs. (8) and (9) as

[Zn]av =
∏

α<β

[
√

N

2π
(βJ)

∫ ∞

−∞
dqαβ

]

exp [−Nnβf(q)] , (10)

where

− βf(q) = lim
n→0





(βJ)2

4
− (βJ)2

4n

∑

(α,β)

q2αβ +
1

n
log Tre−H



 , (11)

where the notation (α, β) means sum over all distinct replicas (so each pair is counted twice).

Because of the overall factor of N in the exponent in Eq. (10), we will evaluate the integrals by

the method of steepest descent. Neglecting subleading terms, the answer is just the exponential

in Eq. (10) with the qαβ evaluated at the saddle point, i.e. the qαβ are given by a self-consistent

solution of

qαβ =
TrSαSβ e−H

Tr e−H

(

= 〈SαSβ〉
)

, (12)

where the average 〈· · · 〉 is with respect to the weight e−H with the qαβ taking their saddle point

values.

We look for the replica-symmetric solution where each of the n(n− 1)/2 order parameters qαβ

takes the same value q. In this case

H = − 1

2
(βJ)2q

∑

(α,β)

SαSβ = 1

2
(βJ)2q





(

∑

α

Sα

)2

− n



 , (13)

so

− βf = lim
n→0





(βJ)2

4
(1− q)2 +

1

n
ln Tr exp





(βJ)2

2
q

(

∑

α

Sα

)2






 . (14)

We decouple the term quadratic in the spins by another Hubbard-Stratonovich transformation,

Eq. (6), with λ = 1, a = βJq1/2
∑

α S
α, x = z, i.e.

exp





(βJ)2

2
q

(

∑

α

Sα

)2


 =
1√
2π

∫ ∞

−∞
dz e−z2/2 eβJq

1/2 z
∑

α Sα
. (15)
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Hence

Tr exp





(βJ)2

2
q

(

∑

α

Sα

)2


 =
1√
2π

∫ ∞

−∞
dz e−z2/2Tr eβJq

1/2 z
∑

α Sα
(16a)

=
1√
2π

∫ ∞

−∞
dz e−z2/2

(

2 cosh βJq1/2 z
)n

(16b)

= 1 + n
1√
2π

∫ ∞

−∞
dz e−z2/2 ln(2 cosh βJq1/2 z) +O(n2) , (16c)

where the last line expands the result in powers of n. Substituting into Eq. (14) and taking the

limit n → 0 gives the free energy of the SK model in the replica symmetric ansatz as

−βf =
(βJ)2

4
(1− q)2 +

1√
2π

∫ ∞

−∞
dz e−z2/2 ln(2 cosh βJq1/2 z) . (17)

The order parameter q is obtained by finding an extremal value of f . This gives

(βJ)2

2
(1− q) =

1√
2π

βJ

2q1/2

∫ ∞

−∞
dz e−z2/2 z tanh(βJq1/2 z) . (18)

Integrating by parts gives the final self-consistent equation for q.

q =
1√
2π

∫ ∞

−∞
dz e−z2/2 tanh2(βJq1/2 z) . (19)

This can also be derived by noting that q (= qαβ) = 〈SαSβ〉, where the average is over the weight

e−H , see Eq. (12). Using Eqs. (13) and (15), one readily obtains Eq. (19).

Next we consider fluctuations about the saddle point, i.e.

qαβ = q + δqαβ . (20)

The first derivative of f with respect to qαβ is zero so we go to the second derivative of f in Eq. (11),

i.e.

βf [{q}] = βf [qc] + lim
n→0

1

n

1

2

∑

α<β,γ<δ

Aαβ,γδδqαβ δqγδ . (21)

where, from Eq. (11),

Aαβ,γδ ≡ ∂2(βf)

∂qαβ∂qγδ
(×n) ,

= (βJ)2δαβ,γδ − (βJ)4
[

〈SαSβSγSδ〉 − 〈SαSβ〉〈SγSδ〉
]

, (22)

Firstly consider T > Tc, where H = 0, so 〈SαSβ〉 = 0 and hence only the (α, β) = (γ, δ) term

contributes. Thus

Aαβ,γδ = δαβ,γδ (βJ)
2
(

1− (βJ)2
)

. (23)
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Now A is a matrix of size n(n− 1)2 so above Tc all n(n− 1)/2 eigenvalues are equal and given by

λ = (βJ)2
(

1− (βJ)2
)

(T > Tc) . (24)

Now we consider T < Tc. There are three types of term:

• (αβ)(αβ).

Here we have SαSβSγSδ = 1, and 〈SαSβ〉 = 〈SγSδ〉 = q. Hence

(βJ)−2Aαβ,αβ = 1− (βJ)2(1 − q2) (= P, say) . (25)

• (αβ)(αγ) with β 6= γ.

Now 〈SαSβSαSγ〉 = 〈SβSγ〉 = q. Also 〈SαSβ〉 = 〈SγSδ〉 = q. Hence

(βJ)−2Aαβ,αγ = −(βJ)2(q − q2) (= Q, say) . (26)

• (αβ)(γδ) with all indices different.

As before 〈SαSβ〉 = 〈SγSδ〉 = q. What about 〈SαSβSγSδ〉? From Eq. (16a) we see that the

(unnormalized) probability distribution for the {Sα} is

1√
2π

∫ ∞

−∞
dz e−z2/2 eβJq

1/2 z
∑

α Sα
.

Hence

〈SαSβSγSδ〉 = lim
n→0





1√
2π

∫∞
−∞ dz e−z2/2 TrSαSβSγSδ eβJq

1/2 z
∑

α Sα

1√
2π

∫∞
−∞ dz e−z2/2 Tr eβJq

1/2 z
∑

α Sα





= lim
n→0





1√
2π

∫∞
−∞ dz e−z2/2 sinh4(βJq1/2z) coshn−4(βJq1/2z)

1√
2π

∫∞
−∞ dz e−z2/2 coshn(βJq1/2z)





=
1√
2π

∫ ∞

−∞
dz e−z2/2 tanh4(βJq1/2z) (= r say). (27)

Hence, for all indices different,

(βJ)−2Aαβ,γδ = −(βJ)2(r − q2) (= R, say) . (28)

According to de Almeida and Thouless [5], the important eigenvalue, the one which goes nega-

tive, is the “replicon” mode, λr, where

λr = (βJ)2 [P − 2Q+R] . (29)
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Hence

λr = (βJ)2
[

1− (βJ)2(1− q2) + 2(βJ)2(q − q2)− (βJ)2(r − q2)
]

= (βJ)2
[

1− (βJ)2(1− 2q + r)
]

, (30)

= (βJ)2
{

1− (βJ)2
1√
2π

∫ ∞

−∞
dz e−z2/2

[

1− tanh2(βJq1/2z)
]2
}

. (31)

Next we compute the spin glass susceptibility χ
SG

defined by

χSG =
1

T 2

1

N

N
∑

i,j=1

[

(〈SiSj〉 − 〈Si〉〈Sj〉)2
]

av
. (32)

Frequently the factor of 1/T 2 is omitted because it varies smoothly near a classical transition at

finite T but here we will eventually consider a quantum transition at T = 0 so we include it.

Considering the terms separately, it is standard to show, see e.g. Binder and Young [2], that

they can be expressed as

[

〈SiSj〉2
]

av
= lim

n→0

1

n(n− 1)

∑

(α,β)

〈Sα
i S

α
j S

β
i S

β
j 〉, (33a)

[〈SiSj〉〈Si〉〈Sj〉]av = lim
n→0

1

n(n− 1)(n − 2)

∑

(α,β,γ)

〈Sα
i S

α
j S

β
i S

γ
j 〉, (33b)

[

〈Si〉2〈Sj〉2
]

av
= lim

n→0

1

n(n− 1)(n − 2)(n − 3)

∑

(α,β,γ,δ)

〈Sα
i S

β
j S

γ
i S

δ
j 〉, (33c)

where the averages on the RHS are with respect to the weight factor in Eq. (4b) and the notation

(α, β) etc. means all distinct sets of replicas are to be summed over. Note that each thermal average

on the LHS of Eqs. (33) corresponds to a distinct replica on the RHS.

To calculate these averages we add a set of fictitious fields ∆αβ which couple to
∑

i S
α
i S

β
i , i.e.

[Zn]av =
∑

{Sα
i =±1}

exp





(βJ)2

2N

∑

〈i,j〉

n
∑

α,β=1

Sα
i S

α
j S

β
i S

β
j +

∑

α<β

∆αβ

∑

i

Sα
i S

β
i



 . (34)

Note that for n → 0 there is no normalizing denominator so

∑

i

〈Sα
i S

β
i 〉 = lim

n→0

∂

∂∆αβ
[Zn]av , (35a)

∑

i,j

〈Sα
i S

β
i S

γ
j S

δ
j 〉 = lim

n→0

∂2

∂∆αβ∆γδ
[Zn]av , (35b)

in which the replicas α, β, γ, δ can take any values subject to the restrictions α < β, γ < δ. We

note that [Zn]av is still given by Eq. (10), with βf(q) still given by (11), but now

H = −(βJ)2
∑

α<β

[

qαβ − (βJ)−2∆αβ

]

SαSβ . (36)
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We define shifted variables uαβ by

uαβ = qαβ − (βJ)−2∆αβ , (37)

so the ∆αβ no longer appear in H but rather in the quadratic term in Eq. (11), so

− βf(q) = lim
n→0





(βJ)2

4
− 1

4n

∑

(α,β)

{

(βJ)2u2αβ + 2∆αβuαβ + (βJ)−2∆2
αβ

}

+
1

n
log Tre−H



 , (38)

where now

H = −(βJ)2
∑

α<β

uαβS
αSβ , (39)

and the uαβ have to be integrated like the qαβ in Eq. (10). Performing the derivatives in Eqs. (35)

we get

1

N

∑

i

〈Sα
i S

β
i 〉 = lim

n→0
〈qαβ〉, (40a)

1

N

∑

i,j

〈Sα
i S

β
j S

γ
i S

δ
j 〉 = lim

n→0

[

−(βJ)−2δαβ,γδ + 〈qαβ qγδ〉
]

, (40b)

where the averages are to be evaluated with ∆αβ = 0.

Hence, from Eqs. (32), (33) and (40b) we have1

χ
SG

=
1

T 2

[

−(βJ)−2 + 〈q2αβ〉 − 2〈qαβqαγ〉+ 〈qαβqγδ〉
]

. (41)

We write

qαβ = qc + δqαβ (42)

where qc is the value of the qαβ at the (replica-symmetric) saddle point. Inserting Eq. (42) into

Eq. (41) the factors of qc cancel and so we have

χ
SG

= − 1

J2
+

1

T 2

[

〈δq2αβ〉 − 2〈δqαβδqαγ〉+ 〈δqαβδqγδ〉
]

. (43)

The averages involve Gaussian integrals which come from the weight given by Eq. (10) in which

f [{q}] is given by the quadratic expression in Eq. (21).

We will need the result that if a set of variables xi have Gaussian distribution, i.e.

P ({x}) ∝ exp[− 1

2
xiAijxj] (44)

1 Unfortunately, in Eq. (4.47) of the review of Binder and Young [2], which is the equation corresponding to our
Eq. (41), the term −(βJ)−2 is missing.
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then correlation functions of the xi are given by

〈xixj〉 =
(

A−1
)

ij
. (45)

The combination of averages in Eq. (43) corresponds to the “replicon” eigenvector of the matrix

A, see Eqs. (25)–(29). Hence, from Eq. (45), these averages just give the inverse of the replicon

eigenvalue λr in Eq. (30) so

χSG = − 1

J2
+

1

T 2

1

λr
, (46)

= − 1

J2
+

1

J2

1

1− (βJ)2(1− 2q + r)
, (47)

= β2 1− 2q + r

1− (βJ)2(1− 2q + r)
. (48)

If we define

χ0
SG = β2(1− 2q + r), (49)

then

χ
SG

=
χ0
SG

1− J2χ0
SG

, (50)

a result which is very reminiscent of the random phase approximation.

Equations (49) and (50) are also valid in the presence of a field, either uniform or random,

provided the expressions for q, r and λr, in Eqs. (19),(27) and (31) are modified appropriately. For

example, for a Gaussian random field with standard deviation h, the factor of Jq1/2 is replaced by

(J2q+h2)1/2, see Refs. [7, 8], and for a unform field, Jq1/2z is replaced by Jq1/2+h, see e.g. Ref. [2].

In the paramagnetic phase, where q = r = 0 and so χ0
SG

= β2, we see that χSG has the simple

form

χ
SG

=
1

T 2 − J2
, (T > Tc = J), (51)

which shows that the transition occurs when T = J , as is well known [1], see also Eq. (3).

III. THE QUANTUM SK MODEL

Now we make the model quantum by adding a transverse field.

H = −
∑

〈i,j〉
Jijσ

z
i σ

z
j − hT

∑

i

σx
i . (52)
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This model has been studied in many works, including Refs. [9–17], and these notes will use their

methods.

The standard approach is to use the imaginary time path integral formulation [18], where

imaginary time, τ , is in the range 0 ≤ τ ≤ β and there are periodic boundary conditions in the τ

direction. Imaginary time is divided into M time slices, each of width

∆τ =
β

M
. (53)

The partition function is then given by the action

Z = Tr exp





M
∑

l=1





∑

〈i,j〉
JijSi(l)Sj(l)∆τ +Kτ

∑

i

Si(l)Si(l + 1)







 , (54)

where

e−2Kτ
= tanh(hT∆τ) , (55)

and the Si(l) are Ising variables at each site i and time slice l. The Kτ term is a ferromagnetic

coupling along the imaginary time direction. Now we replicate, in order to average over disorder.

Disorder averaging does not alter the Kτ term because it is not random, so averaging over the Jij

term goes through as for the classical case, but with the addition of the imaginary time indices.

The analog of Eq. (4b) is

[Zn]av =
∑

{Sα
i (l)}=±1

exp

[

(∆τJ)2

2N

M
∑

l,l′=1

∑

〈i,j〉

n
∑

α,β=1

Sα
i (l)S

α
j (l)S

β
i (l

′)Sβ
j (l

′) +

Kτ
∑

i

M
∑

l=1

n
∑

α=1

Sα
i (l)S

α
i (l + 1)

]

.

(56)

In the first term in the exponential we consider separately the α = β and α 6= β terms.

• α = β terms.

M
∑

l,l′=1

∑

〈i,j〉

n
∑

α=1

Sα
i (l)S

α
j (l)S

α
i (l

′)Sα
j (l

′) (57)

=
1

2

n
∑

α=1

M
∑

l,l′=1

(

∑

i

Sα
i (l)S

α
i (l

′)

)2

, (58)

where we have neglected terms of order 1/N . We will decouple the square using a Hubbard-

Stratonovich (HS) transformation as we did to go from Eq. (5) to (8).
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• α 6= β terms.

∑

α<β

M
∑

l,l′=1

(

∑

i

Sα
i (l)S

β
i (l

′)

)2

, (59)

We will do a HS transformation for this too.

The result of the HS transformations is

[Zn]av =
∏

α,l,l′

[
√

N

4π
(∆τJ)

∫ ∞

−∞
drα(l, l

′)

]

∏

α<β,l,l′

[
√

N

2π
(∆τJ)

∫ ∞

−∞
dqαβ(l, l

′)

]

exp

[

−N

4
(∆τJ)2

∑

l,l′,α

r2α(l, l
′)− N

2
(∆τJ)2

∑

l,l′,α<β

q2αβ(l, l
′)

]

(

Tr e−H
)N

,

(60)

where

H = −(∆τJ)2





1

2

∑

α

∑

l,l′

rα(l, l
′)Sα(l)Sα(l′) +

∑

α<β

∑

l,l′

qαβ(l, l
′)Sα(l)Sβ(l′)





−Kτ
∑

α

∑

l

Sα(l)Sα(l + 1) .

(61)

We have time translational invariance so qαβ(l, l
′) is only a function of ∆l ≡ l− l′, and similarly

for rα(l, l
′). Hence

[Zn]av =
∏

α,∆l

[
√

N

2π
(∆τJ)

∫ ∞

−∞
drα(∆l)

]

∏

α<β,∆l

[
√

N

2π
(∆τJ)

∫ ∞

−∞
dqαβ(∆l)

]

exp

[

−N

4
(∆τJ)2M

∑

∆l,α

r2α(∆l)− N

2
(∆τJ)2M

∑

∆l,α<β

q2αβ(∆l)

]

(

Tr e−H
)N

,

(62)

where

H = −(∆τJ)2





1

2

∑

α

∑

∆l

rα(∆l)
∑

l

Sα(l)Sα(l +∆l) +
∑

α<β

∑

∆l

qαβ(∆l)
∑

l

Sα(l)Sβ(l +∆l)





−Kτ
∑

α

∑

l

Sα(l)Sα(l + 1) .

(63)

We minimize w.r.t. qαβ(∆l) and rα(∆l). This gives

rα(∆l) = 〈Sα(0)Sα(∆l)〉 , (64a)

qαβ(∆l) = 〈Sα(0)Sβ(∆l)〉, (64b)

where the average is with respect to e−H and we have used time translational invariance.
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We write Eq. (62) as

[Zn]av =
∏

α,∆l

[
√

N

2π
(∆τJ)

∫ ∞

−∞
drα(∆l)

]

∏

α<β,∆l

[
√

N

2π
(∆τJ)

∫ ∞

−∞
dqαβ(∆l)

]

exp[−Nnβf ] (65)

where

− βf = lim
n→0



− 1

4n
β∆τJ2

∑

α,∆l

rα(∆l)2 − 1

2n
β∆τJ2

∑

α<β

∑

∆l

q2αβ(∆l) +
1

n
lnTr e−H



 . (66)

We evaluate the integrals in Eq. (65) by steepest descent and look for the replica symmetric solution:

rα(∆l) = r(∆l) , (67a)

qαβ(∆l) = q(∆l) . (67b)

This yields

− βf = lim
n→0

[

−1

4
β∆τJ2

∑

∆l

r(∆l)2 +
1

4
β∆τJ2

∑

∆l

q2(∆l) +
1

n
ln Tr e−H

]

, (68)

where

H = −(∆τJ)2





1

2

∑

∆l

r(∆l)
∑

α

∑

l

Sα(l)Sα(l +∆l) +
∑

∆l

q(∆l)
∑

α<β

∑

l

Sα(l)Sβ(l +∆l)





−Kτ
∑

α

∑

l

Sα(l)Sα(l + 1) .

(69)

Now we need to think about the physics. The parameters q(∆l) are order parameters, corre-

sponding to a product of a single spin in two replicas. We expect these to be independent of time.

Hence we will assume that q(∆l) = q. Consequently

− βf = lim
n→0

[

−1

4
β∆τJ2

∑

∆l

r(∆l)2 +
1

4
(βJ)2q2 +

1

n
ln Tr e−H

]

. (70)

We write the second term in the expression for H in Eq. (69) as follows

1

2
(∆τJ)2q

∑

l1,l2

∑

(α,β)

Sα(l1)S
β(l2) =

1

2
(∆τJ)2q





(

∑

l

∑

α

Sα(l)

)2

−
∑

α

∑

l,∆l

Sα(l)Sα(l +∆l)



 .

(71)

The second term on the RHS of Eq. (71) can be combined with the r term in Eq. (69). The Kτ

term in Eq. (69) can also be combined so we define

r(∆l) = r(∆l)− q , (∆l 6= 1) ,

r(∆l) = r(∆l)− q +Kτ/(∆τJ)2 . (∆l = 1) , (72)
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The square in the first term on the RHS of Eq. (71) is decoupled by a Hubbard-Stratonovich

transformation, as in the classical case, see Eqs. (16), i.e.

Tr exp

[

(∆τJ)2

2





∑

∆l

r(∆l)
∑

α

∑

l

Sα(l)Sα(l +∆l) + q

(

∑

l

∑

α

Sα(l)

)2




]

=
1√
2π

∫ ∞

−∞
dze−z2/2Tr exp

[

∑

α

(

(∆τJ)2

2

∑

∆l

r(∆l)
∑

l

Sα(l)Sα(l +∆l) + (∆τJ)q1/2z
∑

l

Sα(l)

)]

=
1√
2π

∫ ∞

−∞
dze−z2/2

(

Tr e−H(z)
)n

(73)

in which H(z) is given by

H(z) = −(∆τJ)2
∑

〈l1,l2〉
{ r(|l1 − l2|)− q }S(l1)S(l2)−Kτ

∑

l

S(l)S(l + 1)− (∆τJ)q1/2z
∑

l

S(l) ,

(74)

where we used Eq. (72). We see that H(z) is the Hamiltonian of a one-dimensional chain with

long-range interactions, in which there is a (uniform) field proportional to q1/2z.

Expanding Eq. (73) in powers of n and substituting into Eq. (68) gives

−βf = lim
n→0

[

−1

4
β∆τJ2

M
∑

∆l=1

r(∆l)2 +
1

4
(βJ)2q2 +

1√
2π

∫ ∞

−∞
dz e−z2/2 ln Tr e−H(z)

]

. (75)

Now we determine the self-consistent equations for r(∆τ) and q.

• r(∆l).

1

2
β∆τJ2r(∆l) =

1√
2π

∫ ∞

−∞
dz e−z2/2

{

(∆τJ)2

2

Tr
∑

l S(l)S(l +∆l)e−H(z)

Tr e−H(z)
,

}

(76)

so

r(∆l) =
1√
2π

∫ ∞

−∞
dz e−z2/2 〈S(0)S(∆l) 〉H , (77)

where we have used time translational invariance and

〈· · · 〉H indicates an average over the spins with weight e−H .

• q.

1

2
(βJ)2q = − 1√

2π

∫ ∞

−∞
dz e−z2/2×







(∆τJ)

2q1/2
zTr

(

∑

l S(l)e
−H(z)

)

− (∆τJ)2

2 Tr
∑

l,∆l S(l)S(l +∆l)e−L(z)

Tr e−H(z)







(78)
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As in the classical case, we integrate by parts with respect to z in the first term in curly brackets.

This gives

− (βJ)2q =
1√
2π

∫ ∞

−∞
dz e−z2/2×







(∆τJ)

q1/2
(∆τJ)q1/2

∑

l1,l2

(

〈S(l1)S(l2)〉H − 〈S(l1)〉H 〈S(l2)〉H
)

− (∆τJ)2
∑

l1,l2

〈S(l1)S(l2)〉H







,

(79)

which simplifies to

q =
1√
2π

∫ ∞

−∞
dz e−z2/2 〈S(0) 〉2

H
, (80)

where the average of a single spin 〈S(0)〉H could be evaluated at any time slice because of time

translational invariance.

We now check that we recover the standard results for the SK model when we take the classical

limit hT → 0. From Eq. (55) this corresponds to Kτ → ∞. Hence all spins along the time direction

are fully correlated. It follows that

〈S(0)S(∆l)〉 = 1, for all ∆l, (81)

and so, from Eq. (77),

r(∆l) = 1, for all ∆l. (82)

In H(z) in Eq. (74) the first two terms are constants which cancel when computing averages. In

the third term all the S(l) are equal and so we can write
∑

l S(l) = MS where S = ±1, so

(∆τJ)q1/2z
∑

l

S(l) = (βJ)q1/2zS, (83)

exactly in the classical case, Eq. (15). Hence

〈S(l)〉H = 〈S〉H = tanh(βJq1/2z) , (84)

and the self-consistent equation of q, Eq. (80), reduces to the result for the SK model, Eq. (19).

We now consider the stability of the replica symmetric solution in the quantum case. The free

energy is given by Eq. (66) (but with qαβ now independent of ∆l) and H given by Eq. (63). The

stability has to be determined with respect to the n(n− 1)/2 static order parameters qαβ and the

nM correlation functions rα(∆l). The matrix of second derivatives therefore has the form

T =





A B

BT C



 , (85)
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where A is a matrix of dimension n(n− 1)/2× n(n− 1)/2 which describes fluctuations in the qαβ

sector, C is of size nM × nM and describes fluctuations in the rα(∆l) sector, and B, which is of

dimension n(n− 1)/2 × nM , describes the mixed second derivatives.

For the classical case, i.e. the SK model, de Almeida and Thouless (AT) [5] showed that the

instability comes in the “replicon” eigenvector of A, see Eq. (30). AT also showed that, in cases

where one also has to consider terms diagonal in replica indices (such as the r terms here) the

replicon eigenvector has zero values for these components. Here we assume that the replicon mode

will still be the important one, and so we will neglect the sector involving the r terms [13]. Thus

we just need to consider the n(n− 1)/2× n(n− 1)/2 matrix A, and so write the expansion of the

free energy as in Eq. (21).

Taking the derivatives in Eq. (66), we find that Aαβ,γδ, the matrix of coefficients in the expansion

in Eq. (21), is given by

Aαβ,γδ ≡ ∂2(βf)

∂qαβ∂qγδ
(×n) ,

= J2β∆τMδαβ,γδ − (β∆τ)4
∑

l1,l2,l3,l4

[

〈Sα(l1)S
β(l2)S

γ(l3)S
δ(l4)〉 − 〈Sα(l1)S

β(l2)〉〈Sγ(l3)S
δ(l4)〉

]

= (βJ)2δαβ,γδ − (βJ)4









1

M4

∑

l1,l2,l3,l4

〈Sα(l1)S
β(l2)S

γ(l3)S
δ(l4)〉



− q2



 , (86)

where we used that 〈Sα(l1)S
β(l2)〉 for α 6= β is independent of the values of τ and is just order the

order parameter qαβ( = q here since we expand about the replica symmetric solution). Eq. (86) is

the generalization to the quantum case of Eq. (22).

As for the classical case, we have to consider three cases depending on which replica indices

are equal, see Eq. (25), (26) and (27). The averages are to be evaluated in the replica symmetric

solution, so the spin averages in each replica are to be evaluated with weight e−H(z), where H(z) is

given by Eq. (74), and finally the combined average over the different replicas is to be averaged over

the Gaussian random field z which has zero mean and standard deviation unity, see e.g. Eq. (80)

which is for an average over two different replicas.

• (αβ)(αβ).





1

M4

∑

l1,l2,l3,l4

〈Sα(l1)S
β(l2)S

α(l3)S
β(l4)〉



 =
1√
2π

∫ ∞

−∞
dz e−z2/2





1

M2

∑

l1,l2

〈S(l1)S(l2) 〉H





2

.

(87)
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• (αβ)(αγ) with β 6= γ.





1

M4

∑

l1,l2,l3,l4

〈Sα(l1)S
β(l2)S

α(l3)S
γ(l4)〉



 =

1√
2π

∫ ∞

−∞
dz e−z2/2





1

M2

∑

l1,l2

〈S(l1)S(l2) 〉H





(

1

M

∑

l

〈S(l) 〉H

)2

.

(88)

• (αβ)(γδ) with all indices different.





1

M4

∑

l1,l2,l3,l4

〈Sα(l1)S
β(l2)S

γ(l3)S
δ(l4)〉



 =
1√
2π

∫ ∞

−∞
dz e−z2/2

(

1

M

∑

l

〈S(l) 〉H

)4

.

(89)

As in the classical case, defining (βJ)−2Aαβ,αβ = P , (βJ)−2Aαβ,αγ = Q, and (βJ)−2Aαβ,γδ = R,

the replicon eigenvalue is given by

(βJ)−2λr = P − 2Q+R

= 1− J2 1√
2π

∫ ∞

−∞
dz e−z2/2

[

∑

l

(

∆τ{〈S(0)S(l) 〉H − 〈S(0) 〉H 〈S(l) 〉H}
)

]2

. (90)

The correspondence with the classical (SK model) result in Eq. (31) is clear.

To summarize, averages denoted by 〈· · · 〉H are with respect to weight e−H(z) where H(z) is

given by Eq. (74). The M − 1 values of r(∆l), as well as q, are to be determined self-consistently

from Eqs. (77) and (80).

In the continuum limit the expression corresponding to Eq. (90) is clearly

(βJ)−2λr = 1− J2 1√
2π

∫ ∞

−∞
dz e−z2/2

[
∫ β

0
dτ
(

〈S(0)S(τ) 〉H − 〈S(0) 〉H 〈S(τ) 〉H
)

]2

. (91)

In the paramagnetic phase, single spin expecation values vanish, and so does q, and the integral

over z gives unity, so

λr = (βJ)2







1−
[

∑

l

(

∆τ〈S(0)S(τ) 〉H
)

]2






(where q = 0). (92)

The phase boundary is where λr = 0, i.e.

1 = J∆τ
∑

l

〈S(0)S(l) 〉H (on phase boundary) , (93)
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where now, since q = 0,

H = −(∆τJ)2
∑

〈l1,l2〉
r(|l1 − l2|)S(l1)S(l2)−Kτ

∑

l

S(l)S(l + 1), (if q = 0), (94)

see Eq. (74).

As for the classical case we want to calculate the spin glass susceptibility, since the divergence

of this quantity is governed by the vanishing of the replicon eigenvalue. In the quantum case, χSG

is given by

χSG =
1

N

N
∑

i,j=1

[

(
∫ β

0
[〈σz

i (τ)σ
z
j (0)〉 − 〈σz

i 〉〈σz
j 〉] dτ

)2
]

av

. (95)

In the path integral formulation, this becomes

χSG =
1

N

N
∑

i,j=1





(

M
∑

l=1

[〈Si(l0 + l)Sj(l0)〉 − 〈Si(l0)〉〈Sj(l0)〉]∆τ

)2




av

, (96)

where we have discretized imaginary time as before.

We consider each term separately, and average over all possible time slices, which means sum

over four time labels and have to divide by M2. We follow similar steps to those in the classical

case in Sec. II.

1

M2

M
∑

l1,l2,l3,l4=1

〈Si(l1)Sj(l2)〉 〈Si(l3)Sj(l4)〉 =

1

M2
lim
n→0

1

n(n− 1)

∑

(α,β)

M
∑

l1,l2,l3,l4=1

〈Sα
i (l1)S

α
j (l2)S

β
i (l3)S

β
j (l4)〉, (97a)

1

M2

M
∑

l1,l2,l3,l4=1

〈Si(l1)Sj(l2)〉 〈Si(l3)〉 〈Sj(l4)〉 =

1

M2
lim
n→0

1

n(n− 1)(n − 2)

∑

(α,β,γ)

M
∑

l1,l2,l3,l4=1

〈Sα
i (l1)S

α
j (l2)S

β
i (l3)S

γ
j (l4)〉, (97b)

1

M2

M
∑

l1,l2,l3,l4=1

〈Si(l1)〉 〈Sj(l2)〉 〈Si(l3)〉 〈Sj(l4)〉 =

1

M2
lim
n→0

1

n(n− 1)(n − 2)(n − 3)

∑

(α,β,γ,δ)

M
∑

l1,l2,l3,l4=1

〈Sα
i (l1)S

β
j (l2)S

γ
i (l3)S

δ
j (l4)〉, (97c)

where the sums (α, β, γ) etc. are over all distinct pairs of replicas.
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How do we do the averages in Eqs. (97)? We refer to Eq. (56) which we reproduce again here,

in a slightly modified form.

[Zn]av =
∑

{Sα
i (l)}=±1

exp

[

(∆τJ)2

2N

M
∑

l,l′=1

∑

〈i,j〉

(

∑

(α,β)

Sα
i (l)S

α
j (l)S

β
i (l

′)Sβ
j (l

′)+

+
∑

α

Sα
i (l)S

α
j (l)S

α
i (l

′)Sα
j (l

′)

)

+Kτ
∑

i

M
∑

l=1

n
∑

α=1

Sα
i (l)S

α
i (l + 1)

]

. (98)

We now add fictitious fields ∆αβ in in Eq. (98), i.e. we add

1

M2

∑

α<β

∆αβ

N
∑

i=1

M
∑

l1,l2=1

Sα
i (l1)S

β
i (l2) (99)

in the exponent. Remembering that, for n → 0, there is no normalizing denominator, we have

1

M2

∑

i

M
∑

l1,l2=1

〈Sα
i (l1)S

β
i (l2)〉 = lim

n→0

∂

∂∆αβ
[Zn]av , (100a)

1

M4

∑

i,j

M
∑

l1,l2,l3,l4=1

〈Sα
i (l1)S

β
i (l2)S

γ
j (l3)S

δ
j (l4)〉 = lim

n→0

∂2

∂∆αβ∆γδ
[Zn]av , (100b)

in which the replicas α, β, γ, δ can take any values subject to the restrictions α < β, γ < δ.

Proceeding as earlier in this section, we get to Eq. (65) but with the ∆αβ added, and also assume

that qαβ(∆l) is independent of ∆l for α 6= β, a result which we assumed above but at a later stage.

This gives

[Zn]av =
∏

α,∆l

[
√

N

2π
(∆τJ)

∫ ∞

−∞
drα(∆l)

]

∏

α<β

[
√

N

2π
(∆τJ)

∫ ∞

−∞
dqαβ

]

exp

[

−N

4
(∆τJ)2M

∑

∆l,α

r2α(∆l)− N

2
(∆τJ)2M2

∑

α<β

q2αβ

]

(

Tr e−H
)N

,

(101)

where

H = −(∆τJ)2

[

1

2

∑

α

∑

∆l

rα(∆l)
∑

l

Sα(l)Sα(l +∆l)+

∑

α<β

M
∑

l1,l2=1

(

qαβ − (βJ)−2∆αβ

)

Sα(l1)S
β(l2)

]

−Kτ
∑

α

∑

l

Sα(l)Sα(l + 1) .

(102)

As in the classical case we define shifted variables by

uαβ = qαβ − (βJ)−2∆αβ , (103)
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in terms of which

[Zn]av =
∏

α,∆l

[
√

N

2π
(∆τJ)

∫ ∞

−∞
drα(∆l)

]

∏

α<β

[
√

N

2π
(∆τJ)

∫ ∞

−∞
dqαβ

]

exp

[

−N

4
(∆τJ)2M

∑

∆l,α

r2α(∆l)− N

2

∑

α<β

{

(βJ)2u2αβ + 2∆αβuαβ + (βJ)−2∆2
αβ

}]

×

(

Tr e−H
)N

,

(104)

where

H = −(∆τJ)2

[

1

2

∑

α

∑

∆l

rα(∆l)
∑

l

Sα(l)Sα(l +∆l)+

∑

α<β

M
∑

l1,l2=1

uαβS
α(l1)S

β(l2)

]

−Kτ
∑

α

∑

l

Sα(l)Sα(l + 1) .

(105)

Doing the derivatives in Eqs. (100) gives

1

N

1

M2

∑

i

M
∑

l1,l2=1

〈Sα
i (l1)S

β
i (l2)〉 = lim

n→0
〈qαβ〉, (106a)

1

N

1

M4

∑

i,j

M
∑

l1,l2,l3,l4=1

〈Sα
i (l1)S

β
i (l2)S

γ
j (l3)S

δ
j (l4)〉 = lim

n→0

[

−(βJ)−2δαβ,γδ + 〈qαβ qγδ〉
]

, (106b)

where the averages are to be evaluated with ∆αβ = 0. Notice the strong similarity between

Eq. (106b) and the corresponding one for the classical case, Eqs. (40b).

Referring to Eqs. (96), (97) and (106b), we see that χ
SG

is given by

χSG = β2
[

(−βJ)−2 + 〈q2αβ〉 − 2〈qαβ qαγ〉+ 〈qαβ qγδ〉
]

, (107)

where we used that M∆τ = β. Note that Eq. (107) is identical to the corresponding classical

result, Eq. (41). Separating out the replica symmetric saddle point value qc as in Eq. (41) we get

χ
SG

= − 1

J2
+

1

T 2

[

〈δq2αβ〉 − 2〈δqαβ δqαγ〉+ 〈δqαβ δqγδ〉
]

. (108)

The averages in Eq. (108) are over Gaussian integrals given by the weight in Eq. (65) in which f

is given by the quadratic expression in Eq. (21). The combination of averages in Eq. (107) just

corresponds to the “replicon” eigenvector of the matrix A, see Eq. (90) and Eqs. (86)–(89). Hence,

according to Eq. (45), these averages just give the inverse of the replicon eigenvalue in Eq. (90).
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Consequently the spin glass susceptibility is given, in the quantum case, by

χSG = − 1

J2
+

1

T 2

1

λr
, (109)

= − 1

J2
+

1

J2

1

1− J2χ0
SG

, (110)

=
χ0

SG

1− J2χ0
SG

, (111)

where

χ0
SG

=
1√
2π

∫ ∞

−∞
dz e−z2/2

[

∑

l

∆τ
(

〈S(0)S(l) 〉H − 〈S(0) 〉H 〈S(l) 〉H
)

]2

. (112)

In the paramagnetic phase, the single spin averages in Eq. (112) vanish, and q = 0 so the integral

over z gives unity. We therefore have

χ0
SG

=

[

∑

l

(

∆τ〈S(0)S(l) 〉H
)

]2

, (for q = 0). (113)

Equations (111) and (113) have recently been verified by comparing with series expansions [19].

IV. CONCLUSIONS

We have derived in detail the RS solution of the classical and quantum SK model. This solution

is unstable at low temperatures, longitudinal fields, and transverse fields, but the expressions

derived here, in particular the results for the replicon eigenvalue and the spin glass susceptibility,

are those use to show the instability of the RS state. These notes are largely an assembly of

existing results; one result which seems to be new is that for χSG in the quantum case, Eqs. (111)

and (112).
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