ESTRUTURA DE COMUNIDADES VEGETAIS

BIE 0320 (2017)

TRÊS PROPRIEDADES DE UMA COMUNIDADE:

1 - RIQUEZA

2 - COMPOSIÇÃO

3 - ABUNDÂNCIAS RELATIVAS

Por que a RIQUEZA de espécies varia entre comunidades?

Helarctis Ral eptropis 23 Pates ropis ----31.0 Neutropis aftralis će. Anta ctis 600 OW Damiliet 1996,1997

GLOBAL BIODIVERSITY: SPECIES NUMBERS OF VASCULAR PLANTS

see surface temperature

cold coments

W Bathlett, N. Biedinger, G. Braun F. Faig, O. Ker, W. Laver & J. Marke 1997 mobiled after W. Bathlett, W. Laver & A. Placket 1996 Department of Botony and Geography University of Bonn German-Aerospace Research Establishment, Cologne

Catography: M. Graf Department of Deography University of Bonn

Por que a COMPOSIÇÃO de espécies varia entre comunidades?

Por que a ABUNDÂNCIA das espécies varia entre comunidades?

Table of Contents

Preface. Preface to the First Edition.

Part I: Communities: Basic Patterns and Elementary Processes.

- 1. Communities.
- 2. Competition: Mechanisms, Models, and Niches.
- 3. Competition: Experiments, Observations, and Null Models.
- 4. Predation and Communities. Empirical patterns.
- 5. Models of predation in simple communities.
- 6. Food Webs.
- 7. Mutualisms.
- 8.Indirect Effects.

Part II: Factors Influencing Interactions Among Species.

9. Temporal Patterns: Seasonal Dynamics, Priority Effects, and Assembly Rules.

- 10. Habitat Selection.
- 11. Spatial Dynamics.

Part III: Large-scale, Integrative Community Phenomena.

- 12. Causes and Consequences of Diversity.
- 13. Succession.
- 14. Applied Community Ecology.

Table of Contents

1. Community Ecology's Roots

PART I.THE BIG PICTURE: Patterns, Causes, and Consequences of Biodiversity

- 2. Patterns of Biological Diversity
- 3. Biodiversity and Ecosystem Functioning

PART II. THE NITTY-GRITTY: Species Interactions in Simple Modules

- 4. Population Growth and Density Dependence
- 5. The Fundamentals of Predator-Prey Interactions
- 6. Selective Predators and Responsive Prey
- 7. Interspecific Competition: Simple Theory
- 8. Competition in Nature: Empirical Patterns and Tests of Theory
- 9. Beneficial Interactions in Communities: Mutualism and Facilitation

PART III. PUTTING THE PIECES TOGETHER: Food Webs and Ecological Networks

- 10. Species Interactions in Ecological Networks
- 11. Food Chains and Food Webs: Controlling Factors and Cascading Effects

PART IV. SPATIAL ECOLOGY: Metapopulations and Metacommunities

- 12. Patchy Environments, Metapopulations, and Fugitive Species
- 13. Metacommunities and the Neutral Theory

PART V. SPECIES IN CHANGING ENVIRONMENTS: Ecology and Evolution

- 14. Species Coexistence in Variable Environments
- 15. Evolutionary Community Ecology
- 16. Some Concluding Remarks and a Look Ahead

VOLUME 85, NO. 2

THE QUARTERLY REVIEW OF BIOLOGY

JUNE 2010

CONCEPTUAL SYNTHESIS IN COMMUNITY ECOLOGY

MARK VELLEND

Departments of Botany and Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4

E-MAIL: MVELLEND@INTERCHANGE.UBC.CA

The Theory of Ecological Communities

Mark Vellend

High level processes X Low level processes

ONOGRAPHS IN POPULATION BIOLOGY + 57

Vellend (2016)

QUATRO PROCESSOS FUNDAMENTAIS (High level) EM ECOLOGIA DE COMUNIDADES

Vellend 2010

Por que a RIQUEZA de espécies varia entre comunidades?

ESPECIAÇÃO (+) 🏓 RIQUEZA

Manguezais no oeste do oceano Pacífico chegam a ter 40 espécies

Condições propícias ao surgimento de espécies (e dispersão interrompida)

Maior riqueza em comunidades locais

Teoria de Biogeografia de Ilhas (MacArthur & Wilson, 1967)

Ilhas mais próximas -> Maior migração/dispersão -> Maior riqueza

Metacomunidades (Holyoak et al. 2005)

Migração entre comunidades

Altas taxas de migração

Manutenção e aumento da riqueza

Modelo Continente-Ilha

Modelo Ilha-Ilha

Espécies ocorrendo juntas -> COMPETIÇÃO -> Exclusão competitiva

Mais de 100 hipóteses para explicar como as espécies evitam a exclusão competitiva

Segundo Wright (2002) os três mecanismos mais importantes são :

- → Diferenciação de nicho (a partir das ideias de Gause, 1934)
- → Controle por inimigos naturais (Janzen-Connell, 1970)
- → Regulação populacional dependente da densidade (Mortalidade Compensatória
 Connell, 1984; Seleção dependente de frequência Chesson, 2000)

SELEÇÃO (-) → RIQUEZA

Partição de recursos

Ex.: Ocorrência de duas espécies arbóreas em uma floresta de restinga com dois tipos de solos

C1 - Marlierea racemosa

Diferenciação de Nicho (+)

Maior heterogeneidade ambiental -> Maior riqueza de espécies

LIMITE?

SELEÇÃO (-) **→** RIQUEZA

Inimigos naturais (+)

Modelo JANZEN - CONNELL

Maior densidade e proximidade à planta mãe geram maior chance de PREDAÇÃO e ATAQUE DE PATÓGENOS

A redução na densidade de coespecíficos próximos à planta mãe, favorece o estabelecimento de outras espécies abaixo da copa -> Manutenção da riqueza

SELEÇÃO (-) 🏓 RIQUEZA

Mortalidade Compensatória (Connell, 1984)

Espécies abundantes teriam maior mortalidade e espécies raras teriam vantagem (Manutenção da Riqueza)

SELEÇÃO (-) → RIQUEZA

Seleção dependente de Frequência (Chesson 2000)

Se:

- Competição intraespecífica > interespecífica
- A espécie regula mais fortemente a si própria

Quando rara, consegue atingir maiores taxas de crescimento

ESTABILIZAÇÃO

HABILIDADES COMPETITIVAS X INTERAÇÕES POPULACIONAIS

Espécies com diferentes habilidades competitivas podem coexistir se houver estabilização

Diferenças de nicho estabilizadoras

HilleRisLambers et al (2012) - ARES A partir das ideias de Adler et al (2007) e Chesson (2000)

DERIVA (-) -> RIQUEZA

Dinâmica Neutra (Hubbell, 2001)

Indivíduos sujeitos às mesmas regras em relação à natalidade e mortalidade.

Taxas demográficas aleatórias em relação às espécies

Quanto menor o tamanho da comunidade local, mais rápida a perda de espécies

Por que a COMPOSIÇÃO de espécies varia entre comunidades?

Como os quatro processos afetam a beta-diversidade? ESPECIAÇÃO

DISPERSÃO

SELEÇÃO

DERIVA

ESPECIAÇÃO **→** COMPOSIÇÃO

Conjuntos diferentes de espécies surgem e persistem em diferentes locais Diferentes modelos de especiação (Alopátrica/Simpátrica/Parapátrica)

Mesmo sob condições ambientais similares Aumenta a beta-diversidade

LIMITAÇÃO DE DISPERSÃO

Aumenta AGREGAÇÃO ESPACIAL -> Aumenta beta-diversidade

EFEITO DE MASSA (Metacomunidade)

Altas taxas de dispersão -> Manutenção de espécies mesmo em condições desfavorávei

Reduz a beta-diversidade

SELEÇÃO **→** COMPOSIÇÃO

HETEROGENEIDADE ESPACIAL

Diferentes conjuntos de espécies conseguem persistir sob diferentes condições ambientais (Partição de Nicho)

Aumenta a beta-diversidade

CARACTERÍSTICAS FUNCIONAIS

A seleção pode atuar não apenas na identidade das espécies, mas também nas características funcionais

DERIVA **→** COMPOSIÇÃO

Dinâmica Neutra (Hubbell, 2001)

Taxas demográficas aleatórias levam diferentes espécies à extinção em diferentes comunidades

Mesmo sob condições ambientais iguais

Aumenta a beta-diversidade

t=10	t= 50	t = 100
0-01		

QUAL É O PROCESSO MAIS IMPORTANTE?

Talvez essa não seja a melhor pergunta, e sim:

QUAL A IMPORTÂNCIA DE CADA PROCESSO?

Tendência proposta por diversos autores

Lortie et al. (2004)

Roughgarden (2009)

Vellend (2010)

Rosindell et al. (2011)

PROPOSTA DE ANÁLISE INTEGRADA - PARTIÇÃO DA VARIAÇÃO

Qual proporção da variação na composição de espécies entre amostras é explicada por condições ambientais (nicho), descontando-se o efeito da distância geográfica (dispersão aleatória)?

Jones et al 2011 - Samambaias em Floresta Montana na Bolívia

ESTRUTURAÇÃO DE COMUNIDADES (Vellend, 2010)

Processos atuando em diferentes escalas espaciais e temporais