Redes Neurais Artificiais IBM1108

5. Outras Redes Neurais Artificiais

Prof. Renato Tinós

Depto. de Computação e Matemática (FFCLRP/USP)

5. Outras Redes Neurais Artificiais

- 5.1. Redes RBF
- 5.2. Mapas Auto-Organizáveis de Kohonen
- 5.3. Processamento Temporal
 - 5.3.1. Rede Alimentada Adiante Focada Atrasada no Tempo (TLFN Focada)
 - 5.3.2. Arquiteturas Recorrentes
 - Rede de Elman
 - Rede de Jordan
 - Modelo geral de Redes Recorrentes
 - Echo State Network (ESN)
 - 5.3.3. Modelo de Hopfield

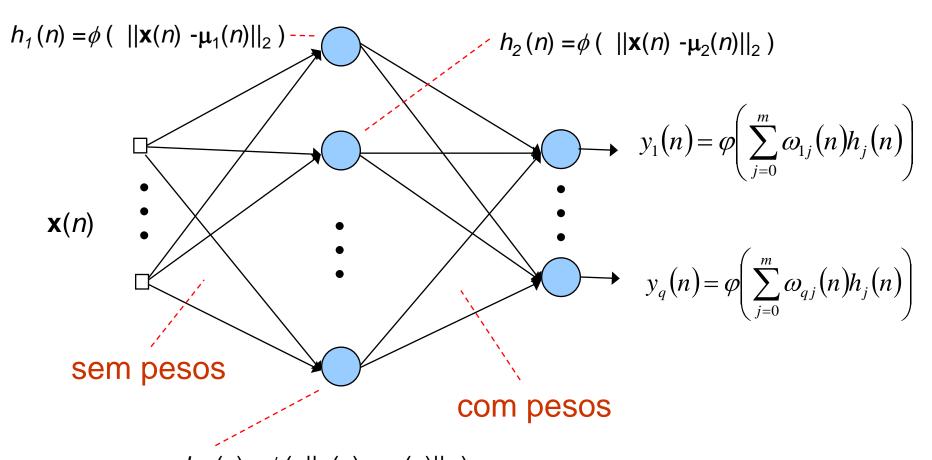
Tradicionalmente, são redes de duas camadas

- Camada oculta
 - » Utiliza funções de ativação não lineares (funções de base radial)
 - » Sem pesos (entre a camada de entrada e a camada oculta)
- Camada de saída
 - » Utiliza funções de ativação tradicionais
 - ☐ Geralmente lineares
 - » Com pesos (entre a camada oculta e a camada de saída)

camada de entrada

camada oculta

camada de saída



 $h_m(n) = \phi(||\mathbf{x}(n) - \mu_m(n)||_2)$

- Cada neurônio da camada intermediária (unidade radial) computa a saída de uma função de base radial que possui dois parâmetros
 - Centro
 - » Vetor indicando o centro da unidade radial (μ_i)
 - Raio
 - » Indica o tamanho da área de influência da unidade radial
 - \Box Geralmente utiliza-se áreas com um único parâmetro ($\rho_j = \rho$)

Unidade radial

Saída da unidade radial j na iteração n

$$h_j(n) = \phi(||\mathbf{x}(n) - \mu_j(n)||_2)$$
 (5.1.1)

na qual a norma Euclidiana é dada por

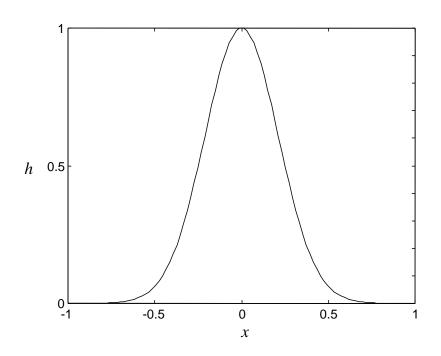
$$\|\mathbf{x}(n) - \boldsymbol{\mu}_{j}(n)\|_{2} = \sqrt{\sum_{i=1}^{N} (x_{i}(n) - \mu_{i}(n))^{2}}$$
 (5.1.2)

Unidade radial

- Função de ativação das unidades radiais
 - » Não-linear
 - » Valor da saída varia com relação à distância entre o vetor de entrada e o centro da unidade radial
 - ☐ Fator de variação é dado pelo raio da unidade radial
 - » Existem várias funções radiais

Unidade radial

- Função de ativação das unidades radiais
 - » Tipo mais comum: função Gaussiana



$$h_{j}(n) = e^{\left(-\frac{\|\mathbf{x}(n) - \mu_{j}(n)\|_{2}^{2}}{2\rho^{2}}\right)}$$
 (5.1.3)

Exemplo: Resposta da função Gaussiana com o centro em 0 (μ =0) e ρ =0,3. Note que a ativação máxima ocorre em $x=\mu$.

Camada de saída

Composta por neurônios com saídas dadas por

$$y_k(n) = \varphi\left(\sum_{j=0}^m \omega_{kj}(n)h_j(n)\right)$$
 (5.1.4)

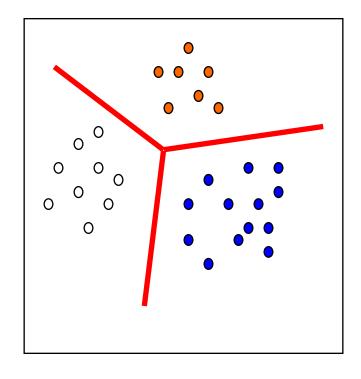
- Geralmente, as funções de ativação nesta camada são lineares
 - » Exemplo

$$y_k(n) = \sum_{j=0}^{m} \omega_{kj}(n) h_j(n)$$
 (5.1.5)

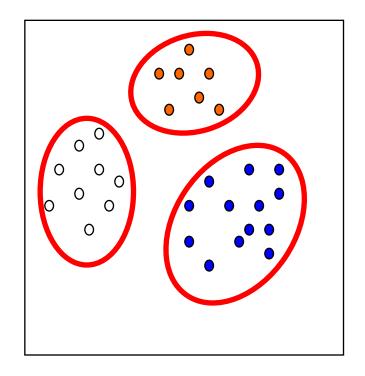
Classificação

- MLP utiliza hiperplanos para gerar as FDs
 - » Definidos por funções da forma $f(\mathbf{w}^T\mathbf{x}) = 0$
 - » Quando o conjunto de padrões de treinamento não é significativo, as FDs não são intuitivas e robustas
 - ☐ Definição das regiões de decisão é arbitrária em regiões do espaço de entradas não ocupadas por padrões de treinamento
 - ☐ FDs poderiam ser colocadas em posições mais conservadoras
- RBF utiliza hiperelipsóides para gerar as FDs
 - » Definidos por funções da forma $\phi(\|\mathbf{x} \mathbf{\mu}_j\|_2)$
 - ☐ Distância Euclidiana entre o vetor de entrada e o vetor que define o centro da unidade radial (neurônio da camada escondida)

Exemplo



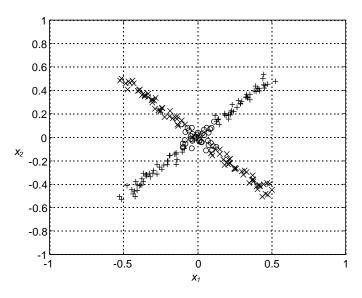
MLP

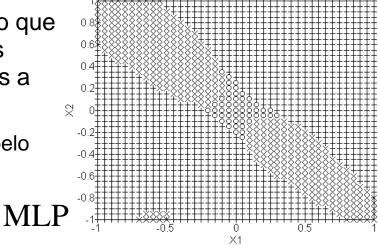


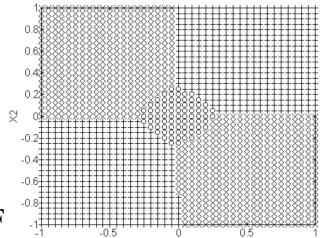
Rede RBF

Fronteiras de decisão

- São, em geral, mais robustas e intuitivas do que no MLP já que utiliza as distâncias entre os centros das unidades radiais e os exemplos a serem classificados
 - » Exemplo: espaço de classificação gerado pelo MLP







Aproximação de Funções

 Projeção Linear: combinação linear de funções elementares (bases)

$$\hat{f}(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{p} w_i \varphi_i(\mathbf{x})$$
 (5.1.6)

sendo **w** um vetor de números reais escolhido de tal forma que, para um valor real ε suficientemente pequeno,

$$|f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{w})| < \varepsilon$$

Aproximação de Funções

Repare que a Eq. (5.1.5) é igual a eq. da saída da Rede RBF com a camada de saída com ativação linear, ou seja,

$$y_k(n) = \sum_{j=0}^{m} \omega_{kj}(n) h_j(n)$$
 (5.1.7)

sendo

$$h_j(n) = \phi(||\mathbf{x}(n) - \mu_j(n)||_2)$$
 (5.1.8)

Projeção linear para o caso da rede RBF

- As bases (Eq. 2.52) são as funções radiais
- Utiliza um conjunto de bases adaptativas
 - » As bases não são pré-determinadas
 - □Como na Análise de Fourier ou nas Wavelets
 - » Bases são determinadas a partir do conjunto de dados entrada/saída (treinamento)
 - » Bases dependem dos parâmetros das unidades radiais e das entradas
 - » Pesos da camada de saída são ajustados para achar a melhor projeção da saída
 - » Treinamento é difícil porque deve-se achar as melhores
 - □Bases (parâmetros das unidades radiais)
 - □ Projeções (pesos da camada de saída)
 Redes Neurais Artificiais IBM1108

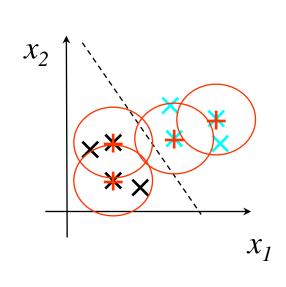
- O treinamento se resume a encontrar os seguintes parâmetros livres:
 - » Centros e raios das unidades radiais
 - ☐ Geralmente os raios são considerados fixos
 - » Vetor de pesos (incluindo o bias) entre a camada oculta e a camada de saída

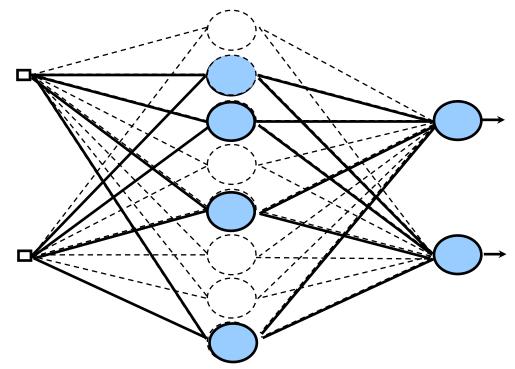
- Geralmente, o treinamento é feito em dois estágios,
 - » Primeiro estágio
 - □Considerando-se os raios das unidades radiais fixos, devem ser achados os centros das unidades radiais
 - » Segundo estágio
 - □Conhecidos as ativações das unidades radiais para o conjunto de treinamento, deve-se determinar os pesos da camada de saída

- Primeiro estágio
 - » Na abordagem mais simples, todos os padrões de treinamento são escolhidos como centros de unidades radiais
 - ☐ similar ao método IBL
 - □ se *N* padrões são empregados no treinamento, *N* unidades radiais são criadas
 - ➤ Problema 1: o uso de muitas unidades radiais pode ocasionar lentidão de operação da rede RBF (alto custo computacional) e ineficiência na segunda parte do treinamento (segundo estágio)
 - Problema 2: sobretreinamento ou overfitting
 - » Número de unidades radiais depende da complexidade dos dados
 - ☐ Número de aglomerados necessários para realizar a tarefa definida

- Primeiro estágio
 - » Outras abordagens
 - ☐ Seleção aleatória dos centros
 - □ Forward Selection
 - ☐Métodos de Clusterização
 - Método dos k vizinhos próximos
 - Mapa Auto-Organizável de Kohonen
 - □ Algoritmos Genéticos

- Primeiro estágio
 - » Forward Selection





- Segundo estágio
 - » Determinação do vetor de pesos entre a camada oculta (das unidades radiais) e a camada de saída
 - » Se as unidades radiais já foram definidas (primeiro estágio), o problema da determinação do vetor pesos é supervisionado
 - » Se, ainda, as funções de ativações dos neurônios da camada de saída são lineares, o vetor de pesos pode ser obtido de maneira direta minimizando-se a soma dos erros quadráticos

Treinamento

- Segundo estágio
 - » Usando o Método dos Mínimos Quadráticos (LMS), o vetor de pesos é dado por

$$\mathbf{W} = (\mathbf{H}^{\mathrm{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{D}$$

$$\mathbf{W} = [\mathbf{w}_{1} \quad \mathbf{w}_{2} \quad \dots \quad \mathbf{w}_{q}]$$

$$(5.1.9)$$

na qual

$$\mathbf{w}_{k} = \begin{bmatrix} \mathbf{w}_{k1} & \mathbf{w}_{k2} & \dots & \mathbf{w}_{km} \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{D} = \begin{bmatrix} \mathbf{d}_1 & \mathbf{d}_2 & \dots & \mathbf{d}_q \end{bmatrix}$$

$$\mathbf{d}_{k} = \begin{bmatrix} \mathbf{d}_{k}(1) & \mathbf{d}_{k}(2) & \dots & \mathbf{d}_{k}(N) \end{bmatrix}^{\mathrm{T}} \qquad \mathbf{H} = \begin{bmatrix} h_{1}(1) & h_{2}(1) & \dots & h_{m}(1) \\ h_{1}(2) & h_{2}(2) & \dots & h_{m}(2) \\ \vdots & \vdots & \ddots & \vdots \\ h_{1}(N) & h_{2}(N) & \dots & h_{m}(N) \end{bmatrix}$$

- Geralmente custoso
 - » Geralmente requer um grande número de unidades radiais
 - ☐ Maior número de unidades radiais implica em velocidade de operação menor

- Em várias aplicações de RNAs, é desejável que a rede decida, através de um processo de auto-organização, quais são as classes em um problema de classificação
 - Agrupamento
- Para isso é necessário que:
 - Padrões pertencentes a mesmo agrupamento possuam semelhanças
 - A rede consiga identificar estas semelhanças
 - » Aprenda um critério para agrupar os dados Redes Neurais Artificiais – IBM1108

- Propósito de RNA que utiliza autoorganização é
 - Descobrir padrões ou características significativas nos dados de entrada
 - » Sem informações sobre a qualidade das soluções ou saídas desejadas
 - Agrupar dados em aglomerados (clusters)
- Para isso, o algoritmo de treinamento utiliza um conjunto de regras de natureza local

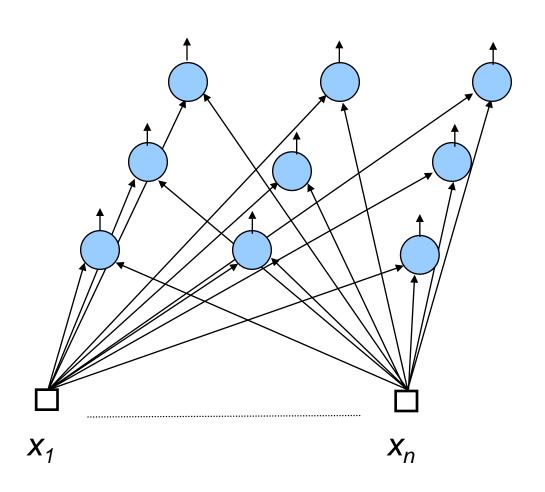
- Redes auto-organizáveis são mais semelhantes às estruturas neurobiológicas que as redes supervisionadas
 - Determinadas áreas do cérebro são responsáveis por funções específicas
 - » Fala
 - » Visão
 - » Controle de movimentos
 - Cada área pode conter sub-áreas

- Redes SOM (Self-Organizing Maps)
 - Propostas por Teuvo Kohonen
 - Também chamadas de Redes de Kohonen
 - Criam mapas topológicos a partir dos padrões de treinamento
 - » Padrões semelhantes ativam regiões próximas do mapa

- Utilizam algoritmo de aprendizado baseado em conceitos de autoorganização
- Baseadas no mapeamento realizado pelo cérebro
 - Permite representação de dados ndimensionais em um espaço c-dimensional (c << n)</p>
 - Utiliza técnica de quantização de vetores para comprimir dados dos vetores de entrada

Arquitetura

- Geralmente uma camada bi-direcional
 - » Grade plana (reticulado)
- Cada neurônio
 - » Recebe todas as entradas e gera saída
- Pode ser utilizada uma hierarquia de camadas



- Estados de ativação
 - **[**1, *m*]
- Função de ativação
 - Baseada em distância Euclidiana

$$d_j = ||\mathbf{x}(t) - \mathbf{w}_j(t)||_2$$
 (5.2.1)

Neurônio vencedor i

$$i(\mathbf{x}(t)) = \underset{j=1,\dots,m}{\operatorname{arg min}} \left\| \mathbf{x}(t) - \mathbf{w}_{j}(t) \right\|_{2}$$
 (5.2.2)

- Atualização dos pesos
 - » Atualiza neurônio vencedor e seus vizinhos dentro de uma certa vizinhança
 - » Vizinhança e taxa de aprendizado convergem para zero durante o treinamento
 - » Cria regiões que respondem a um grupo de entradas semelhantes

Treinamento

Atualização dos pesos

$$\mathbf{w}_{i}(t+1) = \mathbf{w}_{i}(t) + \eta(t) h_{ii}(t) (\mathbf{x}(t) - \mathbf{w}_{i}(t))$$
 (5.2.3)

- » $h_{ii}(t)$: define vizinhança
- » $\eta(t)$: taxa de aprendizado

- 1. Iniciar conexões com pequenos valores aleatórios;
- 2. Definir vizinhança e taxa de aprendizado iniciais
- 3. Repita

Para cada padrão de entrada x

Para cada nodo j

Calcular d_i

Selecionar nodo i com menor d

Atualizar pesos de i e seus vizinhos

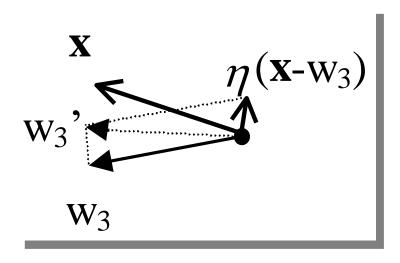
Reduzir taxa de aprendizado η

Reduzir vizinhança h_{i i}

Até que critério de parada seja satisfeito

Adaptação dos pesos

O nodo vencedor (nodo 3 para o exemplo) atualiza seus pesos de forma a se aproximar mais ainda do vetor de entrada x:



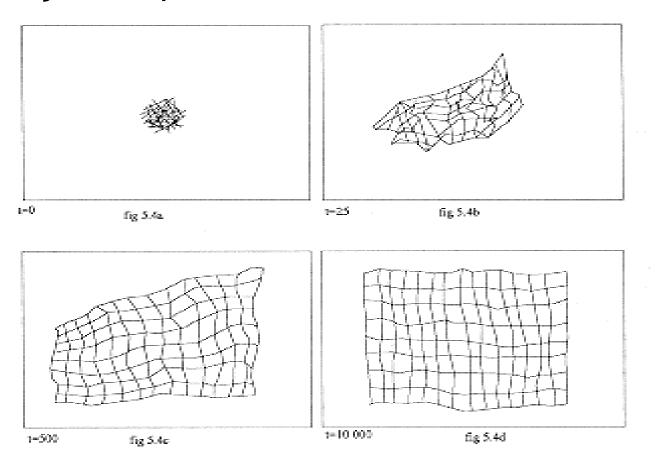
Vizinhança (h)

- Define quantos nós em torno do nó vencedor terão seus pesos ajustados
- Tamanho modificado dinamicamente durante treinamento
 - » Inicialmente grande (ex. todos os nós)
 - » Reduzido progressivamente até limite pré-definido
 - ☐ Taxa de redução é geralmente linear com o número de ciclos
 - » Pode ter diferentes formatos
 - Quadrado
 - □ Hexágono
 - □ Círculo
 - □ Irregular

5.2. Mapas Auto-Organizáveis de Kohonen

Exemplo 1

Alteração de pesos durante o treinamento



5.2. Mapas Auto-Organizáveis de Kohonen

- Após treinamento, rede SOM forma agrupamentos
 - Se as classes forem conhecidas:
 - » Grupos podem ser rotulados para indicar classe que representam
 - » Permite classificação de padrões desconhecidos

5.3. Processamento Temporal

 Diversas aplicações requerem o processamento temporal de informações

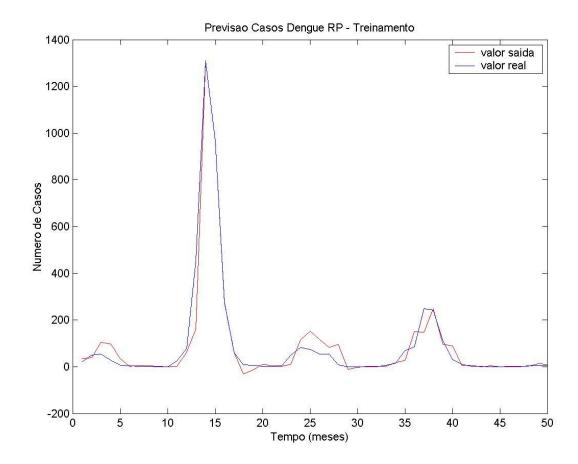
- Ex.: Previsão de Séries Temporais
 - » dado um conjunto de exemplos

$$\{ \mathbf{x}(1), \mathbf{x}(2), \dots, \mathbf{x}(n) \}$$

prever a saída $\mathbf{x}(n+1)$

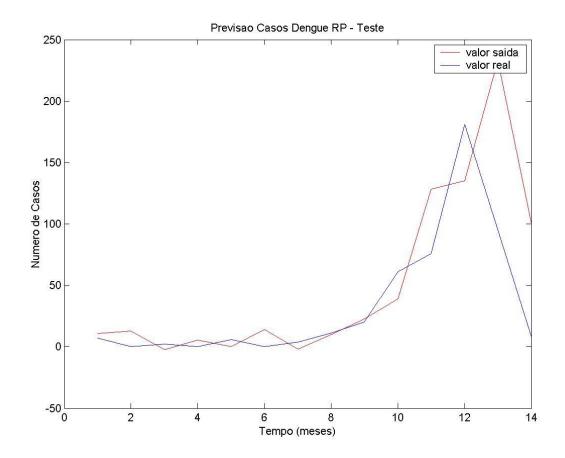
5.3. Processamento Temporal

- Exemplo 6.2. Sistema de Auxílio à Previsão de Epidemias de Dengue
 - Resultados



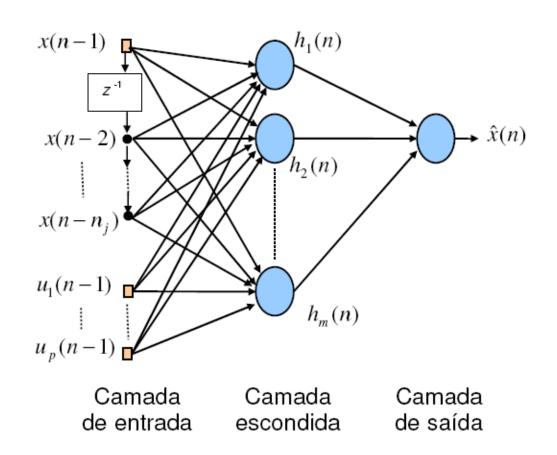
5.3. Processamento Temporal

- Exemplo 6.2. Sistema de Auxílio à Previsão de Epidemias de Dengue
 - Resultados



5.3.1. TLFN Focada

 Rede Neural Alimentada Adiante Focada Atrasada no Tempo (TLFN focada)



5.3.1. TLFN Focada

Propriedades

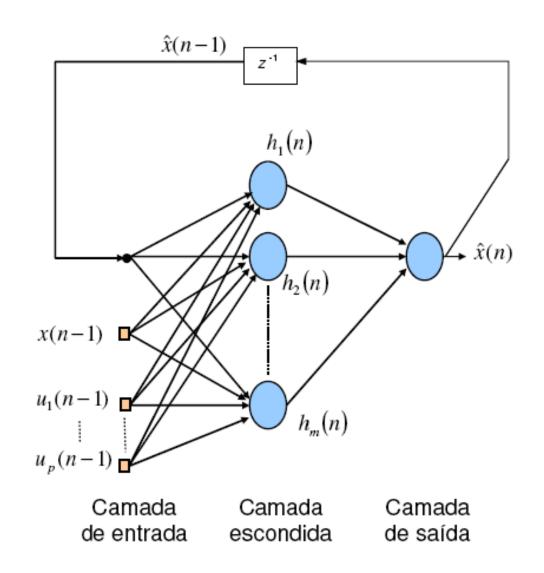
- Tempo
 - » Informação presente no conjunto de entrada
 - » Memória de curto prazo localizada externamente à rede
- RNA estática
 - » Treinamento padrão
- Número de entradas
 - » Qual deve ser o atraso considerado?

- Laços de realimentação internos são considerados
 - A informação dos neurônios de uma camada são realimentadas na mesma camada ou em camadas anteriores

Existem diversas topologias

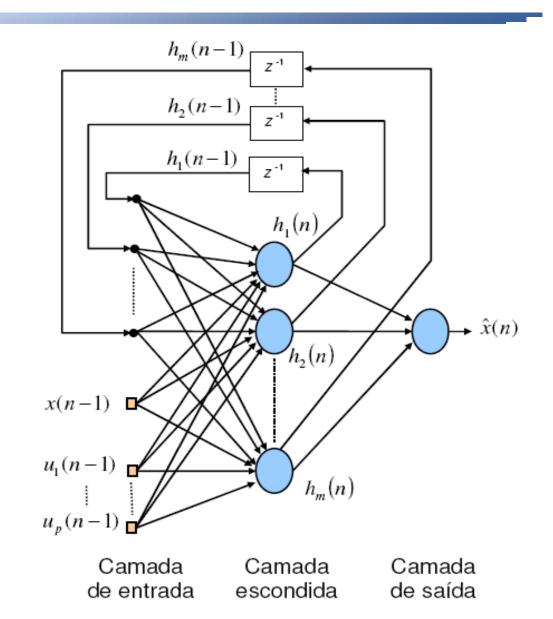
Rede de Jordan

 Realimentação dos neurônios da camada de saída na unidade de contexto



Rede de Elman

 Realimentação dos neurônios da camada oculta na unidade de contexto

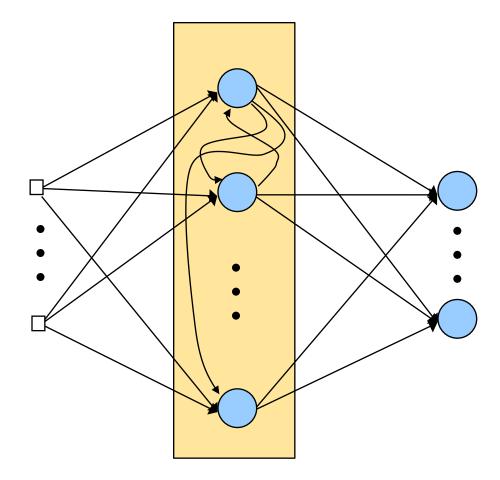


Modelo Geral

- A informação de qualquer neurônio em qualquer camada pode ser realimentada para qualquer neurônio em qualquer camada
- Em geral, os algoritmos padrões de treinamento de redes estáticas não podem ser usados diretamente
 - » Algoritmos de treinamento especiais geralmente têm que ser desenvolvidos
 - □Ex.: Retropropagação através do tempo

Echo State Network (ESN)

> Os pesos do reservatório e da camada de entrada são aleatórios

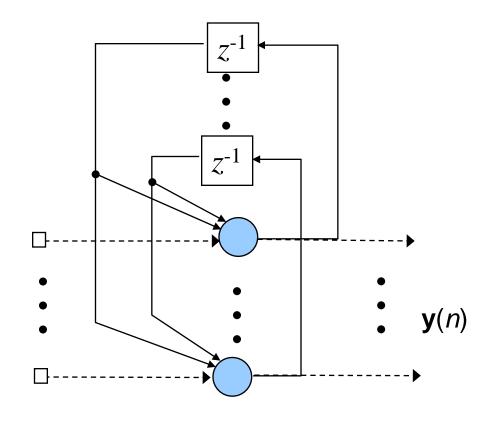


Reservatório

Topologia

- Sem unidades escondidas
- Matriz de pesos simétrica

x(n)



Rede de Hopfield Discreta

■ Saída do neurônio *i* (*i*=1,...,*m*)

$$y_i(n+1) = \operatorname{sgn}\left(\sum_{j=1}^{m} \omega_{ij} y_j(n) - \omega_{i0} + x_i(n)\right)$$
 (5.3.3.1)

sendo **x** um vetor binário que é válido somente na primeira iteração (condição inicial)

Rede de Hopfield Discreta

- Saída do neurônio *i* (*i*=1,...,*m*)
 - » Após a apresentação do vetor x, a rede relaxa naturalmente
 - \Box o termo correspondente à entrada x_i é removido da eq. anterior
 - □até que a saída estabilize

Rede de Hopfield Discreta

- Considere o problema de auto-associação de padrões
 - » Ou seja, dado o padrão x^p, queremos que a saída estável seja y=x^p
- Para a saída estável i (considerando por simplicidade que o bias é igual a zero), a eq. (5.3.3.1) fica

$$y_i = \operatorname{sgn}\left(\sum_{j=1}^m \omega_{ij} y_j\right) \tag{5.3.3.2}$$

O ponto estável é chamado de atrator

Rede de Hopfield Discreta

 Hopfield mostrou que, neste caso, os pesos devem ser definidos por

$$\omega_{ij} \propto x_i^p x_j^p \tag{5.3.3.3}$$

Ou seja, o vetor de pesos é definido automaticamente pelo padrão de entrada

Rede de Hopfield Discreta

O que é atrativo nas redes de Hopfield é que y(n) irá convergir para x^p mesmo para uma entrada parcialmente completa ou corrompida por ruído.

Este sistema pode também armazenar múltiplos padrões, no entanto o número de padrões que podem ser armazenados é limitado.

Comentários

Referências

- Haykin, S. S.. Redes neurais: princípios e prática. 2ª ed., Bookman, 2001.
- Principe, J. C.; Euliano, N. R. & Lefebvre, W. C. Neural and Adaptive Systems: Fundamentals Through Simulations. John Wiley & Sons, Inc. 2000
- Braga, A.P.; Carvalho, A. C. P. L. F. & Ludermir, T.B.. Redes neurais artificiais: Teoria e Aplicações. LTC, 2000.