

MOTIVAÇÃO: DESIGN DE SISTEMAS

Times de engenheiros que constroem um Sistema necessitam de:

- Uma abstração do sistema
- Um meio de Comunicação consistente
- Uma maneira de descrever os subsistemas:

Entradas

Saídas

Comportamento

Decomposição funcional

- Função transformação das entradas para as saídas
- Decomposição elaborar uma descrição através de módulos tangíveis

Abordagens Bottom-Up e Top-Down

Bottom-Up

Dados os elementos constituintes:

Desenvolver um Sistema que funcione

A partir de componentes, construir módulos para realizar tarefas específicas Integrar módulos entre si formando um Sistema que funcione

Por exemplo

Dada uma oferta de portas E, OU e NÃO, construir um computador

Pros

Leva a um subsistema eficiente

É realista

Permite criatividade

Cons

A complexidade é difícil de gerenciar

Pouca preocupação em projetar módulos reutilizáveis

Ciclos de reprojeto difíceis

Abordagens Bottom-Up e Top-Down

• Top-Down

Dada a especificação de um sistema

Desenvolver um Sistema que funcione

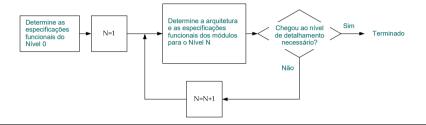
A partir dos requisites de engenharia, dividir o problema em módulos abstratos Repetir o processo até obter partes tangíveis ("adquiríveis")

Droc

Ciclo de projeto altamente previsível

Divisão eficiente de trabalho

Cons


Emprega mais tempo no planejamento

Pode barrar a criatividade (pensamento vertical, não lateral)

Nesta disciplina: Abordagem top-down com elementos bottom-up sempre que possível

- · Dividir e conquistar de forma recursiva
 - Divida um módulo em vários submódulos
 - Defina a entrada, a saída e o comportamento $\vec{y} = f(\vec{x})$
 - Pare quando atingir componentes/blocos tangíveis

A Decomposição Funcional dos Requisitos de Engenharia

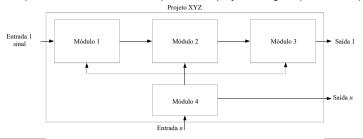
Destaques

- O processo de projeto é iterativo
- Planejamento reduz o tempo de reprojeto posterior
- Especificações precisas de entradas, saídas, transformações (funcionalidades) e interconexões
- Atenção
 - Procure saber como costuma ser feito ou foi feito antes
 - Submódulos devem possuir complexidade semelhante
 - Mantenha simples
 - Utilize tecnologia existente/disponível
 - Comunique os resultados
 - Não decomponha ad infinitium
 - Utilize abstrações adequadas para descrever os módulos:
 Não existe uma forma única de descrever os módulos. Quando necessário complemente a descrição funcional com fluxogramas, diagramas de estado, etc.
- Apesar disso:
 - Busque inovação

Aplicação em Projetos

- Projeto Nível 0
 - Apresente um módulo na forma de um único bloco com entradas e saídas identificadas (nomeadas) e com um título
 - Apresente na forma de tabela os requisitos funcionais: entradas, saídas e funcionalidades
- Projeto Nível 1
 - Apresente o diagrama do Nível 1 (arquitetura do sistema) com todos os módulos e interconexões bem visíveis
 - Descreva a teoria de operação. Explique como os módulos trabalham juntos para alcancar os objetivos de funcionamento
 - Apresente os requisitos funcionais na forma de tabela para cada modulo deste nível
- Projeto Nível N (para N>1)
 - Repita o processo empregado no Nível 1 tantas vezes quantas necessárias
- Alternativas de Projeto
 - Descreva as diferentes alternativas que foram consideradas, os compromissos (tradeoffs) e a justificativa para cada escolha. Baseie-se nos métodos de avaliação de conceitos (alternativas) apresentados na aula 7

A Decomposição Funcional dos Requisitos de Engenharia


Nível 0 (mais alto nível)

Módulo	Projeto
Entradas	Entrada 1, Entrada 2, Entrada <i>n</i>
Saídas	Saída 1, Saída 2, Saída <i>n</i>
Funcionalidade	Descrever em frases curtas ou figuras (diagramas de estado, de blocos, etc.) as ações ou transformações ou combinações que o módulo realiza com as informações vindas das entradas

A Decomposição Funcional dos Requisitos de Engenharia

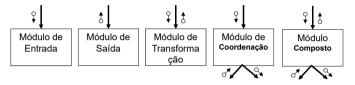
N'ivel~1~ (normalmente descreve a arquitetura do projeto, em geral por módulos)

Módulo n	nome
Entradas	Entrada 1, Entrada 2, Entrada <i>n</i>
Saídas	Saída 1, Saída 2, Saída <i>n</i>
Funcionalidade	Descrever em frases curtas ou figuras (diagramas de estado, de blocos, etc.) as ações ou transformações ou combinações que o módulo realiza com as informações vindas das entradas
Módulos Associados	Indicar de quais módulos o Módulo n depende

A Decomposição Funcional dos Requisitos de Engenharia

Nível 2 (em geral já descreve o detalhamento ao nivel de componentes básicos ou código de software)

Submódulo ou componente n	nome
Entradas	Entrada 1, Entrada 2, Entrada <i>n</i>
Saídas	Saída 1, Saída 2, Saída <i>n</i>
Funcionalidade	Descrever em frases curtas ou figuras (diagramas de estado, de blocos, etc.) as ações ou transformações ou combinações que o módulo realiza com as informações vindas das entradas

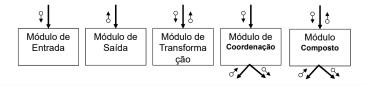

Nível n

- Chegue ao nível de detalhamento desejado e tangível (detailed design level)
- O número de níveis depende do detalhamento do projeto
- Não exagere no detalhamento, pare quando tiver algo tangível (software, bloco ou circuito)

A Decomposição Funcional dos Requisitos de Engenharia

Domínios de Aplicação

- Projetos Eletrônicos
- Projetos Digitais
- Projetos de Software (para linguagens funcionais, ex. C)
 - Note que praticamente todas as linguagens de programação permitem a chamada de funções, subrotinas ou módulos
 - O projeto funcional simplifica o desenvolvimento de softwares, eliminando a necessidade de se criar códigos redundantes
 - Gráficos estruturados (structured charts) são diagramas de blocos específicos para visualizar Projetos de Software na forma funcional

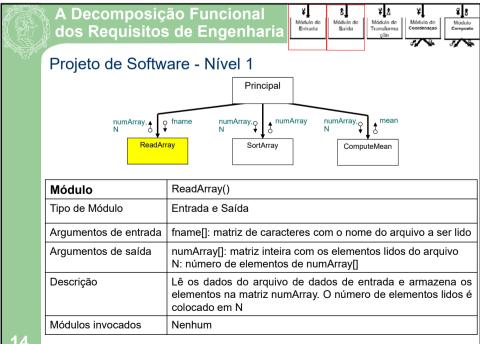


11

A Decomposição Funcional dos Requisitos de Engenharia

Domínios de Aplicação

- Módulo de Entrada: Recebe informação
- Módulo de Saída: Retorna informação
- Módulo de Transformação: Recebe informação, a modifica e retorna a informação modificada
- Módulo de Coordenação: Coordena ou sincroniza as atividades entre módulos
- Módulos de Composição: Qualquer combinação dos quarto anteriores


A Decomposição Funcional 8 8 dos Requisitos de Engenharia Projeto de Software - Nível 1 **Principal** numArray, o numArray ReadArray SortArray ComputeMean Módulo Principal Tipo de Módulo Coordenação Nenhum Argumentos de entrada Argumentos de saída Nenhum Descrição A função principal chama ReadArray() para ler o arquivo de

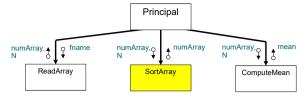
ReadArray(), SortArray() e ComputeMean()

entrada do disco, SortArray() para classificar a matriz e ComputeMean() para determinar o valor médio dos elementos da matriz. É necessário a interação com o usuário para entrar o nome do arquivo. O valor da media é apresentado na tela.

13

Módulos invocados

A Decomposição Funcional dos Requisitos de Engenharia

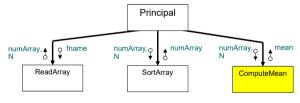

Módulo de Módulo de Entrada Saída

Módulo de Transforma ção

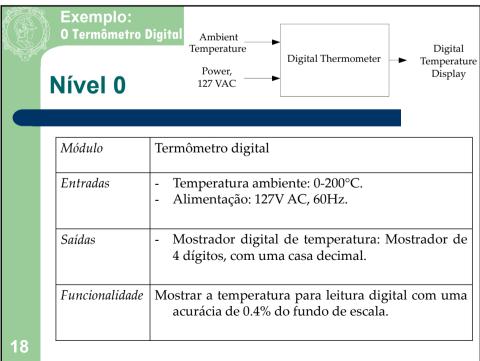
Projeto de Software - Nível 1

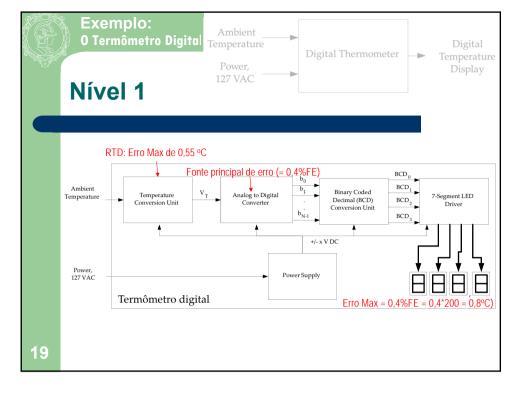
Módulo	SortArray()
Tipo de Módulo	Transformation
Argumentos de entrada	numArray[]: matriz de números inteiros N: número de elementos de numArray[]
Argumentos de saída	numArray[]: matriz classificada de números inteiros
Descrição	Classifica os elementos da matriz usando um algoritmo de classificação. Armazena em disco a matriz classificada.
Módulos invocados	Nenhum

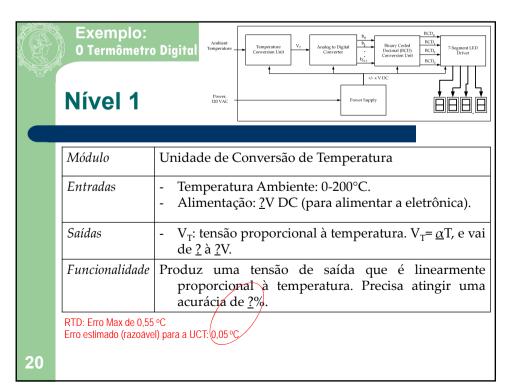
15

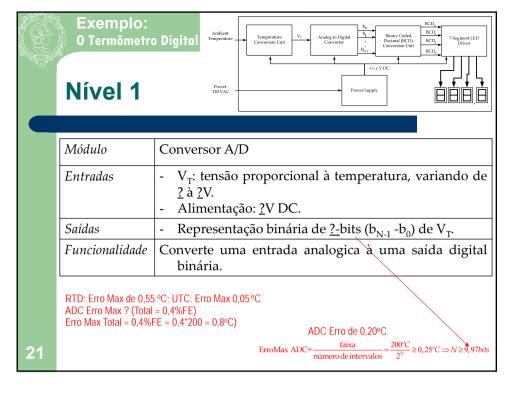

A Decomposição Funcional dos Requisitos de Engenharia

Projeto de Software - Nível 1


Módulo	ComputeMean()
Tipo de Módulo	Entrada e Saída
Argumentos de entrada	numArray[]: matriz de números inteiros N: número de elementos de numArray[]
Argumentos de saída	mean: valor médio dos elementos na matriz
Descrição	Calcula o valor médio dos elementos inteiros da matriz
Módulos invocados	Nenhum




Requisitos de Engenharia e Escolha do Conceito(Alternativa)

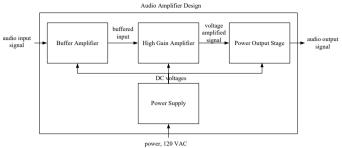

O Sistema deve:

- Medir temperaturas entre 0 e 200°C
- Possuir uma acurácia de 0.4% no fundo de escala
- Apresentar a temperatura digitalmente, com um dígito além do ponto decimal
- Ser alimentado por corrente alternada de 127V 60Hz
- Usar um RTD (dispositivo resistivo térmico) com acurácia de 0.55°C em toda a escala. A resistência do RTD varia linearmente com a temperatura, de 100Ω a 0°C até 178Ω a 200°C

Detalhes de Projeto

 Como você determinaria os detalhes desconhecidos dos dois slides anteriores?

Exemplo: Com base na apreciação geral dos módulos, definir alimentação DC e seu ripple (5V?)


- O que é acoplamento?
 - Considere o número de módulos no nível mais baixo e o número de conexões entre eles. P.ex, se dois módulos, no máximo 1 conexão (se 3, 3; se 4, 6; se 5, 10 – pense nisso)
 - Portanto o número máximo de conexões cresce vertiginosamente com o número de módulos:

$$Conex\tilde{o}es_{MAX} = \frac{n(n-1)}{2}$$

- Acoplamento indica até que ponto os módulos estão conectados entre si:
 - Sistemas altamente acoplados indicam que erro em um módulo impacta diretamente nos outros e torna a identificação do erro difícil

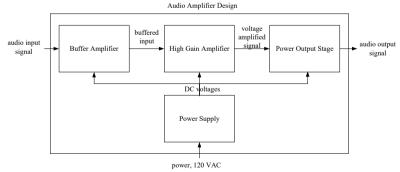
Acoplamento

- O acoplamento dos módulos do Nível 1 do amplificador abaixo é relativamente baixo (excluindo-se a fonte)
- Note que os módulos não são totalmente desacoplados, uns dependem das impedâncias de entrada/saída dos outros

- Características de sistemas altamente acoplados
 - Falha em um módulo se propaga a outros
 - Difícil de reprojetar um módulo
- Características de sistemas pouco acoplados
 - Desencoraja a reutilização de módulos

Coesão

- O que é coesão?
 - Indica quão focado um modulo é. Em geral quanto mais coeso, menos acoplamento no Sistema
 - Existem tipos de coesão: lógica, temporal, funcional, etc.
- Características de um Sistema altamente coeso
 - Fácil de testar os módulos de maneira independente
 - Interface de controle simples (ou n\u00e3o existente)
- Características de um Sistema pouco coeso
 - Menos reuso dos módulos


- Para reduzir o acoplamento costuma-se aumentar a coesão dos módulos
- Em geral cada módulo executa uma função específica, daí o conceito de Decomposição Funcional
- Note que com isso se aumenta a utilidade (reuso) dos módulos, porém eles são menos otimizados para cada aplicação:

Considere um software com dois conceitos sendo analisados: uma função única com 1000 linhas de código versus 15 funções coesas com em media 100 linhas de código cada. Qual executa mais rápido? Provavelmente a primeira opção. Qual é mais fácil de debugar e de de fazer upgrade? A segunda.

 Embora sistemas fracamente acoplados e altamente coesos tendam a facilitar o projeto e o teste, podem não ser os melhores em termos de desempenho.

Acoplamento

 Quanta coesão existe nos módulos do Nível 1 do amplificador abaixo?

- O Sistema acima é altamente coeso, cada módulo realiza uma etapa específica da amplificação
- Note que cada módulo poderia ser utilizado sozinho em outras aplicações

2-

Resumo

- Abordagens de Projeto: top-down e bottom-up
- Decomposição Funcional (mais top-down)
 - Decomposição iterativa
 - Entrada, saída e função
 - Aplicável a muitos domínios de problemas
- Acoplamento interconctabilidade dos módulos
- Coesão foco dos módulos