PEF — 3528 — Ferramentas
Computacionais na Mecanica das
Estruturas: Criagao e Concep¢ao

Prof. Dr. Rodrigo Provasi

e-mail: provasi@usp.br

Sala 09 — LEM - Prédio de Engenharia Civil

Interfaces em C#
Oxyplot

Oxyplot

® Como dito na aula de bibliotecas, o Oxyplot € uma biblioteca que permite a
exibicao de graficos.

® A melhor maneira de trabalhar € fazer um binding na propriedade
PlotModel.

Interfaces em C#
Shapes

Shapes

® Shapes sao a forma mais basica de fazer elementos de desenho em WPF.

® Caracteristicas importantes:

® Shapes draw themselves: You don't need to manage the invalidation and painting
process. For example, you don’t need to manually repaint a shape when content
moves, the window is resized, or the shape’s properties change.

Shapes

® Shapes are organized in the same way as other elements. In other words, you can place a
shape in any of the layout containers you learned about in Chapter 3. (Although the
Canvas is obviously the most useful container, because it allows you to place shapes at
specific coordinates, which is important when you're building a complex drawing out of
multiple pieces.)

® Shapes support the same events as other elements. That means you don’t need to go to
any extra work to deal with focus, key presses, mouse movements, and mouse clicks.
You can use the same set of events you would use with any element, and you have the
same support for tooltips, context menus, and drag-and-drop operations.

Shapes

4 N
DispatcherObject

A

DependencyObject — LEGENT

A Abstract Class

Visual
] Concrete Class

A q y

UlElement

A

FrameworkElement

A

Shape

‘n
I I I I I I

Rectangle Ellipse Line Polyline Polygon Path

Propriedades

® Fill: Sets the brush object that paints the surface of the shape (everything inside its borders).
® Stroke: Sets the brush object that paints the edge of the shape (its border).

® StrokeThickness: Sets the thickness of the border, in device-independent units. When drawing a
line, WPF splits the width on each side. So a line that's 10 units wide gets 5 units of space on each
side of where a single-unit line would be drawn. If you give a line an odd-number thickness, the
line will have a fractional width on each side. For example, an 112-unit line has 5.5 units of space
on each side. This pretty much guarantees that the line won't line up evenly with the display
pixels of your monitor, even if it's running at 96 dpi resolution, so you'll end up with a slightly
fuzzy anti-aliased edge. You can use the SnapsToDevicePixels property to clean this up if it
bothers you (as described in the section “Pixel Snapping” later in this chapter).

Propriedades

® StrokeStartLineCap and StrokeEndLineCap: Determine the contour of the edge of the
beginning and end of the line. These properties have an effect only for the Line, the
Polyline, and (sometimes) the Path shapes. All other shapes are closed, and so have no
starting and ending point.

® StrokeDashArray, StrokeDashOffset, and StrokeDashCap: Allow you to create a dashed
border around a shape. You can control the size and frequency of the dashes, and the
contour of the edge where each dash line begins and ends.

StrokeLineJoin and StrokeMiterLimit: Determine the contour of the shape’s corners.
Technically, these properties affect the vertices where different lines meet, such as the
corners of a Rectangle. These properties have no effect for shapes without corners, such as
Line and Ellipse.

Propriedades

Stretch: Determines how a shape fills its available space. You can use this property to create a
shape that expands to fit its container. You can also force a shape to expand in one direction by
using a Stretch value for the HorizontalAlignment or VerticalAlignment properties (which are
inherited from the FrameworkElement class).

DefiningGeometry: Provides a Geometry object for the shape. A Geometry object describes the
coordinates and size of a shape without including the UlElement plumbing, such as the support
for keyboard and mouse events.

GeometryTransform: Allows you to apply a Transform object that changes the coordinate
system that’s used to draw a shape. This allows you to skew, rotate, or displace a shape.
Transforms are particularly useful when animating graphics.

RenderedGeometry: Provides a Geometry object that describes the final, rendered shape.

Shapes

<StackPanel>

<Ellipse Fill="Yellow" Stroke="Blue" Height="50" Width="100" Margin="5"
HorizontalAlignment="Left"></Ellipse>

<Rectangle Fill="Yellow" Stroke="Blue" Height="50" Width="100"
Margin="5" HorizontalAlignment="Left"></Rectangle>

</StackPanel>

Shapes

Shapes

<Canvas>

<Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="100" Canvas.Top="50"
Width="100" Height="50"></Ellipse>

<Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40"
Width="100" Height="50"></Rectangle>

</Canvas>

Shapes

' Shapes

o | B e

Shapes

<Grid Margin="5">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="*"></RowDefinition>
</Grid.RowDefinitions>
<TextBlock>The first row of a Grid.</TextBlock>
<Viewbox Grid.Row="1" HorizontalAlignment="Left" >
<Canvas Width="200" Height="150">
<Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="10" Canvas.Top="50" Width="100" Height="50" HorizontalAlignment="Left"></Ellipse>
<Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40" Width="100" Height="50" HorizontalAlignment="Left"></Rectangle>
</Canvas>
</Viewbox>

</Grid>

Shapes

| Viewbo...= | = f-"*H # ' ViewboxResize o | = &&-ﬁ

The first row of a grid. The first row of a grid.

Line

® Linhas permitem desenhar linhas em um objeto no WPF.

® Exemplo:

<Line Stroke="Blue" X1="0"Y1="0" X2="10"Y2="100"></Line>

Line

<Line Stroke="Blue" X1="0"Y1="0" X2="10"Y2="100" Canvas.Left="5"
Canvas.Top="100"></Line>

® Alinha esta em um canvas e trata o (0,0) da linha como sendo o (5,100) do
canvas.

Polyline

® Cria uma sequencia de linhas:

<Canvas>

<Polyline Stroke="Blue" StrokeThickness="5" Points="10,150 30,140 50,160 70,130
90,170 110,120 130,180 150,110 170,190 190,100 210,240" >
<[Polyline>

</Canvas>

Polyline

'l PolylinesAndPolygons =4t

Polygon

® O poligono é similar a polyline, porem, a forma é fechada ligando-se o
ultimo ponto ao primeiro:

¥ ' PolylinesAndPolygons

Polygon

® Para um poligono em que as linhas se cruzam, a regra de preenchimento &
importante (FillRule).

Crosses two lines
(an even number).
The region is not filled.

\

Crosses one line
(an odd number).

The region is filled.

EvenOdd

Polygon

2
Crosses no right-to-left lines.
The count difference is two.
The region is filled.
; :\ "
- -
1
Nonzero

Polygon

<Polygon Stroke="Blue" StrokeThickness="1" Fill="Yellow" Canvas.Left="10"
Canvas.Top="175" FillRule="Nonzero" Points="15,200 68,70 110,200 0,125

135,125">

</Polygon>

Line Caps

® E possivel controlar o acabamento das linhas:

| LineCaps Ll) S

_ Flat Line Cap

w Square Line Cap
w Round Line Cap
w Triangle Line Cap

Line Joints _

® Também e possivel controlar as
transicoes das linhas:

LineJoins 'igﬁ

Bevel Line Join

Round Line Join

Miter Line Join

Miter Line Join With Limit of 3

IR

Dashes

® | DashedLines l.EL:.E'J&J

o ® " " B E B EEBR
A 2 L R 4 Dash Pattern "L 2

Y EEEEEEE-
<Polyline Stroke="Blue" StrokeThickness="14" 4 \' Dash Pattern "2 1

StrokeDashArray="1 2“ Points="10,30 60,0 90,40

120,10 350,10"> /‘v’———-—
</Polyline>

Dash Pattern "5 0.2 3:0.2'

"’,- | EEE | EmE

Uneven Dash Pattern "2 0.5 27

' ‘ [I N N N N N N
\ 4 ‘ ' Dash Pattern with Rounded Caps

SolidColorBrush
LinearGradientBrush

RadialGradientBrush

ImageBrush
DrawingBrush

VisualBrush

BitmapCacheBrush

Brushes

Paints an area using a single continuous color.

Paints an area using a gradient fill, a gradually shaded fill that changes from one
color to another (and, optionally, to another and then another, and so on).

Paints an area using a radial gradient fill, which is similar to a linear gradient,
except that it radiates out in a circular pattern starting from a center point.

Paints an area using an image that can be stretched, scaled, or tiled.

Paints an area using a Drawing object. This object can include shapes you've
defined and bitmaps.

Paints an area using a Visual object. Because all WPF elements derive from the
Visual class, you can use this brush to copy part of your user interface (such as
the face of a button) to another area. This is useful when creating fancy effects,
such as partial reflections.

Paints an area using the cached content from a Visual object. This makes it
similar to VisualBrush, but more efficient if the graphical content needs to be
reused in multiple places or repainted frequently,|

Gradients

<Rectangle Width="150" Height="100">
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Yellow" Offset="0.0" />
<GradientStop Color="Red" Offset="0.25" />
<GradientStop Color="Blue" Offset="0.75" />
<GradientStop Color="LimeGreen" Offset="1.0" />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>

¥ 'l Gradients

Diagonal Linear Gradient

With 0.5 Offset for White

Horizontal Linear Gradient

Reflected Gradient

Multicolored Gradient

Transforms

® E possivel aplicar transformacdes as formas:

TranslateTransform

RotateTransform

ScaleTransform

Displaces your coordinate system by some amount. This
transform is useful if you want to draw the same shape in
different places.

Rotates your coordinate system. The shapes you draw normally
are tumed around a center point you choose.

Scales your coordinate system up or down, so that your shapes
are drawn smaller or larger. You can apply different degrees of

scaling in the X and Y dimensions, thereby stretching or
compressing your shape.

Y

Angle, CenterX,
CenterY

ScaleX, Scale,
CenterX,
CenterY

Transforms

SkewTransform Warps your coordinate system by slanting it a number of AngleX, AngleY,

degrees. For example, if you draw a square, it becomes a CenterX,
parallelogram. CenterX
MatrixTransform Modifies your coordinate system by using matrix multiplication Matrix

with the matrix you supply. This is the most complex option; it
requires some mathematical skill.

TransformGroup Combines multiple transforms so they can all be applied at once. N/A
The order in which you apply transformations is important

because it affects the final result. For example, rotating a shape

(with RotateTransform) and then moving it (with

TranslateTransform) sends the shape off in a different direction

than if you move it and then rotate it.

Transforms

<Rectangle Width="80" Height="10"
Stroke="Blue" Fill="Yellow"
Canvas.Left="100" Canvas.Top="100">

<Rectangle.RenderTransform>
<RotateTransform Angle="25" />
</Rectangle.RenderTransform>

</Rectangle>

¥ ' RotateShape

| (= | (=] [EQ;S-‘]\

Transforms

<Rectangle Width="80" Height="10" Stroke="Blue"
Fill="Yellow" Canvas.Left="100" Canvas.Top="100">

<Rectangle.RenderTransform>

<RotateTransform Angle="25" CenterX="45"
CenterY="g" />

</Rectangle.RenderTransform>

</Rectangle>

' RotateShape

