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14.00 -14.45 
Historical Framework  - A Global Dynamics Perspective in the Nonlinear 
Analysis of Systems/Structures 

15.00 -15.45 Achieving Load Carrying Capacity: Theoretical and Practical Stability 

16.00 -16.45 Dynamical Integrity: Concepts and Tools_1 
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14.00 -14.45 Dynamical Integrity: Concepts and Tools_2 

15.00 -15.45 Global Dynamics of Engineering Systems 

16.00 -16.45 Dynamical integrity: Interpreting/Predicting Experimental Response 

M
o

n
d

ay
 

1
2

/1
1

 

 

14.00 -14.45 Techniques for Control of Chaos 

15.00 -15.45 A Unified Framework for Controlling Global Dynamics 

16.00 -16.45 Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics 
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14.00 -14.45 
A Noncontact AFM:  (a) Nonlinear Dynamics and Feedback Control  
                                     (b) Global Effects of a Locally-tailored Control  

15.00 -15.45 Exploiting Global Dynamics to Control AFM Robustness  

16.00 -16.45 Dynamical Integrity as a Novel Paradigm for Safe/Aware Design 



Outline 

1. Global safety targets and related dynamical 

aspects 

• in operating conditions 

• towards extreme conditions 

2. Using dynamic integrity   

3. An overview of mechanical/structural systems 

addressed in the integrity perspective, from 

macro to nano 



Aspects of interest in a global safety perspective 

Identifying global safety targets and related dynamical 

aspects (as regards variations of both i.c. and control parameters) 

(i) in operating conditions               competing attractors robustness 

      verifying the relative robustness of coexisting bounded attractors of  

      technical interest and the competition of their basins 

(ii) towards extreme conditions        basin erosion and system escape  

     analyzing the erosion of the governing in-well safe basin   

     encompassing different solutions, up to final escape of the response 

 

Evaluating the safety 
• selecting proper integrity measures  
 

Improving the safety  
• implementing proper control techniques 



Operating conditions: attractor robustness (1) 

Bistability: possibility to jump to a coexisting bounded attractor 

• competition of  resonant and non-resonant attractors in  frequency- or 

force-response curves of single-dof oscillators 

Undesirable, e.g., in AFM to improve imaging resolution: 

• nearly identical vibration amplitudes at two different distances from 

sample can lead to hunting of feedback controller between them to 

maintain constant amplitude, which creates serious imaging artifacts 

Desirable, e.g., in MEMS for activating a jump-driven hysteretic 

loop between competing responses: 

• if used as filters            interval with large oscillations bounded by 

ranges with small ones to be realized  

• if used as resonant sensors          lower (upper) oscillations expected 

before (after) detection of a physical parameter  

Multistability: versatile system behavior valuable in some applications  



Operating conditions: attractor robustness (2) 

In global terms: the relative size of competing basins 

safe jump from given attractor to a bounded coexisting one depends 

on topology of  basins, which must be adjacent to each other (one 

generally surrounding the other) 

Jump between pairs of a variety/multiplicity of coexisting solutions:  

• with different periodicity competing with each other in same well  

• in different wells (or in-well vs cross-well) of single-dof multi-well 

systems  

• with different mechanical meaning competing with each other in  

    multi-dof (and multi-well) systems 

Analyzing relative strength of competing attractor-basins via 

robustness profiles through different integrity measures 



Parametric pendulum: Oscillations vs Rotations  

Competing attractors: 

            in-well        vs      out-of-well  

       (oscillations)              (rotations) 

both of interest for harvesting energy from sea waves 
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attractor robustness and basin integrity 
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e.g.: qualitative difference of IF and GIM:  

● GIM: basically a measure of attractor robustness 

● IF: also a measure of basin integrity, more interesting for 

          safe design            
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Extreme conditions: system escape …….. 

Systems with escape corresponding to different physical failures: 

      ship capsizing  rigid block overturning       dynamic buckling                   

             of slender structures  
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….. via basin erosion  
Focus on  

Overall safe basin of bounded responses, irrespective of which one 

is specifically realized 

• Basin size and compactness (integrity) for fixed control 

parameters 

• Features of erosion with a varying control parameter, which 

meaningfully affect the rate of safety loss before escape 

Underlying topological mechanisms to be investigated in terms of 

governing saddles and associated invariant manifolds whose homoclinic 

or heteroclinic intersection triggers:  

•  the start of erosion  

•  its peculiar and possibly dramatic features 



Models (mech-math), phase space, potential 

an overall picture of dynamical problems 
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Erosion profiles 

● integrity measures permit to study how the 

structure reliability changes when 

parameters vary 

● erosion profiles: integrity measure as a 

function of excitation amplitude 

● irrespective of safe basin definitions, 

exact/approximate information from: 

• homo/heteroclinic bifurcation of the manifolds surrounding the 

potential well which triggers the erosion 

• then erosion proceeds with complex mechanisms, which may 

involve secondary homo/heteroclinic bifurcations 

• erosion ends with the onset of out-of-well phenomena which may 

represent the physical “failure” 

I.M. 

excitation amplitude 



Dynamic integrity referred to for 

(i)    analyzing global safety 

(ii)    controlling global safety 

(iii)   interpreting and predicting experimental    

         behaviors through theoretical models 

• identifying unknown parameters  

• detecting thresholds of applicability 

(iv)   formulating novel design criteria which account  

         for robustness and erosion, as well as uncertainties 

Using dynamic integrity  



Overall aims 

Investigating dynamical integrity  

of different nonlinear mechanical oscillators  

● discussing specific mechanical issues 

●  discussing dynamical issues 

●  discussing control issues 

different dynamical phenomena different systems 

Robustness/erosion profiles for  

•   discrete or continuous systems/models 

•   at macro or micro/nano scale 



Mechanical and dynamical issues 

 

● Hardening vs softening  

● Symmetric vs asymmetric 

● Smooth vs non-smooth 

● Resonant vs non-resonant 

Phenomena 

● various “failure” : capsizing, overturning, pull-in, jump-to-

contact, ……..  

● different integrity measures 

● theory vs experiments  

● uncontrol vs control (of different, local or global, nature) 

● harmonic vs stochastic excitation 

Systems  



Mechanical/structural systems from macro to nano (1) 

Archetypal oscillators: Duffing, Helmholtz, and combinations  

Discrete systems in different configurations 

• von Mises truss  

• Inverted impacting pendulum 

• Parametrically excited pendulum 

• Rigid block 

• Inverted (planar/spatial) pendulums with asymmetric or 

symmetric constraints 

• Simplified model of a guyed cantilever tower 

• Lumped model of a capacitive accelerometer  

• Primary linear system with nonlinear Tuned Mass Damper 
18 



Mechanical/structural systems from macro to nano (2) 

Reduced order models of continuous systems  

• Single/two-mode models of clamped microbeams 

• Single-mode model of a carbon nanotube 

• Single-mode model of a noncontact atomic force 

microcantilever 

• Single-mode model of a suspension bridge 

• Single-mode model of a cable-supported beam 

• Two-mode model of a post-buckled cylindrical shell 

19 



Mechanical/structural systems from macro to nano (3) 

20 

An overview from literature summarizing: 
 

• Nonlinear oscillator and/or mechanical system/model in 

the background 

• Modeling 

• Discrete systems:       ODE of motion  

• Continuous systems:  PDE (or integro-PDE) of motion   

    Reduced order model (ROM)   

• Hamiltonian system  

• Main dynamical/mechanical features: potential and/or phase 

portrait 

• Excitation characteristics 
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Hardening: Duffing oscillator 
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1= overall excitation amplitude 

j/1; j= parameters governing the shape of the excitation 

Archetype of hardening two-well 

symmetric oscillators 

Single-mode nonlinear dynamics of buckled 

beams, magnetoelastic pendulum, and many 

others mechanical systems and structures 

In-well vs Cross-well (escape) dynamics 

Two equal, right and left, homoclinic orbits 

(Lenci and Rega, 2004a) 



22 

Hardening: Helmholtz-Duffing oscillator 

 = measure of asymmetry 

1= overall excitation amplitude 

j/1; j= parameters governing the shape of the excitation 

Archetype of hardening two-well 

asymmetric oscillators 

Single-mode nonlinear dynamics of one 

dimensional structural systems with initial 

curvature (shallow arches, buckled or 

imperfect beams) 

In-well vs Cross-well (escape) dynamics 

Two distinct, right and left, homoclinic 

orbits 

(Lenci and Rega, 2004a) 
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Shallow von-Mises truss  
Planar version of shallow space trusses of 

pyramidal shape (geodesic domes, folding 

structures, carbon nanostructures)  

Prototype of structural systems that may 

fail well below the theoretical limit point  

static load level equal to 

30% of snap-through load 

safe pre-buckling  

potential well  

Compressive stresses lead to unstable bifurcation 

along the nonlinear equilibrium path   

(Orlando et al, 2015) 



Inverted impacting pendulum 
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Phase portrait 

Equation of motion 

A two-well impact system with 

symmetric homoclinic orbits  

of the trivial saddle 

generic periodic  

excitation 

r = coefficient of restitution 

of unilateral constraints  

(Lenci and Rega, 1998) 
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Softening: Helmholtz oscillator 

1= overall excitation amplitude 

j/1; j= parameters governing the shape of the excitation 

Archetype of softening single-well 

asymmetric oscillators (one escape direction) 

Dynamics of systems in mechanics (rolling 

asymmetric ships due to wind effects or 

asymmetric cargo, asymmetric cranes. 

prestressed membranes) and applied sciences 

(bubble break-up, nonlinear waves/ solitons) 

In-well vs Unbounded (escape) dynamics 

One homoclinic orbit 
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(Lenci and Rega, 2003) 
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Softening: Helmholtz-Duffing oscillator 

Softening single-well asymmetric oscillator  

(two unequal escape directions) 

More realistic model of asymmetric ship rolling, 

with a more accurate (third instead of second 

order) approximation of restoring hydrostatic 

potential 

In-well vs (two) Unbounded (escape) dynamics 

One homoclinic orbit of lower hilltop saddle 

 = measure of asymmetry ( = 1        Duffing single-well softening: archetype  

for systems below subcritical pitchfork bifurcation; two heteroclinic orbits) 

1= overall excitation amplitude 

j/1; j= parameters governing the shape of the excitation 
(Lenci and Rega, 2004b) 



Parametrically excited mathematical pendulum 
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● in-well attractors (oscillations) versus out-of-well 

attractors (rotations) 

● of interest for practical applications: energy harvesting 

from rotations excited by sea waves 

two homoclinic orbits of  

the coinciding hilltop saddle  

(Lenci and Rega, 2008) 
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Rigid block 
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   (t+)=r   (t–),  =0,    (t)=Sj jcos(jt+yj) 

  Rocking around the right corner:   Rocking around the left corner: 

  Impact (Newton law):   T=2p/-periodic generic excitation: 

Overturned positions =p/2 

Two heteroclinic orbits 

(Lenci and Rega, 2005) 



Augusti 2-dof model (4D)  
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Modeling  
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Coupled system: 2-dof (1, 2)  

Uncoupled system: 1-dof (u) 

(excitation angle y = 45°) 



Perfect  

Augusti model: 2-dof perfect 

(static load l  .9  

Equilibrium 

paths 

• four symmetric saddles          four unstable postbuckling descending branches  

• minimum point                        stable prebuckling solution 
 

invariant manifolds of saddles separate i.c. leading to bounded solutions that 

surround the prebuckling configuration, and identify the safe region, from  

unbounded escape solutions 



(static load l  .9  Imperfect  

Augusti model: 2-dof imperfect 

safe region bounded by the saddle, corresponding to the unstable black 

equilibrium path, with lowest potential energy among the four; it is much 

smaller than for perfect model 

 

imperfections decrease both the load-carrying capacity of the structure 

and the set of i.c. that lead to safe bounded motions around equilibrium 

Equilibrium 

paths 



Perfect   

Imperfect   

Augusti model: 1-dof 

Two-dimensional projections in 4D 

In 2D  

(excitation angle y = 45°): 

two heteroclinic 

orbits 
 

In 2D 

(excitation angle y = 45°): 

one homoclinic 

orbit 
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Simplified model of a guyed tower  

stabilized by three equal linear springs, k1, 

k2 and k3, inclined at 45° and located at 

120°          two coincident buckling loads 

Horizontal harmonic base excitation Db(t)   

Guyed tower 2-dof model (4D)  

(Orlando et al, 2013) 



Guyed tower: 1-dof  
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Perfect   Imperfect   

safe potential well always bounded by a homoclinic orbit 

besides lowering the stability threshold, geometric imperfection somehow 

reduces the area, i.e. the safety of equilibrium for a given axial load 

1-dof model if excited and with imperfection in one direction of symmetry  
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MEMS device: a capacitive accelerometer (1)  

Spring-mass single d.o.f model 

The device is modeled as a parallel 

plate capacitor with two rigid plates, 

where the upper one is movable 
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• lumped mass → proof mass 

• spring → two cantilever beams 
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Upper electrode 

proof mass 

suspended by 

two cantilever beams 
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Lower electrode 

placed underneath  

the proof mass,  

on a silicon substrate 

Assembled 

sensor 

(Alsaleem 
et al, 2010) 



MEMS device: a capacitive accelerometer (2) 

The unforced, undamped system is 

Hamiltonian with a single 

asymmetric potential well, of 

softening type, with escape direction 

 Two equilibrium points: a center 

and a hilltop saddle 

 Stable and unstable manifolds of 

the hilltop saddle coincide 

 Homoclinic orbit separating in-

well oscillations and out-of-well 

escape 

Potential  well 
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MEMS: thermoelastic electrically actuated microbeam 

microbeam

rigid substrate

electrodes

V t( )
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substrate at x=1 overall excitation amplitude 

•  small electrodynamic force 

•  small visco- and thermo-elastic damping 

  temperature condensation 

(Gottlieb and Champneys, 2005) 

Single-dof model 

γ>0    magnitude of electrostatic force, ≈ square of constant (DC) input voltage 

Ω   frequency of periodic electrodynamic force 

ηj>0    

Ψj   

relative amplitudes and phases of j-th harmonic of electrodynamic force, 

i.e., oscillating (AC) voltage 



MEMS: imperfect microbeam 
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The arched profile:  

from imperfections due to  

microfabrication (geometrical defects, 

residual stresses, etc.) 

deliberately microfabricated to exploit 

bistability features of curved beams 

(MEMS switches and microrelays) 



Imperfect microbeam: reduced order modeling (1)  

• double asymmetric well with escape  

(for bistable static configuration) 

via combined Galerkin and Padé approximation  

 

• single well with escape  

(for monostable static configuration) 
 via combined Ritz and Padé  

final model from experimental-based parameter 

identification also accounting for dynamic integrity 

concepts  
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Single-mode ROMs, with different approximate  

modeling of potential well 

 

(Ruzziconi  
et al, 2013a) 

principal 

well 



Imperfect microbeam: reduced order modeling (2)  

Two-mode Galerkin ROM, to simulate also 1/3 second symmetric 

superharmonic  
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 due to orthogonality of shape functions ϕ1 and ϕ2 (first and second 

symmetric mode shape) the two equations are decoupled in linear terms  

 setting Y2 =0, it reduces to the a single-mode Galerkin model 

(Ruzziconi et al, 2013b) 

with numerical evaluation 

of electric potential 

integrals 

 



NEMS: imperfect carbon nanotube (1) 

single well with escape  

(Galerkin and Padé approximation)  

Single-mode ROM  

(Ruzziconi  

et al, 2013c ND) 
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Geometrical NL 

Electric force term  



NEMS: imperfect carbon nanotube (2)  

Single-mode ROM  

(Xu  et al, 2016 AM) 

PDE motion 

with electric force term 

• double asymmetric well with escape  

(for bistable static configuration) 

via combined Galerkin and Padé approximation  

 



G. REGA, V. SETTIMI 

(Hornstein and Gottlieb,2008) 

ATOMIC 

INTERACTION 

DAMPING 

VERTICAL 

EXCITATION 

HORIZONTAL 

EXCITATION 
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aT 

hT g 

1. BEAM MODEL (Crespo da Silva 1979): two 

coupled PDE (longitudinal and transverse) + BC 

2. INEXTENSIBILITY CONSTRAINT: single 

PDE  (vertical) + homogeneous BC 

3. MODAL dynamic SYSTEM:  first mode 

approximation (Galerkin method)   single  

ODE  

E = Equilibrium solution    SH = Hilltop Saddle 

BOUNDED SOLUTIONS 

HOMOCLINIC ORBIT 

UNBOUNDED SOLUTIONS 
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E  SH 

Hamiltonian system 

Noncontact atomic force microcantilever  



Parametrically excited cylindrical shell (2-dof model)  

Modal coupling associated with strong 

quadratic and cubic nonlinearities and 

deleterious effects of compressive stresses  

P0     axial static pre-load 

P(t)   axial harmonic load 

Two-mode ROM: linear mode and associated 

axisymmetric mode with twice the number of 

waves in axial direction as the linear mode 
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PDE: Donnell nonlinear shallow shell  

(Goncalves and Del Prado, 2005) 
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Parametrically excited cylindrical shell (2-dof model)  

-8 -4 0 4 8

11

-2
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-1.2

-0.8

-0.4

0

0.4

 0
2

post-buckling response path 

(0 , static load) 

five equilibrium points for 0=0.4     

(two heteroclinic and two homoclinic orbits)  

Pre-buckling  

potential well 

Two post- 

buckling  

wells 

Instability of pre-loaded shell resting in a pre-buckling potential well 

Unstable post-buckling behavior: when the static load lies between buckling 

load and the minimum post-critical load a three well potential is obtained 

Several solutions coexist in the pre- and two post-buckling wells in addition 

to large cross-well motions 
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=0.10; =5, =0.02, =0.2, r=0.95; xmin/max=.28, ymin/max=.2, 

1/9 IF, “true” safe basin 
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=0.15 

2/9 
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=0.20 

3/9 
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=0.25 

4/9 



62 

=0.30 
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=0.35 

6/9 
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=0.40 
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=0.45 

8/9 



66 

=0.50 
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