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Outline

1. Global safety targets and related dynamical
aspects

* In operating conditions
e towards extreme conditions

2. Using dynamic integrity

3. An overview of mechanical/structural systems
addressed Iin the integrity perspective, from
macro to nano



Aspects of interest in a global safety perspective
Identifying global safety targets and related dynamical

aspects (as regards variations of both i.c. and control parameters)
(i) in operating conditions —> competing attractors robustness

verifying the relative robustness of coexisting bounded attractors of
technical interest and the competition of their basins

(ii) towards extreme conditions — basin erosion and system escape

analyzing the erosion of the governing in-well safe basin
encompassing different solutions, up to final escape of the response

Evaluating the safety
 selecting proper integrity measures

Improving the safety
« Implementing proper control techniques



Operating conditions: attractor robustness (1)

Bistability: possibility to jump to a coexisting bounded attractor
« competition of resonant and non-resonant attractors in frequency- or
force-response curves of single-dof oscillators

Undesirable, e.g., iIn AFM to improve imaging resolution:

 nearly identical vibration amplitudes at two different distances from
sample can lead to hunting of feedback controller between them to
maintain constant amplitude, which creates serious imaging artifacts

Desirable, e.g., In MEMS for activating a jump-driven hysteretic
loop between competing responses:

 if used as filters —> interval with large oscillations bounded by
ranges with small ones to be realized

 if used as resonant sensors —> lower (upper) oscillations expected
before (after) detection of a physical parameter

Multistability: versatile system behavior valuable in some applications



Operating conditions: attractor robustness (2)

In global terms: the relative size of competing basins

safe jump from given attractor to a bounded coexisting one depends
on topology of basins, which must be adjacent to each other (one
generally surrounding the other)

Jump between pairs of a variety/multiplicity of coexisting solutions:

 with different periodicity competing with each other in same well

« In different wells (or in-well vs cross-well) of single-dof multi-well
systems

 with different mechanical meaning competing with each other in
multi-dof (and multi-well) systems

Analyzing relative strength of competing attractor-basins via
robustness profiles through different integrity measures
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Competing attractors: e\
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Extreme conditions: system escape ........
Systems with escape corresponding to different physical failures:

ship capsizing rigid block overturning dynamic buckling
of slender structures

s

MEMS dynamic pull-in AFM jump-to-contact
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..... Via basin erosion
Focus on

Overall safe basin of bounded responses, irrespective of which one
Is specifically realized

« Basin size and compactness (integrity) for fixed control
parameters

« Features of erosion with a varying control parameter, which
meaningfully affect the rate of safety loss before escape

Underlying topological mechanisms to be investigated in terms of
governing saddles and associated invariant manifolds whose homoclinic
or heteroclinic intersection triggers:

e the start of erosion

* its peculiar and possibly dramatic features



Models (mech-math), phase space, potential

an overall picture of dynamical problems
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Erosion profiles

e integrity measures permit to study how the ¢ 1.M.
structure reliability changes when
parameters vary

e crosion profiles: integrity measure as a
function of excitation amplitude

e Irrespective of safe basin definitions,
exact/approximate information from:

potential well which triggers the erosion

» then erosion proceeds with complex
Involve secondary homo/heteroclinic bifurcations

 erosion ends with the onset of out-of-well phenoména which may
represent the physical “failure” >



Using dynamic integrity

Dynamic integrity referred to for
(1) analyzing global safety
(i) controlling global safety

(111) Interpreting and predicting experimental
behaviors through theoretical models
* Identifying unknown parameters
 detecting thresholds of applicability

(iv) formulating novel design criteria which account
for robustness and erosion, as well as uncertainties



Overall aims

Investigating dynamical integrity
of different nonlinear mechanical oscillators

e discussing specific mechanical issues
e discussing dynamical issues

e discussing control issues

different systems ®m) different dynamical phenomena

Robustness/erosion profiles for
« discrete or continuous systems/models

 at macro or micro/nano scale



Mechanical and dynamical issues

Systems

e Hardening vs softening

e Symmetric vs asymmetric
e Smooth vs non-smooth

e Resonant vs non-resonant

Phenomena

e various “failure” : capsizing, overturning, pull-in, jump-to-
contact, ........

different integrity measures

theory vs experiments

uncontrol vs control (of different, local or global, nature)
harmonic vs stochastic excitation



Mechanical/structural systems from macro to nano (1)

Archetypal oscillators: Duffing, Helmholtz, and combinations

Discrete systems in different configurations

e von Mises truss

* Inverted impacting pendulum

« Parametrically excited pendulum
* Rigid block

* Inverted (planar/spatial) pendulums with asymmetric or
symmetric constraints

« Simplified model of a guyed cantilever tower
« Lumped model of a capacitive accelerometer
* Primary linear system with nonlinear Tuned Mass Damper



Mechanical/structural systems from macro to nano (2)

Reduced order models of continuous systems

 Single/two-mode models of clamped microbeams
* Single-mode model of a carbon nanotube

« Single-mode model of a noncontact atomic force
microcantilever

« Single-mode model of a suspension bridge
« Single-mode model of a cable-supported beam
« Two-mode model of a post-buckled cylindrical shell



Mechanical/structural systems from macro to nano (3)

An overview from literature summarizing:

 Nonlinear oscillator and/or mechanical system/model in
the background

* Modeling
 Discrete systems: ODE of motion
« Continuous systems: PDE (or integro-PDE) of motion
Reduced order model (ROM)

« Hamiltonian system

« Main dynamical/mechanical features: potential and/or phase
portrait

e EXcitation characteristics



Hardening: Duffing oscillator

Archetype of hardening two-well ey
symmetric oscillators :

hilltop
saddle

Single-mode nonlinear dynamics of buckled V|

beams, magnetoelastic pendulum, and many | \/ \/
others mechanical systems and structures :

In-well vs Cross-well (escape) dynamics
Two equal, right and left, homoclinic orbits

.. . X X3 o0 7/1 i .
X+5§(—§+7=57/(a)t)=57/1 —sin( jot+Y
=17y

gy,= overall excitation amplitude

yj/Y1; ;= parameters governing the shape of the excitation
(Lenci and Rega, 2004a) 21



Hardening: Helmholtz-Duffing oscillator

Archetype of hardening two-well
asymmetric oscillators 04

_—{].4

Single-mode nonlinear dynamics of one : saddl :
dimensional structural systems with initial "~ 3

curvature (shallow arches, buckled or \/\/

Imperfect beams) 03] o3

In-well vs Cross-well (escape) dynamics
Two distinct, right and left, homoclinic
orbits

- 3 4 1 = ;:,r : .
X+ &0x — ax — ;(a I+ 2 =7 Z — sin(js + ¥;)

L J,-lil

G = measure of asymmetry
gy,= overall excitation amplitude
yj/Y1; \Pj: parameters governing the shape of the excitation

(Lenci and Rega, 2004a) 22



Shallow von-Mises truss

Planar version of shallow space trusses of | Fosintae
pyramidal shape (geodesic domes, folding
structures, carbon nanostructures)

Prototype of structural systems that may
fail well below the theoretical limit point

0.3

W, +28W,  +W(L—3w, +3/2W? )—3/2w? (1—w, )+ 1/2w® =
F(Sln (Qr) ZFJ/Fsm(JQrﬂ) )]

Compressive stresses lead to unstable bifurcation ~ \/
along the nonlinear equilibrium path P S s e e

0.2 —

<

0.1 —

/ static load level equal to
v // 30% of snap-through load
N safe pre-buckling
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Inverted impacting pendulum

Equation of motion
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Archetype of softening single-well
- . . . 02 [
asymmetric oscillators (one escape direction) ¢

hilltop

Dynamics of systems in mechanics (rolling s : saddie
asymmetric ships due to wind effects or :
asymmetric cargo, asymmetric cranes. :
prestressed membranes) and applied sciences -t
(bubble break-up, nonlinear waves/ solitons)

In-well vs Unbounded (escape) dynamics
One homoclinic orbit

X+0.1X — X+ X? =7/(a)t)=7/1§ ﬁsin( jot+'¥,

: — 77
J=L 7/1 0.8 /M/Nﬁ %f//
(b) -0.4 X 16

gy,= overall excitation amplitude

yj/Yli ‘V;= parameters governing the shape of the excitation _
(Lenci and Rega, 2003) 25



Softening single-well asymmetric oscillator

(two unequal escape directions) i

o | :
More realistic model of asymmetric ship rolling, /& :
with a more accurate (third instead of second : \:
order) approximation of restoring hydrostatic 7 ;T
potential .

In-well vs (two) Unbounded (escape) dynamics
One homoclinic orbit of lower hilltop saddle q

oo,
. .. N o
F4+e0x+ox+(0— Dx* = x> = 7 Z — sin(js + ¥;)

—1 /1

Jj=1

-1.5 A « R B o= O B i T {" il

(b) -1.5 X 19

o = measure of asymmetry (c = 1 — Duffing single-well softening: archetype
for systems below subcritical pitchfork bifurcation; two heteroclinic orbits)
gy,= overall excitation amplitude

yj/yl, ‘Pj— parameters governing the shape of the excitation (Lenci and Rega, 2004b) 26
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___________
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excitaton \ two homoclinic orbits of
~the coinciding hilltop saddle

7

& rotarion

_woscillation

A

/
yVa
_2\‘\:‘%2 3
N

X+0.1X+[1+ pcos(2t)]sin(x) =0

e in-well attractors (oscillations) versus out-of-well
attractors (rotations)

e of interest for practical applications: energy harvesting

from rotations excited by sea waves (Lenci and Rega, 2008)



Rigid block

%555

Two heteroclinic orbits
Rocking around the left corner: Rocking around the right corner:

H+3p—p-atf1)=0, ¢<0,  G+3p—pra+ =0, ¢>0,
Impact (Newton law): T=2 7/ co-periodic generic excitation:
¢ (t)=ro(t), ¢=0, At)=2; v,cos(Jat+ )

.. .
(Lenci and Rega, 2005) Overturned positions ¢ tr/2

28



perfect system

under horizontal
harmonic base excitation

geometrically
Imperfect system

(Orlando et al, 2011) undeformed deformed
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Uncoupled system: 1-dof (u)

(excitation angle y = 45°)




Perfect (staticload A =0.9)
1.5+
\ 1-
. A ,
' ,r' Uncoupled
, 0.3
Ls |
Equilibrium | 0 o
aths . L
-0.3
-1
154

-1.5 -1 -0.5 0 0.5 1 1.5

01
 four symmetric saddles «— four unstable postbuckling descending branche:
* minimum point <«— stable prebuckling solution

Invariant manifolds of saddles separate i.c. leading to bounded solutions that
surround the prebuckling configuration, and identify the safe region, from
unbounded escape solutions



Imperfect H\(Static load . = 0.9)

\

2

ls

Equilibrium ;| 02
paths NN -

05

-

0-

safe region bounded by the saddle, corresponding to the unstable black
equilibrium path, with lowest potential energy among the four; it is much
smaller than for perfect model

Imperfections decrease both the load-carrying capacity of the structure
and the set of i.c. that lead to safe bounded motions around equilibrium



Perfect

Two-dimensional projections in 4D

1

92 0

-0.5

In 2D

(excitation angle y=45°):

two heteroclinic

orbits

In 2D

=

(excitation angle y=45°):
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orbit
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du/ dt

du / dt
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Simplified model of a guyed tower
stabilized by three equal linear springs, ki,
k, and ks, inclined at 45° and located at
120° —> two coincident buckling loads

Horizontal harmonic base excitation D (t)

” 2 2 2 2 4 . 3 3 .2 2y 223 L2 .
1 (1 =2ty — 205 +ugus iy )+ vy (ugey — g v, —gies )+ uey (aeg —vigeey ) + 05 (rey — 0] ) + 20y 15000085 +

fi = 5 r J\"IZ = TE - 13 f H; 5 + 29:1 |!1;?1 (_] +“12 +“§)2 =
v 3AL27 1“.'2—»"..;"3:.*1 + 25 1,‘."2+1..-'3H1 + 145 Q v1i—wy —u; 2

- 2
Fcosgsinr(—1+u; +u3 )",

- 2 _ .2 2.2 4 3 S 3y, 2 2 -2 3 2.
iy (L — 25 — 20y +weguey + iy )+t (Qg2i — 18] 0y — 2285 ) + 285 (5 — 2y 1o ) + 2] (285 — 243 ) + 20005044205 +

> (V2 J2 4 2
— - 4 +——
320 L 3407 2 — 2,

a ;
4 2 —1,-"::{:’1 + 24 V2t «-.,,Eul + 4

1 14+
02

2&, . 2 242 r . 2, 242
+ ty [(=l+u; +u3) = Fsmesmr(—1+u; +u3).

Q (Orlando et al, 2013)

f 2 2
V1= —u5



1-dof model if excited and with imperfection in one direction of symmetry

U(l_u2)+uu2 25 . 4 (\/z_ulo_\/z_u_\/2"'2”10_\/2"'2“} 1 u Z:Fsin(r)

+—=U+ —
(1+u?f Q@ 3’ 2—U V2+2u 0% J1_y
Perfect Imperfect
- . (static load
03 — ( . 03— C A= 07)

u u

safe potential well always bounded by a homoclinic orbit

besides lowering the stability threshold, geometric imperfection somehow
reduces the area, I.e. the safety of equilibrium for a given axial load



MEMS device: a capacitive accelerometer (1)

Upper electrode

proof mass
suspended by The device is modeled as a parallel

plate capacitor with two rigid plates,
where the upper one is movable

Spring-mass single d.o.f model

two cantilever beams
Lower electrode
* lumped mass — proof mass

placed underneath . , . N
the proof mass spring — two cantilever beams

on a silicon substrate

Assembled
sensor

Vbc
woe R

| Y [Voc +Vac cos(Qt)]
(Alsaleem Y MX + CX + kKX = A 2(d —x)?

etal, 2010)



MEMS device: a capacitive accelerometer (2)

Potential well

0.0010

The unforced, undamped system is

s omes] Hamiltonian with a single
> i i . .
= g asymmetric potential well, of
g | : softening type, with escape direction
o005 | ; hill-tep| [ 2 2
lintersection center saddle | | V(x) =k X" €AV
-0.001?4;)0 ‘xe:;-29.§8_42(‘)0 ‘ &:9'77:"; — 250 s 3?'94?5 450 I 2 2(d - X)
| - displacément () ' |
Phase portrait
o | | ® Two equilibrium points: a center
I and a hilltop saddle
E oo -~ = Stable and unstable manifolds of
£ 0004 -F . . .
S o i the hilltop saddle coincide
- ~ ® Homoclinic orbit separating in-
N3 well oscillations and out-of-well
| -4:0.0 | | | -26.0 | | ""‘ | | | 26.0 | 46.0 ] escape
displacement (zm)



electrodes

x_j microbeam
I i V(1) I

« small electrodynamic force
« small visco- and thermo-elastic damping

— temperature condensation

Single-dof model
/4

x+ax+,8x =3 — X+ -

/(1 X)

substrate at x=1

(Gottlieb and Champneys, 2005)

().LE 0022 05687

))

v

E % (t)
-0.4 |

‘-012\ T T T T T T )‘( T T T T T T T 0\'8

N

nZl(n,/nl)Sln(JQH‘P)

(1-%)?
overall excitation amplitude

v>0  magnitude of electrostatic force, = square of constant (DC) input voltage
Q frequency of periodic electrodynamic force

n>0 relative amplitudes and phases of j-th harmonic of electrodynamic force,

p I.e., oscillating (AC) voltage



MEMS: imperfect microbeam
The arched profile:

from imperfections due to
microfabrication (geometrical defects,
residual stresses, etc.)

deliberately microfabricated to exploit
bistability features of curved beams
(MEMS switches and microrelays)

Y, VJ /,17(217\
Ay B e,
d

VDC“; J

Viac ©0

s

/

: 2 1 1
Geometrical NL & =71 — ﬁ‘HL (% (V)" +v' v, )d:

PDE motion

r.n

.o . \V 1 y .
V+ §V+V T (V +Yo ) — Fe Electrostatic+ o (Ve +V,e Cos(Q ’[)2

electrodynamic e = -
actuation (d+v(z,t)+Y,(2))




Imperfect microbeam: reduced order modeling (1)

Single-mode ROMs, with different approximate
modeling of potential well

* double asymmetric well with escape
(for bistable static configuration)

via combined Galerkin and Padé approximation

Y 4+ 0.17247Y — 0.325217 — 256.704Y — 445.54Y 2 + 2866.89Y > + (1.2 + Vi cos(0t))?

0.0168156 + 0.123945Y" + 0.353178Y'2 + 0.461580Y "% + 0.233094Y*

60r

WY)

40¢

principal
well

-0.

1.44(0.596 + Y6

single well with escape

(for monostable static configuration)
via combined Ritz and Pade

final model from experimental-based parameter

identification also accounting for dynamic integrity
concepts

7 +0.085T +1564.41F 1033 407> + 209.72F° — — 3924

= 0,

V(Y)

(Ruzziconi
etal, 2013a)

S 00267 0T HVac cos(@n)’ =0



Imperfect microbeam: reduced order modeling (2)

Two-mode Galerkin ROM, to simulate also 1/3 second symmetric
superharmonic

Y, +0.085Y, +157895Y, —104109Y* + 211.50Y,> —960.38Y,Y, +37.34Y,°Y, — 322667,
+193650Y,Y,? +11387Y,} +1.85135 W1-(0.7 +Vac cos(Qt))" = 0

Y, +0.085Y, +1436680Y, —1205870Y,2 +1770350Y,2 — 645335Y,Y, +193650Y2Y,
L —480.19Y2 +34160Y,Y2 +12.45Y,° +1.85135 ¥2-(0.7 +Vac cos(Q2t))* =0

with numerical evaluation ~ ¥1=[;¢ (=)0(z)dz.  W2=[l¢ (=)r(z)d:
of electric potential
integrals r(:) 1

ld+v (2)+y (2)+19 ()+7 0 ()

" setting Y, =0, it reduces to the a single-mode Galerkin model

" due to orthogonality of shape functions ¢, and ¢, (first and second
symmetric mode shape) the two equations are decoupled in linear terms

(Ruzziconi et al, 2013b)



NEMS: imperfect carbon nanotube (1)

(Ruzziconi Y
et al, 2013c ND) IA -

VDC“; ﬁ

Vac o @

PDE motion V+&EV+VY +a (V'+y,")=F

1 .
Geometrical NL o =n— ,{T;L (% (1,~f ]2 49 _1'1;.')0’:
Vpe + Vac cos(£21))2
Electric force term Fe= (Ve + Vac cox(€21))
A= —30)(1 —v — 3o+ 2R)(cosh=! (1 + 12402
Single-mode ROM 400
- - V.I'(YJ b
single well with escape o0
(Galerkin and Padé approximation) §
2004
¥ +0.01Y + 1390.2Y — 11570.8Y? + 36392Y" 100-
0.26577 v Ve cos( 0N — 0 ]
(056866 — Y)2 b + Vaccos(21)" = 04 02 00 o2 04 06



NEMS: imperfect carbon nanotube (2)

(Xu etal, 2016 AM) ‘_______ — 1
vbo —
VAC@
d

PDE mOtion Vo —— Woix 1) Wik B v
with electric force term Z
0w . 02w R ow - J’1 '(QW)Z ) (BW dwg) ] 0w d*w,
ot oz Car e ) \ax ox dx )| | [a T
E = (Vpc + Vaccos(Qt))? [7e
e — > 350(](1(};
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Noncontact atomic force microcantilever

(Hornstein and Gottlieb,2008)

1. BEAM MODEL (Crespo da Silva 1979). two
coupled PDE (longitudinal and transverse) + BC

2. INEXTENSIBILITY CONSTRAINT: single
PDE (vertical) + homogeneous BC

3. MODAL dynamic SYSTEM: first mode
approximation (Galerkin method) —  single
ODE
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Modal coupling associated with strong
quadratic and cubic nonlinearities and
deleterious effects of compressive stresses

PDE: Donnell nonlinear shallow shell
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Two-mode ROM: linear mode and associated
axisymmetric mode with twice the number of
waves In axial direction as the linear mode
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Instability of pre-loaded shell resting in a pre-buckling potential well

Unstable post-buckling behavior: when the static load lies between buckling
load and the minimum post-critical load a three well potential is obtained

Several solutions coexist in the pre- and two post-buckling wells in addition
to large cross-well motions
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post-buckling response path five equilibrium points for I';)=0.4

(I, , static load) (two heteroclinic and two homoclinic orbits)
46



47



v=0.10; ©=5, $=0.02, 0=0.2, r=0.95; X. . =+0.28, y, |~ =+0.32,

IF, “true” safe basin 1/9




























