Universidade de São Paulo (USP) Escola de Engenharia de Lorena (EEL) Engenharia Química

Ciclo do Ácido Cítrico

Elisson Romanel

Fontes Bibliográficas

Cap. 19/20

Cap. 16/19

Cap. 21/22

artmed

Catabolismo na Respiração Celular

PB Campbell (Cap. 17); PB Lehninger (Cap. 16)

ATP

Produção de acetil-CoA (acetato ativado)

Descarboxilação oxidativa do piruvato

PB Lehninger (Cap. 16)

Reações do ciclo do ácido cítrico

The Nobel Prize in Physiology or Medicine 1953

Hans Adolf Krebs Prize share: 1/2

Fritz Albert Lipmann Prize share: 1/2

Ciclo de ácido tricarboxílico (TCA)

Ciclo de Krebs

Hans Krebs, 1900–1981

The Nobel Prize in Physiology or Medicine 1953 was divided equally between Hans Adolf Krebs "for his discovery of the citric acid cycle" and Fritz Albert Lipmann "for his discovery of co-enzyme A and its importance for intermediary metabolism".

Estrutura e origem da mitocôndria

Estrutura e origem da mitocôndria

Estrutura e origem da mitocôndria

... os primeiros organismos aeróbicos ... bactérias ...

Reações do ciclo do ácido cítrico

oxidativa

nível do substrato

PB Lehninger (Cap. 16)

Produtos de Ciclo de Krebs

Origem do ciclo do ácido cítrico

Função do Ciclo de Krebs no Metabolismo (Anfibólica)

Produção de ácido cítrico

Refrigerantes

Sabor: azedo ou frutas

Asper

Antioxidante - conservação do sabor

Produção de ácido cítrico

Altos níveis de citrato-sintase bacteriana

Liberado no solo

Plantas transgênicas

- Secretam 6 x
- Solos com 10 x Al³⁺
- Plantas resistentes

Regulação do ciclo do ácido cítrico

Regulação do ciclo do ácido cítrico

Papel central do ciclo do ácido cítrico

Cadeia transportadora de elétrons e Fosforilação oxidativa

Fosforilação Oxidativa

 $\begin{array}{c} ATP\text{-sintase} \\ (F_0F_1) \end{array}$

Membrana externa

Ribossomos

/ Livremente permeável a pequenas moléculas e íons

Membrana interna

Impermeável à maioria das pequenas moléculas e íons, incluindo H⁺ Contém:

- Transportadores de elétrons da cadeia respiratória (Complexos I-IV)
 ADP-ATP-translocase
- ATP-sintase (F₀F₁)
- Outros transportadores de membrana

Matriz

- Contém:
- Complexo da piruvatodesidrogenase
- Enzimas do ciclo do ácido cítrico
- Enzimas da β-oxidação de ácidos graxos
- Enzimas de oxidação de aminoácidos
- DNA, ribossomos

• Muitas outras enzimas • ATP, ADP, P_i, Mg²⁺, Ca²⁺, K⁺

 Muitos intermediários metabólicos solúveis

- Início da transdução biológica de energia
- Convoluções da membrana interna (MI)
- > 10.000 ATP-sintase e sistemas de transferência de elétrons
- Permeabilidade seletiva da MI segrega
- Transporta piruvato, ácidos graxos e a.a.

membrane

Albert Lehninger 1917-1986

PB Lehninger (Cap. 19); PB Campbell (Cap. 20)

Matriz (lado n)

Complexo I = bombeador de prótons que utiliza a energia da transferência de *e*

Complexo I - NADH:ubiquinona-oxidorredutase

Complexo I - NADH: ubiquinona-oxidor redutase

Carrega *elétrons* em cadeias de transferência de e associados a membrana

42 proteínas

Complexo II – Succinato-desidrogenase

Reduz a frequencia de perda de *e* para fora do sistema e produção de espécies reativas de oxigênio (EROs): peróxido de hidrogênio (H_2O_2) e radical superóxido (O_2^-)

PB Lehninger (Cap. 19)

Complexo III – Ubiquinona:citocromo c-oxidorredutase

QH₂ é oxidado a Q e duas moléculas de citocromo c são reduzidas

PB Lehninger (Cap. 19)

Complexo IV – citocromo c-oxidase

Euk = 13 subunidades, Pro = 4 subunidades

Carrega *e* do citocromo c para o oxigênio molecular, reduzindo-o a H₂O

PB Lehninger (Cap. 19)

Fluxo de elétrons e prótons através dos 4 complexos da cadeia respiratória

Fluxo de elétrons e prótons através dos 4 complexos da cadeia respiratória

Regulação da Fosforilação Oxidativa

A evolução da FO proporcionou um grande aumento na eficiência energética do catabolismo

Process	Direct product	Final ATP
Glycolysis	2 NADH (cytosolic)	$3 \text{ or } 5^*$
	2 ATP	2
Pyruvate oxidation (two per glucose)	2 NADH (mitochondrial matrix)	5
Acetyl-CoA oxidation in citric acid cycle	6 NADH (mitochondrial matrix)	15
(two per glucose)	2 FADH ₂	3
	2 ATP or 2 GTP	2
Total yield per glucose		30 or 32

Formação de espécies reativas de oxigênio na mitocôndria

EROs podem provocar sérios danos, reagindo com enzimas, lipídeos de membranas e ácidos nucléicos

Mt produzem até 4% de O⁻₂

Superóxido dismutase

 $2 O_2^{-} + 2H^+ = H_2O_2 + O_2$

Origem e efeitos das mutações em mitocôndrias

