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Outline

Main stability concepts at a glance
Local versus global safety in statics and dynamics

. Solution/attractor robustness in phase space; the
relevant ‘safe’ basins (through an archetypal model)

. Solution/attractor robustness and basin

compactness in control parameter space (through an
archetypal model)

Robustness/eraosion profiles

Moving from theoretical to practical stability



Achieving load carrying capacity

oad carrying capacity: an old issue associated with the
concept of loss of stability

Stability: to be discussed by also considering the effects
of (static or dynamic) imperfections, always present in
nature/technology — A system must be able to sustain
changes in Dboth Initial conditions and control
parameters, without changing its desired outcome

Robustness: a fundamental issue in analysis and design

Dynamic integrity: a global safety concept essential to
secure practical stability of systems

Historical concepts and contributions at a glance ........



Leonhard Euler (1707-1783)

e [irst fundamental contribution:
Euler buckling load of a column

e | oss of load carrying capacity identified as
the system instability occurring at the
local bifurcation point of an equilibrium path
when changing a control parameter (axial
Ioad) — talking, of course, in modern language

e A substantially static notion of stability



Aleksander Lyapunov (1857-1918)

e Rigorous formulation within a more
dynamically oriented notion of stability

e |yapunov (or classical) local stability roughly

states that under
Infinitesimal changes in initial conditions
the system must keep the reference response

e Major role In the solutions of a variety of
engineering problems ensuing from modern
technological developments



Warner Koiter (1914-1997)

Within the mechanical community,
looking at the effects of changes of
control parameters:

o Koiter realized that model imperfections are
crucial in lowering the critical load

e Due to imperfections, the branching point becomes a snap
point, which (in the dangerous cases) occurs at a lower load
threshold

e Dynamical character of stability was clear, but
the reference framework was still ‘static’



Structural stability

e [ater on, bifurcation theory provided a
mathematical background to this engineering
Intuition:

« transcritical and pitchfork bifurcations (branching) are

structurally unstable (i.e., unobservable in the real
world, unless somehow forcing them) and become
saddle-node  bifurcations (snap) after system
perturbations (imperfections in mechanical language)

e Structural stability: studying the effect of
perturbations of the system with respect to
parameters and not w.r.t. initial conditions, as
In classical local stability



Dynamic stability

e \When ‘flutter’ or ‘galloping’
of real systems came Into
play, dynamics definitely
entered the concept of loss of
stability

® In bifurcation theory
language, the Hopf
bifurcation was ‘discovered’
and experimentally observed,
according to the fact that it is
structurally stable

C. HORIZONTAL GALLOPING
OR SNAKING



From theoretical to practical stability

Classical stability: small changes of initial conditions
do not affect substantially the system response

Key point: how small have to be perturbations?

From a mathematical point of view the magnitude of
perturbations is not important (e.g. 10-°0 is ok)

But from a practical point of view It is important, since In
our real world imperfections have a finite magnitude
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L_ocal (or classical, Lyapunov) stability Is not enough
for practical applications !!



Michael Thompson (1937-)

Practical stability of attractors
to be addressed in an
actually dynamical environment

Around the 90s:

e By considering a global approach, notion of
dynamic integrity introduced, which is
fundamental for properly pursuing the safety
of structures

e Basins of attraction — and their variation with
a varying control parameter - become
fundamental tools



Solution robustness in phase space

Properly complementing the solely local theoretical
character of the classical concept of stability with a
global practical one

Already In the static case:

approaching a (local) bifurcation, the basin of reference
solution shrinks to zero and becomes unsafely small,

although the solution 1s still stable in the sense of
Lyapunov

= pursued response non-robust with respect to finite

dynamic perturbations, though being Its basin integer
(no fractality)



An archetypal asymmetric model

e Single-dof mechanical model
typically used to illustrate
post-buckling behavior and
Imperfection sensitivity of
structural systems liable to
unstable buckling

e (= “static” imperfection

e No damping and no dynamic excitation
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Equilibrium points and critical loads
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Global safety

1]

e Phase portrait
=005

g=0.01

o

® ‘basin of attraction’ of equilibrium point

e The larger the area, the larger the ability of the
system to support finite changesini.c. —

the larger the safety of the structure



Basin and actual critical load reduction

e Area shrinks as approaching °°
critical load, with or without |
‘static’ Imperfections, and |
‘rapidly’ becomes too small for *|
real world, where finite |
dynamic imperfections exist
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Area decrement without imperfections

In parameter space 1
(4=0) :

Let’s accept a reduction
to 10% (very low !) of GIm

initial area (GIM): : to Thompson
then p; i1s 59% of pE\ /—\

- = 0

From Euler _

® |n the neighbourhood of pg the safe region is merely
residual and unsafe —— practical p; (‘Thompson’)
critical load much less than pg (Euler)



Area decrement with ‘static’ impertfections

Same qualitative | \ \
behaviour

(a=0)
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GIM-
practical p; 1
(‘Thompson’)
critical load also .
lower than py o T b‘ Looloon  0.dp.=p;
(Koiter) w

For g = 0.02 s, From Koiter From Euler
to Thompson to Koiter



With dynamic excitation

e \What happens when a dynamic excitation Is
applied, e.g., g+q, sin(wt) ?

— (g +q,sin(awt)) |cos(S) =0

1

p+cp—psin(f)+ _1_ J1+asin(p)

® The phase space augments of one dimension, but this is not

a problem, and can be overcome, e.g., by considering
Poincaré sections

e Also damping is added for realistic engineering analysis



Periodic solutions
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® The saddle-node (SN) decreases by Increasing q,

e A period doubling (PD) reduces the stability
threshold (above PD,,,, the solution may jump out of well)



Stability threshold with dynamic excitation
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Dynamic excitation amplitude

® [nteraction between static (p) and dynamic (q,) loads
causes meaningful loss of load carrying capacity

(w.r.t. Koiter one)



Fractalization
4,=0.00
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p
Existence/competition of more attractors

Basin of attraction no longer safe against small but finite
Incidental changes of I.c.

Basin Is eroded and loses Its compactness/integrity

Load carrying capacity depends on practical stability
under imperfections/perturbations



Mayjor effects of dynamic excitations

e Attractors are no longer equilibrium points, but
periodic, quasi-periodic, ... chaotic orbits

e The topology of the basins of attraction changes
significantly; fractality commonly appears

e Dynamic integrity:
— a major role
In determining the
load carrying capacity ..




Practical stability under imperfections/perturbations

W.r. to Imperfections:
solution/attractor robustness and basin properties
Static solution: robust if large safe basin

Dynamic attractor: - robust if large and compact (i.e. integer) basin
- non-robust If large but fractal basin

W.r. to Imperfections:
how solution/attractor robustness and basin compactness in phase
space evolve with a varying control parameter
Static solution: robustness profile of safe basin
Dynamic attractor: - robustness profiles of (integer) competing basins
- erosion profile with integrity reduction

Robustness profiles: size reduction/increase of integer basin vs competing one

Erosion profiles: reduction of basin integrity, to be explained also in terms of
global bifurcation phenomena (homo/heteroclinic tangencies, crises, etc.)
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Robustness profile

Increasing axial load,
fixed dynamic excitation
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Erosion profile

Increasing dynamic excitation,
fixed axial load
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Hints for design

e Koiter load can be determined upon fixing the
value of the expected static imperfection g

e Thompson load can be determined upon fixing
the acceptable minimal integrity

(which corresponds to fixing the maximum allowed change in i.c.
that can be safely supported by the system; in other words, this
corresponds to fixing the “‘safety factor”)

e Both Koiter and Thompson theories are thus
‘applicable’ with the knowledge of q and GIM



A summary interaction picture

* dynamic excitation
reduces Kolter practical
critical load

» static axial load
reduces Thompson
escape dynamic
excitation

03 0.8

Interaction of static axial load and dynamic excitation

Dangerously residual robustness/compactness occurs
well before disappearance of solution/attractor



Theoretical vs practical stability

end of robustness/erosion profile corresponds to attractor
disappearance, i.e. to loss of stability

.M. ¢

governing parameter
>

threshold computed dynamic threshold easily
(approximated) by a Integrity Is computed by local
local (global) necessary stability analysis

bifurcation analysis



