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14.00 -14.45 
Historical Framework  - A Global Dynamics Perspective in the Nonlinear 
Analysis of Systems/Structures 

15.00 -15.45 Achieving Load Carrying Capacity: Theoretical and Practical Stability 

16.00 -16.45 Dynamical Integrity: Concepts and Tools_1 

 W
e

d
n

e
sd

ay
  

0
7

/1
1

 
 

14.00 -14.45 Dynamical Integrity: Concepts and Tools_2 

15.00 -15.45 Global Dynamics of Engineering Systems 

16.00 -16.45 Dynamical integrity: Interpreting/Predicting Experimental Response 
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14.00 -14.45 Techniques for Control of Chaos 

15.00 -15.45 A Unified Framework for Controlling Global Dynamics 

16.00 -16.45 Response of Uncontrolled/Controlled Systems in Macro- and Micro-mechanics 
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14.00 -14.45 
A Noncontact AFM:  (a) Nonlinear Dynamics and Feedback Control  
                                     (b) Global Effects of a Locally-tailored Control  

15.00 -15.45 Exploiting Global Dynamics to Control AFM Robustness  

16.00 -16.45 Dynamical Integrity as a Novel Paradigm for Safe/Aware Design 



Outline 

1. Main stability concepts at a glance 

2. Local versus global safety in statics and dynamics  

3. Solution/attractor robustness in phase space; the 

relevant ‘safe’ basins (through an archetypal model) 

4. Solution/attractor robustness and basin 

compactness in control parameter space (through an 

archetypal model) 

5. Robustness/erosion profiles  

6. Moving from theoretical to practical stability 



 Load carrying capacity: an old issue associated with the 

concept of loss of stability  

 Stability: to be discussed by also considering the effects 

of (static or dynamic) imperfections, always present in 

nature/technology  A system must be able to sustain 

changes in both initial conditions and control 

parameters, without changing its desired outcome  

 Robustness: a fundamental issue in analysis and design 

 Dynamic integrity: a global safety concept essential to 

secure practical stability of systems 

 Historical concepts and contributions at a glance …….. 

Achieving load carrying capacity 



 First fundamental contribution:               famous 

Euler buckling load of a column 

 Loss of load carrying capacity identified as  

     the system instability occurring at the  

     local bifurcation point of an equilibrium path  

     when changing a control parameter (axial 

     load) –  talking, of course, in modern language 

 A substantially static notion of stability 

Leonhard Euler (1707-1783) 



 Rigorous formulation within a more 

    dynamically oriented notion of stability       

 Lyapunov (or classical) local stability roughly 

states that under  

         infinitesimal changes in initial conditions  

         the system must keep the reference response 

 Major role in the solutions of a variety of 

engineering problems ensuing from modern 

technological developments 

             Aleksander Lyapunov (1857-1918) 



 Koiter realized that model imperfections are 

crucial in lowering the critical load 

 Due to imperfections, the branching point becomes a snap 

point, which (in the dangerous cases) occurs at a lower load 

threshold 

Warner Koiter (1914-1997) 

Within the mechanical community, 

looking at the effects of changes of 

control parameters:   

 Dynamical character of stability was clear, but 

the reference framework was still ‘static’ 



 Later on, bifurcation theory provided a 

mathematical background to this engineering 

intuition: 

• transcritical and pitchfork bifurcations (branching) are 

structurally unstable (i.e., unobservable in the real 

world, unless somehow forcing them) and become 

saddle-node bifurcations (snap) after system 

perturbations (imperfections in mechanical language) 

 Structural stability: studying the effect of  

perturbations of the system with respect to 

parameters and not w.r.t. initial conditions, as 

in classical local stability 

Structural stability  



 When ‘flutter’ or ‘galloping’ 

of real systems came into 

play, dynamics definitely 

entered the concept of loss of 

stability 

 In bifurcation theory 

language, the Hopf 

bifurcation was ‘discovered’ 

and experimentally observed, 

according to the fact that it is 

structurally stable 

Dynamic stability  



Key point:  how small have to be perturbations? 

From a mathematical point of view the magnitude of 

perturbations is not important (e.g. 10-50 is ok) 

But from a practical point of view it is important, since in 

our real world imperfections have a finite magnitude 

Local (or classical, Lyapunov) stability is not enough 

 for practical applications !! 

From theoretical to practical stability  

Classical stability: small changes of initial conditions 

do not affect substantially the system response  



Practical stability of attractors  

to be addressed in an  

actually dynamical environment 

Around  the  90s:  

 By considering a global approach, notion of 

dynamic integrity introduced, which is 

fundamental for properly pursuing the safety 

of structures 

 Basins of attraction – and their variation with 

a varying control parameter - become  

fundamental tools 

Michael  Thompson (1937-) 



Solution robustness in phase space 

Already in the static case: 

approaching a (local) bifurcation, the basin of reference 

solution shrinks to zero and becomes unsafely small, 

although the solution is still stable in the sense of 

Lyapunov  

 pursued response non-robust with respect to finite 

dynamic perturbations, though being its basin integer 

(no fractality)  

Properly complementing the solely local theoretical 

character of the classical concept of stability with a 

global practical one 



An archetypal asymmetric model 
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 Single-dof mechanical model 

typically used to illustrate  

post-buckling behavior and 

imperfection sensitivity of 

structural systems liable to 

unstable buckling 

 Q = “static” imperfection 

 No damping and no dynamic excitation  

]1,0[
22

2





HL

LH


In the following 

α = 0.8 



Equilibrium points and critical loads 
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Global safety 

 Phase portrait 
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p=0.05 

q=0.01 

 ‘basin of attraction’ of equilibrium point 

 The larger the area, the larger the ability of the 

system to support finite changes in i.c.   

     the larger the safety of the structure 



Basin and actual critical load reduction 

 Area shrinks as approaching  

critical load, with or without 

‘static’ imperfections, and 

‘rapidly’ becomes too small for 

real world, where finite 

dynamic imperfections exist 

 ‘Basin of attraction’ under (even 

transient) dynamic perturbations 

shrinks to the attractor   

               (Koiter) SN bifurcation 

overestimates the actual 

critical load 
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Area decrement without imperfections 

(q=0) 
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 In the neighbourhood of pE the safe region is merely 

residual and unsafe            practical pT (‘Thompson’) 

critical load much less than pE (Euler) 

Let’s accept a reduction 

to 10% (very low !) of 

initial area (GIM): 

 then pT is 59% of pE 

In parameter space 

From Euler 

to Thompson 



Area decrement with ‘static’ imperfections 

Same qualitative 

behaviour 
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From Koiter  

to Thompson 
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For q = 0.02 

practical pT 

(‘Thompson’) 

critical load also  

lower than pK 

(Koiter) 

  

 



With dynamic excitation  

 What happens when a dynamic excitation is 

applied, e.g.,  q+q1 sin(ωt) ? 

 The phase space augments of one dimension, but this is not 

a problem, and can be overcome, e.g., by considering 

Poincaré sections 

 Also damping is added for realistic engineering analysis 
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Periodic solutions  
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dynamical excitation (q1=0) 

 The saddle-node (SN) decreases by increasing q1 

 A period doubling (PD) reduces the stability 

threshold (above PDlow the solution may jump out of well) 

c=0.01, q=0.01 

PDlow 

(q10) 



Stability threshold with dynamic excitation 
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 Interaction between static (p) and dynamic (q1) loads 

causes meaningful loss of load carrying capacity 

(w.r.t. Koiter one) 

q+q1 sin(ωt)  

• periodic, 

• quasiperiodic, 

• chaotic  

attractors  

 



 Existence/competition of more attractors 

 Basin of attraction no longer safe against small but finite 

incidental changes of i.c. 

 Basin is eroded and loses its compactness/integrity 

 Load carrying capacity depends on practical stability 

under imperfections/perturbations 

Fractalization 
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Major effects of dynamic excitations 
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 Attractors are no longer equilibrium points, but 

periodic, quasi-periodic, … chaotic orbits 

 The topology of the basins of attraction changes 

significantly; fractality commonly appears 

 Dynamic integrity: 

             a major role 

     in determining the                                             

load carrying capacity 



Practical stability under imperfections/perturbations  

 W.r. to dynamic imperfections: initial conditions in phase space 

solution/attractor robustness and basin properties 

Static solution:        robust if large safe basin 

Dynamic attractor:   - robust if large and compact (i.e. integer) basin  

             - non-robust if large but fractal basin 

 W.r. to system imperfections:  parameters in control space 

how solution/attractor robustness and basin compactness in phase 

space evolve with a varying control parameter  

Static solution:        robustness profile of safe basin 

Dynamic attractor:  - robustness profiles of (integer) competing basins 

            - erosion profile with integrity reduction 

Robustness profiles: size reduction/increase of integer basin vs competing one  

Erosion profiles: reduction of basin integrity, to be explained also in terms of 

global bifurcation phenomena (homo/heteroclinic tangencies, crises, etc.)  



Robustness profile                  Erosion profile 
Increasing axial load,  

fixed dynamic excitation 

 Practical (Thompson) 

stability threshold about 1/3 

of theoretical (Koiter) 

critical load 

Increasing dynamic excitation, 

fixed axial load 

 

 Practical (Thompson) load 

carrying capacity much 

lower than Koiter one, e.g.:  

residual IF=80% (practically uneroded basins) →  

Thompson threshold = 22 % Koiter threshold 
 



Hints for design 

 Koiter load can be determined upon fixing the 

value of the expected static imperfection q 

 Thompson load can be determined upon fixing  

the acceptable minimal integrity  

      (which corresponds to fixing the maximum allowed change in i.c. 

       that can be safely supported by the system; in other words, this 

       corresponds to fixing the “safety factor”) 

 Both Koiter and Thompson theories are thus 

‘applicable’ with the knowledge of q and GIM 



A summary interaction picture 

 Interaction of static axial load and dynamic excitation 

 Dangerously residual robustness/compactness occurs 

well before disappearance of solution/attractor  

•  dynamic excitation  

    reduces Koiter practical  

    critical load  

•  static axial load  

   reduces Thompson  

   escape dynamic 

   excitation  



Theoretical vs practical stability  

I.M. 

governing parameter 

end of robustness/erosion profile corresponds to attractor 

disappearance, i.e. to loss of stability 

stable unstable 

safe different attractor unsafe 

threshold computed 

(approximated) by a 

local (global) 

bifurcation analysis 

threshold easily  

computed by local 

stability analysis 

theoretical 

practical 

dynamic 

integrity is 

necessary 


