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Abstract
Background: RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene
expression with both high-throughput and high resolution capabilities possible depending upon the experimental
design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the
numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These
strategies impact on the power of the approach to accurately identify differential expression. This study presents a
detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and
differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and
analysis methods.

Results: Differential and non-differential expression datasets were simulated using a combination of negative
binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the
performance of three commonly used differential expression analysis algorithms and to quantify the changes in
power with respect to true and false positive rates when simulating variations in sequencing depth, biological
replication and multiplex experimental design choices.

Conclusions: This work quantitatively explores comparisons between contemporary analysis tools and experimental
design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm
performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this
work strongly suggests that greater power is gained through the use of biological replicates relative to library
(technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without
substantial impacts on false positive or true positive rates.
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Background
RNA sequencing (RNA-Seq) allows an entire transcrip-
tome to be surveyed at single-base resolution whilst con-
currently profiling gene expression levels on a genome
scale [1]. RNA-Seq is an attractive approach as it pro-
files the transcriptome directly through sequencing and
therefore does not require prior knowledge of the tran-
scriptome under consideration. An example of the use of
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RNA-Seq as a high-resolution exploratory tool is the dis-
covery of thousands of additional novel coding and non-
coding genes, transcripts and isoforms of known genes
despite the prior extensive annotation of the mouse [2-4]
and human genomes [5,6].
Arguably, the most popular use of RNA-Seq is profil-

ing of gene expression or transcript abundance between
samples or differential expression (DE). The efficiency,
resolution and cost advantages of using RNA-Seq as a tool
for profiling DE has promptedmany biologists to abandon
microarrays in favour of RNA-Seq [7,8].
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Despite the advantages of using RNA-Seq for DE anal-
ysis, there are several sources of sequencing bias and sys-
tematic noise that need to be considered when using this
approach. Clearly, RNA-Seq analysis is vulnerable to the
general biases and errors inherent in the next-generation
sequencing (NGS) technology upon which it is based.
These errors and biases include: sequencing errors (wrong
base calls), biases in sequence quality, nucleotide compo-
sition and error rates relative to the base position in the
read [9,10], variability in sequence depth across the tran-
scriptome due to preferential sites of fragmentation, vari-
able primer and transcript nucleotide composition effects
[11] and finally, differences in the coverage and composi-
tion of raw sequence data generated from technical and
biological replicate samples [1,12].
Recently, there have been several investigations

[13-15] into the biases that affect the accuracy with which
RNA-Seq represents the absolute abundance of a given
transcript as measured by high precision approaches
such as Taqman RT-PCR [16]. It has been shown that
these abundance measures are prone to biases corre-
lated with the nucleotide composition [14,17] and length
of the transcript [1,18]. Several within and between
sample correction and normalisation procedures have
recently been developed to address these biases either as
nucleotide composition effects [17] or various combina-
tions of nucleotide, length or library preparation biases
[14,15]. These approaches all yield improvements in the
correspondence of RNA-Seq read counts with expression
estimates gained by other experimental approaches.
Despite the known biases, RNA-Seq continues to be

widely and successfully used to profile relative tran-
script abundances across samples to identify differentially
expressed transcripts [19]. The profile of a given tran-
script across a biological population would be hoped
to be less prone to nucleotide composition and length
biases as these variables remain constant. Nevertheless,
to accurately detect DE across samples it is necessary
to understand the sources of variation across technical
and biological replication and where possible respond to
these with an appropriate experimental design and sta-
tistically robust analysis [17,20]. To date, there has been
little discussion in the literature of efficient experimental
designs for the detection of DE and a lack of consen-
sus about a standard and comprehensive approach to
counter the many sources of noise and biases present in
RNA-Seq has meant that some of the biological com-
munity remain sceptical about its reliability and unsure
of how to design cost-efficient RNA-Seq experiments
(see [19]).
Good experimental design and appropriate analysis is

integral to maximising the power of any NGS study.
With regard to RNA-Seq, important experimental design
decisions include the choice of sequencing depth and

number of technical and/or biological replicates to use.
For researchers with a fixed budget, often a critical design
question is whether to increase the sequencing depth
at the cost of reduced sample numbers or to increase
the sample size with limited sequencing depth for each
sample [20].

Sequencing depth
Sequencing depth is usually referenced to be the expected
mean coverage at all loci over the target sequence(s), in
the case of RNA-seq experiments assuming all transcripts
having similar levels of expression. Without the benefit of
extensive previous RNA-Seq studies, it is difficult in most
cases to estimate prior to data generation the optimal
sequencing depth or amount of sequencing data required
to adequately power the detection of DE in the tran-
scriptome of interest. Pragmatically, RNA-seq sequencing
depth is typically chosen based on an estimation of total
transcriptome length (bases) and the expected dynamic
range of transcript abundances. Given the dynamic nature
of the transcriptome, the suitability of these estimates
could vary substantially across organisms, tissues, time
points and biological contexts.
Wang et al. [21] found a significant increase in cor-

relation between gene transcripts observed and number
of sequence reads generated when increasing sequenc-
ing depth from 1.6 to 10 million reads after which the
gains plateau – 10 million reads detected about 80% of the
annotated chicken transcripts. Despite the expectation of
continuous sequencing depth increases in the near future,
Łabaj et al. [22] argue that most of the additional reads
will align to the subset of already extensively sampled
transcripts. As a result, transcripts with low to moder-
ate expression levels will remain difficult to quantify with
good precision using current RNA-Seq protocols even at
higher read depths. Greater sequencing depth will also
increase sensitivity to detect smaller changes in relative
expression, however this does not guarantee that these
changes have functional impact in the biological system
under study as opposed to tolerated fluctuations in tran-
script abundance [20]. Ideally, an efficient experimental
design will be informed by an understanding of when
increasing sequencing depth begins to provide rapidly
diminishing returns with regard to transcript detection
and DE testing.

Replication
Replication is vital for robust statistical inference of DE.
In the context of RNA sequencing, multiple nested lev-
els of technical replication exist depending upon whether
it is the sequence data generation, library preparation
or RNA extraction technical processes that are being
replicated from the same biological sample. Several
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published studies have incorporated technical replicates
into their RNA-Seq experimental designs [23-25]. The
degree of technical variation present in these datasets
appears to vary and the main source of technical vari-
ation appears to be library preparation [15]. Biological
replication measures variation within the target popula-
tion and simultaneously can counteract random techni-
cal variation as part of independent sample preparation
[20].
It has been shown that power to detect DE improves

when the number of biological replicates n is increased
from n = 2 to n = 5 [26], however, to date few stud-
ies have incorporated extensive biological replication and
extensive testing of the effects of replication on power
is needed. More recently with the increasing utility and
availability of multiplex experimental designs, the incor-
poration of biological replicates with decreased sequenc-
ing depth is becoming a much more attractive and
cost-effective strategy. The relative merits of sacrificing
sequencing depth for increased replication has not been
rigorously explored.

Efficient experimental design
Multiplexing is an increasingly popular approach that
allows the sequencing of multiple samples in a single
sequencing lane or reaction and consequently the reduc-
tion in sequencing costs per sample [27,28]. Multiplexing
uses indexing tags, “barcodes” or short (≤ 20 bp) stretches
of sequence that are ligated to the start of sample sequence
fragments during the library preparation step. Barcodes
are distinct between sample libraries and allow pooling for
sequencing followed by allocation of reads back to individ-
ual samples after sequencing by analysis of the sequenced
barcode. Multiplex barcode designs are routinely available
with up to 12 samples in the same lane, recently up to 96
yeast DNA samples were profiled in single lane [28]. Novel
methods are continuing to emerge for low-cost strategies
to multiplex RNA-Seq samples [29]. With the dramatic
increases in sequencing yields being achievedwith current
chemistries and new platforms, multiplexing is becom-
ing the method of choice to increase sample throughput.
These designs have direct impacts on sequencing depth
generated that need to be considered in the power of the
experimental design. Also, when multiplex strategies are
used, biologists need to be mindful of potential systematic
variations between sequencing lanes. These variations can
be addressed through randomisation or blocking designs
to distribute samples across lanes, see [30] for a discus-
sion of barcoding bias in multiplex sequencing, and [31]
for an alternative to barcoding. In a comparison between
microarray and NGS technologies in synthetic pools of
small RNA, Willenbrock et al. [13] found that multiplex-
ing resulted in decreased sensitivity due to a reduction of
sequencing depth and a loss of reproducibility; however

the authors did not investigate power for detection of DE
in their study.

Approach
Improving detection of DE requires not only an appro-
priate experimental design but also a suitably powered
analysis approach. Several algorithms have recently been
developed specifically to appropriately handle expected
technical and biological variation arising from RNA-Seq
experiments. A non-exhaustive list of these algorithms is:
edgeR [32], DESeq [25], NBPSeq [33], BBSeq [34], FDM
[35], RSEM [36], NOISeq [37], Myrna [38], Cuffdiff [2].
A thorough comparison of these packages’ performance
with datasets of different properties falls beyond the scope
of this study, however before considering issues relating to
power and experimental design, it is important to inves-
tigate whether packages for DE analysis give the correct
type I error rate under the null hypothesis of no DE. To
do this evaluation we considered three popular packages
for DE analysis of RNA-sequencing data. These packages
are based on a negative binomial distribution model of
read counts [39] and include edgeR [32], DESeq [25] and
NBPSeq [33].
To quantify the effects of different sequencing depths

and replication choices we compared a range of realistic
experimental designs for their ability to robustly detect
DE. Using simulated data with known DE transcripts
allowed us to estimate the false positive rate (FPR) and
true positive rate (TPR) of DE calls. The changes of these
rates were used to compare the detection power yielded
by each choice of number of biological replicates and
sequencing depth.
In the Methods section, we outline the definitions used

for FPR and TPR as well as explaining the method used
for the construction of the synthetic data; which includes
induced differential expression, simulates the variations
that biological replicates introduce and simulates loss of
sequencing depth.
In our study, we test a wide range of real-world exper-

imental design scenarios for performance under the null
hypothesis and in the presence of DE. In these scenar-
ios both the numbers of biological replicates n and the
sequencing depth are varied. This provides a compre-
hensive quantitative comparison of different experimental
design strategies and is particularly informative for those
accessing modern multiplex approaches.

Results
Comparisons of statistical methods: edgeR, DESeq, and
NBPSeq using simulated data under the null
To test the performance of each package under the null
hypothesis, we simulated sets of n “control” and n “treat-
ment” lanes of counts in accordance with the procedure
described in the Methods section, for a range of values of
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n and with no DE between treatments. For each value of
n and for each package the simulation and testing were
repeated 100 times. Figure 1 shows the percentage of

transcripts reported as differentially expressed at the 1%
significance level by each of the three packages for a range
of values of n. The height of each bar is the median value

Figure 1 The percentage of transcripts reported differentially expressed, FPR defined by Eq. 4 by three software packages for synthetic
data generated under the null hypothesis of no DE between two conditions. In the lower two panels the set of transcripts has been divided
into those with greater than 100 counts (DE-high) and those with less than or equal to 100 counts (DE-low) averaged over biological replicates. The
number of biological replicates in each condition was varied over the range n =2, 3, . . . 12. The experiment was repeated for 100 independently
generated datasets. The top of each bar is the median value obtained and its 90% confidence interval.
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obtained from 100 repetitions of the synthetic data gener-
ation with its associated 90% confidence intervals. Under
the null hypothesis, the percentage reported is the false
positive rate (FPR) defined by Eq. 4, and should match
the significance level of α = 1% if the package is per-
forming correctly. Also shown are FPRs for high-count
transcripts (> 100 counts averaged across biological repli-
cates) and low-count transcripts (≤ 100 counts averaged
across biological replicates). Figure 2 shows an example
of the p-value distribution obtained for one experiment at
n = 3 biological replicates. Ideally, p-values should have a
uniform distribution in the interval [ 0, 1] if the package is
performing correctly.
Immediately noticeable in the p-value histogram is a

sharp spike in the right hand bin for low count tran-
scripts, which is observed to be present in general for
all values of n and all packages. This is a known arti-
fact of calculating p-values for discrete random variables
using the method described in [40] and summarised

in our Methods subsection ‘Under the null hypothesis’:
when count sums in both conditions are equal the com-
puted p-value is exactly 1. The situation is most likely
to occur for transcripts with extremely low counts, in
which case it is difficult to draw meaningful conclu-
sions regarding DE via any method. The behaviour at the
left hand end of the histogram, which drives the FPRs
plotted in Figure 1, varies considerably between pack-
ages and numbers of biological replicates. It is affected
mainly by the method used for estimating a disper-
sion parameter φi for each transcript i (see Methods
section).
The package edgeR performs well for large numbers

of biological replicates (n = 12), for which squeezing
of the dispersion estimate towards the common disper-
sion is minimal, and a tagwise estimate is appropriate. For
small numbers of biological replicates, because the disper-
sion cannot be estimated accurately on a per-transcript
basis, information is borrowed from the complete set
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Figure 2 Histograms of p-values calculated by three software packages for one particular example of synthetic data generated under the
null hypothesis for the case n = 3. In the two right hand columns the set of transcripts has been divided into high-count transcripts (> 100
counts) and low-count transcripts (≤ 100 counts) respectively. ‘Percentage of total’ is the percentage of p-values falling within each of 100 bins in
each histogram.
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of transcripts to squeeze the estimate towards a com-
mon dispersion estimate. For the high-count transcripts
in particular, the squeezing causes the dispersion of the
most highly dispersed transcripts to be underestimated,
causing too many transcripts to be deemed differentially
expressed, leading to an inflated FPR.
In an effort to be conservative, DESeq chooses as its

estimate of dispersion the maximum of a per-transcript
estimate and the functional form Eq. 2 which is fitted to
the per-transcript estimates for all transcripts. Our results
indicate that the method performs well for the high-count
transcripts when the number of biological replicates is
small (n = 2 or 3), but is otherwise over-conservative.
This is generally to be preferred to an inflated FPR,
as one has more evidence that what is called DE is
truly DE.
The package NBPSeq imposes the functional relation-

ship Eq. 3, which appears to be too restrictive for a num-
ber of relatively highly dispersed transcripts. For those
transcripts the dispersion parameter is underestimated,
leading to an overestimate of significance and hence an
inflated FPR irrespective of the number of biological
replicates.
Based on these results we selected DESeq (v1.6.1) and

edgeR (v2.4.0) for use in subsequent experimental design
testing. Throughout these tests, results obtained using
DESeq and edgeR are mostly compatible with each other.
However, our comparison revealed a slightly inflated FPR
from edgeR while DESeq behaves more conservatively
throughout. Therefore, in the following section we will
focus on the results obtained using DESeq while the anal-
ogous results obtained with edgeR are presented in the
Additional file 1: Figure S2.

Comparison of statistical methods: DESeq and edgeR using
simulated data with 15% DE transcripts
To test the performance of packages in the presence of
an alternate hypothesis, we simulated sets of n “con-
trol” and n “treatment” lanes of counts with 15% of
the transcripts either up- or down-regulated according
to the procedure described in the Methods section. All
results presented from this point on are derived from
DESeq.

Detection of DE as a function of number of biological
replicates n
With an increase in replication we saw a steady increase
in the percentage DE calls by DESeq (call rate), increas-
ing from 0.44% to 5.12% as n increased from 2 to 12 (at
100% depth). As n increased, the FPR, defined by Eq. 5
at a significance level of α = 1%, remained below 0.1%
for all values of n, and the TPR, defined by Eq. 6 with

Table 1 Effects of biological replication on power to detect
DE using DESeq

% n = 2 n = 3 n = 4 n = 6 n = 8 n = 12

call rate % 0.44 1.15 1.76 3.03 4.08 5.12

FPR % 0.04 0.06 0.06 0.06 0.05 0.04

TPR % 3.26 8.95 13.95 24.30 32.72 41.57

Effects of biological replication on power to detect DE using DESeq. FPR and TPR
are defined in Eqs. 5 & 6 respectively at 1%. “call rate” is the total number of
reported positives / the total number of transcripts. These values are also
represented in Figure 3 at 100% sequencing depth.

α = 1%, increased substantially from 3.26% to 41.57%
(see Table 1).

Detection of DE as a function of sequencing depth
Figure 3 represents the combined results of decreas-
ing sequencing depth for all values of n. It can be seen
that as sequencing depth decreases the TPR generated
by DESeq decreases monotonically across all n while
the FPR remains below 0.1% (the corresponding results
obtained using edgeR are shown in Additional file 1:
Figure S2).
Table 2 shows the FPR for all biological replicates n and a

subset of sequencing depths: 25%, 50%, 75% and 100%, the
FPR remains below 0.1% at all sequencing depths. Table 3
shows the TPR reported by DESeq for the same subset
of sequencing depths, here the TPR increases strongly as
sequencing depth increases for any number of biological
replicates n.

Detection of DE across multiplex experimental design
strategies
We simulated various scenarios of multiplexing n-control
samples vs. n-treatment samples into two sequencing
lanes – each control and treatment sample at a sequenc-
ing depth = 1

n × 100%. In Figures 3 and 4, a solid grey line
connecting every value of n at its corresponding sequenc-
ing depth provides a summary of the performance of these
multiplexing scenarios. We call this trend the “multiplex
line” and it provides an insight into the results obtained
by increasing the number of biological replicates used
into a fixed number of sequencing lanes, in this case 2
sequencing lanes.
The multiplex line in Figure 3 shows a clear increase

in TPR as replication increases despite the loss of detec-
tion power that decreasing sequencing depth induces. It
can also be seen that the FPR remains below 0.1% for all
multiplex scenarios tested (Figure 3B). Note that for com-
pleteness we also added multiplex scenarios for n = 32
& n = 96, whose results follow the trends well. The
multiplex line strongly favours adding more biological
replicates despite the inherent loss of sequencing depth



Robles et al. BMC Genomics 2012, 13:484 Page 7 of 14
http://www.biomedcentral.com/1471-2164/13/484

Figure 3 TPR and FPR detected by DESeq as a function of sequencing depth and replication. Different symbols represent the number n of
control vs. treatment samples (n = 2, 3, 4, 6, 8, and 12) across sequence depths [ 100% → 1%]. A: TPR (Eq. 6 at α = 1%) padj ≤ 0.01. B: FPR (Eq. 5 at
α = 1%) padj ≤ 0.01. The solid grey line (“multiplex line”) connecting the TPR values of n biological replicates at 1

n × 100% sequencing depth shows
the increase of TPR as more biological replicates n are used despite the loss power due to the sequencing depth reduction required by the
multiplexing of lanes. This trend remains true even for the n = 32 and n = 96 cases.

as shown by its dramatic positive slope for the TPR while
maintaining a roughly constant, low FPR.

Fold-changes as indicators of DE
It is common practice among biologists to use fold-
change, rather than p-values, as an indicator of DE.
Figure 4 shows results analogous to those of Figure 3
when the criterion of fold-change ≥ 2 (instead of p-
values) is used to detect DE: as replication n increases,
both TPR and FPR decrease becausemore biological repli-
cates have the effect of averaging out differences between
control and treatment lanes. Note that, as sequencing
depth decreases, the FPR increases owing to the growing
number of transcripts with very low numbers of counts
(Figure 4B), in which case the Poisson shot noise of the
sequencer can easily induce a spurious doubling or halv-
ing of counts. This effect is ameliorated by adding 1 count
to all transcripts prior to DE analysis – doing so, does not
affect the calculation of p-values (data not shown).

Table 2 Effects of sequencing depth on FPR at different n
and depths

Depth n = 2 n = 3 n = 4 n = 6 n = 8 n = 12

25% 0.02 0.02 0.04 0.03 0.03 0.03

50% 0.03 0.03 0.04 0.05 0.04 0.03

75% 0.04 0.06 0.05 0.07 0.04 0.04

100% 0.04 0.06 0.06 0.06 0.05 0.04

Effects of sequencing depth on FPR values for a subset of our tested depths =
25%, 50%, 75% & 100%.

Discussion
Comparisons of DE algorithms: edgeR, DESeq and NBPSeq
Our comparison of these three DE detection algorithms
under the null hypothesis revealed different performances
(measured by their FPR) when different numbers of bio-
logical replicates n, are used. DESeq consistently per-
formed more conservatively across the different n biolog-
ical replicates scenarios. DESeq’s performance was clos-
est to the expected significance level when only using
high-count (counts > 100) transcripts while for only
low-count (counts ≤ 100) transcripts over-conservative
behaviour is shown. edgeR overestimates DE detection
for small values of n while its performance improves as
n increases. edgeR’s level of detection is constant over
n when only low-count transcripts are used while over-
estimation increases when only high-count transcripts
are used. NBPSeq overestimated detection across n for
the three scenarios (all-transcripts, high-counts and low-
counts).

Table 3 Effects of sequencing depth on TPR at different n
and depths

Depth n = 2 n = 3 n = 4 n = 6 n = 8 n = 12

25% 1.57 6.24 10.40 19.18 26.08 35.41

50% 2.58 7.63 12.40 22.34 29.66 39.16

75% 3.01 8.47 13.16 23.44 31.57 40.65

100% 3.26 8.95 13.95 24.30 32.72 41.57

Effects of sequencing depth on TPR values for a subset of our tested depths =
25%, 50%, 75% & 100%.
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Figure 4 Same as Figure 3 but using 2-fold-changes as the criterion for FPR and TPR instead of padj ≤ 0.01. A: TPR fold-change ≥ 2. B: FPR
fold-change ≥ 2. The “multiplex line” connects the TPR and and FPR values of n biological replicates at 1

n × 100% sequencing depth.

This comparison led us to use both DESeq and edgeR
throughout our replication and sequencing depth simula-
tions. We ultimately chose DESeq’s resultsa as this pack-
age behaved slightly more conservatively and appeared
less sensitive to changes in replication (see Figure 1). In
a study by Tarazona et al. [37], it is argued that negative-
binomial based DE analysis packages like DESeq and
edgeR are highly sensitive to sequence depth increases
and are therefore unable to control the FPR as sequencing
depth increases. Tarazona et al. propose a non-parametric
algorithm (NOISeq) to calculate DE based on a noise dis-
tribution created with fold-changes and the absolute dif-
ferences between the transcript’s control and experiment
lane counts. However, Kvam and Liu [26] argue that due
to the small number of replicates typically used for RNA-
Seq experiments, non-parametric methods do not offer
enough detection power and suggest that current statis-
tical methods to detect DE genes based on parametric
models for RNA-Seq data (e.g. DESeq and edgeR) remain
a more adequate approach. In our study we also find that
both DESeq and edgeR tend to slightly increase the FPR
as sequencing depth increases – as higher depths induce
DESeq and edgeR to assign smaller p-values to transcripts
with small fold-changesb. However in no instance do we
obtain a FPR larger than 1% for DESeq (2% for edgeR)
– (see Figures 1 and 3A). It is worth mentioning that
the latest updates to DESeq (v1.6.1) and edgeR (v2.4.0) –
released after the studies [37] and [26] reduce the number
of false positive calls by about 50% (data not shown).

Effects of replication for detection of DE
To quantify the effects of replication in RNA-Seq
DE experiments, we tested n-control vs. n-treatment

biological replicates (2, 3, 4, 6, 8 and 12) while maintain-
ing sequencing depth constant.We find that as n increases
both algorithms increase the call rate and TPR while the
FPR remains unchanged (Table 1).
Our results clearly support the simple message that

more biological replicates are not only desirable but
needed to improve the quality and reliability of DE detec-
tion using RNA-Seq, however, due to the costs asso-
ciated with RNA-Seq, many experiments are likely to
need to use multiplex designs to achieve this level of
replication.
This study is concerned with the simulation of overdis-

persion effects due to biological variability and it is
implied that overdispersion due to technical variability
is nested within this estimation (see Methods section).
It is worth mentioning that, while biological variabil-
ity is important, the contribution to overdispersion by
technical variation is not negligible, and disagreements
between estimates of expression can occur at all lev-
els of coverage [41]. Ideally, RNA-Seq experimental
design with biological replication should also aim to
block sources of technical variation, such as between
lane variations, to constrain the dispersion of RNA-Seq
experiments.

Effects of sequencing depth for detection of DE
To quantify the effects of sequencing depth in RNA-Seq
DE experiments, we simulated an extensive sequencing
depth range (100% to 1%) for every case of n-control
vs. n-treatment biological replicates. As the amount of
available sequencing data is decreased, both packages
decrease the call rate and TPR while the FPR remains low.
TPR decreases very slowly as sequencing depth decreases,
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suggesting that sequencing depth can be reduced to ∼
15% without much impact on TPR.
We conclude that DE analysis with RNA-Seq is robust

to substantial loss of sequencing data as indicated by a
slow decline in TPR as sequencing depth is lost accom-
panied by no increase in FPR. These findings seem con-
sistent with the results reported by Bashir et al. [42] who
observed that lower levels of transcriptome sequencing
had sufficient information to estimate the distribution
of expression values arising from observed transcripts.
Bashir et al. did not directly test power to detect DE, how-
ever as testing for DE relies on good concordance with
the expected distribution, it follows that DE is reasonably
robust to loss of sequencing data.

Multiplexing experimental designs
To quantify the effects of varying both n and sequenc-
ing depth, we simulated multiplexing n-control vs. n-
treatment lanes into two sequencing lanes. We observed
a steady increase in TPR with the increase in n, despite
the corresponding decrease in sequencing data per tran-
script by 1/n. Similarly, for both DESeq and edgeR the
number of DE calls and the TPR increases with n, as we
observed previously and is unaffected by the decrease in
data. For DESeq, the FPR remains roughly constant and
always below 0.1%, while for edgeR, the FPR decreases
slowly as n increases.
Our simulations strongly support that the benefits of

multiplexing n-biological replicates into one sequencing
lane (two lanes for a n-control vs. n-treatment DE exper-
iment), far outweigh the decrease of available data per
sample by 1/n. These multiplexing experimental designs
improve TPR and FPR while greatly reducing the cost of
the experiment.
While the detection of DE appears robust to avail-

able sequence data, there remains the question of how
multiplexing affects coverage of the transcriptome and
detection of low abundant or rare transcripts. This
coverage issue will increasingly be counterbalanced by
rapid increases in data generation capacity from a single
sequencing experiment. In a detailed study of the Mari-
oni [23] human (liver and kidney) dataset, Banshir et al.
[42], reported that over 90% of the total observed tran-
scripts were sampled with 1 million reads. This should be
considered in the context of the quickly evolving sequenc-
ing technologies like HiSeq 2000 and HiSeq 2500 which
can produce up to 300 million reads per sequencing lane.
In an evaluation of coverage depth of the chicken tran-
scriptome,Wang et al. [21] find that while 10million reads
allow detection of 80% of the annotated genes, an increase
from 10 to 20 million reads does not have a significant
effect on transcriptome coverage or reliability of mRNA
measurements. That said, current estimates of transcrip-
tome coverage and the impacts of multiplexing strategies

analysed in this paper assume unbiased sampling of tran-
scripts. It is highly likely that the power to detect DE
varies across transcripts with their sequence content, iso-
form complexity and abundance. Fang and Cui [20] warn
against and discuss several sequencing biases that could
create the need for high sequencing coverage to accurately
estimate transcript abundance and variation. The authors
mention the importance of choosing whether to increase
the sequencing depth per sample or to increase the num-
ber of biological replicates when planning an experiment.
Here, we quantitatively argue that given a fixed budget,
the benefits of increasing the number of biological repli-
cates outweigh the corresponding decrease of sequenc-
ing depth. This suggestion is backed by the patterns in
Figures 3 and 4 in which for a given number of n-biological
replicates TPR drops very slowly as depth decreases, FPR
remains low when sequencing depth is decreased. In the
light of new sequencing technologies rapidly increasing
the available sequencing depth per lane, the inforrma-
tion provided by biological replicates’ variation is likely to
become a priority over sequencing depth.

Conclusions
Not surprisingly, our results indicate that more biolog-
ical replicates are needed to improve the quality and
reliability of DE detection using RNA-Seq. Importantly
however, we also find that DE analysis with RNA-Seq
is robust to substantial loss of sequencing data as indi-
cated by a slow decline in TPR accompanied by no
increase in FPR. Our simulations strongly support that
multiplexing experimental designs improve TPR and
FPR while greatly reducing the cost of the experiment,
as the benefits of multiplexing n-biological replicates
far outweigh the decrease of available data per sample
by 1/n.
As many available packages for DE analysis are increas-

ingly becoming faster and easier to use, our recommen-
dation for most RNA-Seq DE experiments is to use 2
different packages for DE testing. Additional file 2: Figure
S4 illustrates the detection overlap between DESeq and
edgeR for two contrasting choices of sequencing depths
and n-biological replicates: n=2 at 100% depth and n=4 at
25% depth. The combined use of packages based on differ-
ent distribution statistics or a different set of assumptions
could generate useful information about a possible bias
susceptibility of a given package particular to the specific
dataset of interest.
To our knowledge, this is the most up-to-date com-

parison of DESeq and edgeR’s performance relative to
ability to detect DE in a range of experimental designs.
It directly tests the efficiency of modern multiplex exper-
imental design strategies. Our study informs important
experimental design decisions now relevant when trying
to maximise an RNA-Seq study to reliably detect DE.
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Methods
Negative binomial model and biological variation
simulation
Our synthetic data is based on a negative binomial (NB)
model of read counts assumed by [39] and used in edgeR
[32], DESeq [25] and NBPSeq [33]. The model is a hierar-
chical model which takes into account sources of variabil-
ity in the molar concentration of each transcript isoform
in the prepared cDNA library due to i) library prepa-
ration steps and, in the case of biological replicates, ii)
biological variation. This variation is compounded by an
additional Poisson shot-noise arising from the sequencing
step. Assuming the molar concentration in the prepared
cDNA library to have a Gamma distribution, one arrives
at a NB distribution for the number of counts K mapped
onto a particular transcript of interest in a given lane of
the sequencer:

K ∼ NB(mean = µ, var = µ(1 + φµ)). (1)

The mean µ is proportional to the concentration of
the transcript of interest in the original biological sam-
ple, up to a normalisation factor specific to the lane of the
sequencer. A suitable model for this normalisation factor
is the Robinson-Oshlack TMM factor [32]. The quantity
φ is called the dispersion parameter [39], and is specific to
the transcript isoform and the library preparation. Amore
detailed account of the model is given in the Additional
file 3.

R packages for DE in RNA-Seq
All three packages considered are based on a NB model,
and differ principally in the way the dispersion param-
eter is estimated. Unless otherwise stated, tests of these
packages used herein use default settings. Typical coding
sequences are given in the Additional file 3.

edgeR (version 2.4.0, Bioconductor)
To begin with, edgeR [43] calculates for each transcript a
quantile adjusted log conditional likelihood function for
the dispersion φ [39]. Here, “quantile adjusted” refers to
an adjustment of the number of counts to adjust for the
total number of counts across all transcripts in each bio-
logical replicate, and “conditional” means conditioning on
the sum of counts for the given transcript across biologi-
cal replicates. The “common dispersion” estimate defined
by edgeR assumes φ to be a constant over all transcripts
in one lane of the sequencer, and is obtained by max-
imising the log-likelihood summed over transcripts. How-
ever, edgeR recommends a “tagwise dispersion” function,
which estimates the dispersion on a gene-by-gene basis,
and implements an empirical Bayes strategy for squeezing
the estimated dispersions towards the common disper-
sion. Under the default setting, the degree of squeezing is
adjusted to suit the number of biological replicates within

each condition: more biological replicates will need to
borrow less information from the complete set of tran-
scripts and require less squeezing.

DESeq (version 1.6.1, Bioconductor)
In previous versions of the package DESeq [25], φ was
assumed to be a function of µ determined by nonpara-
metric regression. The recent version used in this paper
follows a more versatile procedure. Firstly, for each tran-
script, an estimate of the dispersion is made, presumably
using maximum likelihood. Secondly, the estimated dis-
persions for all transcripts are fitted to the functional
form:

φ = a + b
µ

(DESeq parametric fit), (2)

using a gamma-family generalised linear model. The per-
transcript estimate is considered to be more appropriate
when large numbers of replicates (≥ 4) are present, while
the functional form is considered to be more appropri-
ate when small numbers of replicates (≤ 2) are present,
in which case information is borrowed from the general
trend of all transcripts. Recognising that the dispersion
may be underestimated by the functional fit, leading to
an overestimate of significance in detecting DE, DESeq
by default chooses the maximum of the two methods for
each transcript. Also by default, DESeq assumes a model
in which the mean µ differs between conditions, but the
dispersion φ is common across all conditions.

NBPSeq (version 0.1.4, CRAN)
As for edgeR, the package NBPSeq [33] considers per-
transcript log likelihood conditioned on the sum of counts
across replicates. However, NBPSeq further imposes the
following functional relationship between φ and µ:

φ = cµα−2 (NBPSeq model), (3)
that is, a linear relationship between logφ and logµ. The
cases α = 1 and α = 2 (equivalent to common dispersion)
of this function are referred to as NB1 and NB2 respec-
tively. The global parameters α and c are estimated by
maximising the log conditional likelihood summed over
all replicates and transcripts.

Construction of the synthetic datasets
Each of our synthetic datasets consists of a ‘control’
dataset of read counts Kcontr

ij and a ‘treatment’ dataset of
read counts K treat

ij , for i = 1, . . . , t transcript isoforms
sequenced from j = 1, . . . , n biological replicate cDNA
libraries.
For each transcript isoform, we begin by providing a pair

of NB parameters µ̂i and φ̂i. A read count Kcontr
ij for each

isoform in each biological replicate is then generated by
sampling randomly from aNB distribution with these esti-
mated parameters to from the control dataset. To create



Robles et al. BMC Genomics 2012, 13:484 Page 11 of 14
http://www.biomedcentral.com/1471-2164/13/484

the treatment dataset, the set of isoforms is first divided
into a non-regulated subset, an up-regulated subset and a
down-regulated subset. A regulating factor θi = 1, . . . , t,
which is equal to 1 (non-regulated), > 1 (up-regulated)
or < 1 (down-regulated) is then chosen from a suitable
distribution. A treatment read count K treat

ij is then gen-
erated for each isoform in each biological replicate from
a NB distribution with the mean θiµ̂i and unchanged
dispersion φ̂i.
The basis for the parameters µ̂i and φ̂i is a subset of

the Pickrell [24] dataset of sequenced cDNA libraries gen-
erated form mRNA from 69 lymphoblastoid cell lines
derived from Nigerian individuals as part of the Inter-
national HapMap Project. For each individual, a library
prepared for the Illumina GA2 platform was split into
two portions, with one portion sequenced at the Argonne
sequencing centre and the other at the Yale sequencing
centre. For 12 of the individuals a second library was also
prepared, split, and sequenced at both centres. Only data
from the initial 69 libraries sequenced at Argonne was
used for the current study. The raw reads were re-aligned
onto the human transcriptome (hg18, USCS) using the
KANGA aligner [44]. The total number of reads mapped
to annotated genes per lane varied substantially from 2 ×
106 to 20 × 106. To provide a uniform set of biological
replicates from which to estimate µ̂i and φ̂i, a subset of
44 libraries for which the total number of mappings to the
transcriptome per lane was in the range 10 × 106 to 16 ×
106 was chosen. Finally, any transcript for which the total
number of reads was less than 44, i.e. an average of less
than one transcript per lane, was culled from the dataset
to leave a list of 46,446 transcripts. The resulting subset of
the Pickrell dataset is considered to exhibit overdispersion
due to both library preparation and biological variation.
Note that for generation of synthetic data it is not nec-

essary to provide an accurate estimate of µi and φi for
each isoform in the reduced Pickrell dataset, but sim-
ply to provide a plausible distribution of values of these
parameters over the transcriptome representing typical
isoform abundances and their variation due to technical
and/or biological overdispersion. Parameter values µ̂i and
φ̂i, were obtained from the reduced Pickrell dataset as fol-
lows. The total number of counts from each of the 44 lanes
was first reduced to that of the lane with the smallest num-
ber of counts by sampling from the counts in each lane
while keeping track of the transcript to which each count
is mapped. This forms a normalised set of counts for the
ith transcript in the jth lane.
For each transcript a maximum likelihood estimate

(MLE) µ̂i and φ̂i, was then made from the n = 44 biolog-
ical replicates. Details of the construction of this estimate
are given in the Additional file 3. For each simulation
described herein, a synthetic dataset was constructed con-
sisting of n biological replicates of ‘control data’ generated

from NB distributions with the estimated µ̂i and φ̂i, and a
further n biological replicates of treatment data generated
from NB distributions with means θiµ̂i and unchanged
dispersion φ̂i.
Two sets of simulations were performed:

1. To test performance under the null hypothesis, the
regulating factor was set to θi = 1 for all transcripts.

2. To test ability to detect DE in the presence of an
alternative hypothesis, the regulating factor θi was set
to 1 + Xi for a randomly chosen 7.5% of the
transcripts (up-regulated), (1 + Xi)−1 for a further
7.5% (down-regulated) and 1 for the remaining 85%
of the transcripts, where the Xi are identically and
independently distributed exponential random
variables with mean 1.

Calculation of true and false positive rates
Under the null hypothesis
All three packages test for DE in single-factor experiments
by calculating p-values using the method described in
[25]. For each transcript i, a probability is calculated for
the number of counts in each of two conditions control
and treatment, conditional on the sum of the counts in
both conditions assuming the NB model described above.
The p-value is the sum of the probabilities of all ways of
apportioning the sum of counts between the two condi-
tions, which have a lower probability than the observed
counts.
To test the performance of each package under the

null hypothesis, we simulated sets of n-control and
n-treatment lanes of counts for a range of values of n. The
FPR, quoted as a percentage, was calculated at a given
significance level α as:

FPR = number of transcripts with 100× p-value < α

total number of transcripts × 100%.

(4)

Ideally, the FPR should match the significance level of α
if the package is performing correctly.

In the presence of an alternative hypothesis
All three packages provide an adjusted p-value, padj,
to correct for multiple hypothesis testing with the
Benjamini-Hochberg procedure using the R function
p.adjust(). All calculations herein of true and false posi-
tive rates in the presence of an alternative hypothesis use
adjusted p-values.
From the 6, 966/46, 446 (15%) of the transcripts induced

with a regulating factor other than 1, we selected the 5, 726
(12%) with a regulation factor satisfying either θi ≤ 0.83 or
θi ≥ 1.20. We define these as “effectively DE” transcripts.
This additional filter on minimal fold-change is designed
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to quantify the performance of algorithms and experimen-
tal designs for detection of DE that might be considered
more biologically relevant by researchers. Likewise we
define the remaining transcripts, those satisfying 0.83 <

θi < 1.20, as “effectively non-DE”. These definitions were
used to estimate the FPR and TPR at significance level α

via the following formulae:

FPR= number of effectively non-DE transcripts with 100 × padj < α

total number of effectively non-DE transcripts ×100%.

(5)

TPR = number of effectively DE transcripts with 100 × padj < α

total number of effectively DE transcripts × 100%.

(6)

Apart from the use of adjusted p-values, the formula for
FPR reduces to Eq. 4 if the number of simulated DE tran-
scripts is set to zero, since in this case all transcripts are,
by definition, “effectively non-DE”. The quantities 1−FPR
and TPR are commonly referred to in the literature as
“specificity” and “sensitivity” respectively.

Simulating variable levels of sequence data and replication
Simulating variations in available sequencing data is a fun-
damental part of investigating the impacts of multiplex
experimental design strategies. Variability in the amount
of sequence data amongst samples can occur for reasons
such as restrictions on available resources, machine error,
or sequencing reads sequestered by pathogen transcrip-
tome fractions present in the sample. To simulate loss
of sequencing depth, we randomly sub-sampled without
replacement counts from the original table of counts sim-
ulated in the presence of an alternative hypothesis for each
biological replicate. Sequencing depth was decreased in
both control and treatment samples over a range of 100%
(a full lane of sequence) to 1% of the original data. After
this sub-sampling, the resulting table of counts was anal-
ysed in DESeq (edgeR) and the total number of effectively-
DE calls, TPR, FPR and fold-changes were recorded for
every n scenario. We simulated experimental choices of
n-controls vs. n-treatments biological replicates at n =2,
3, 4, 6, 8 and 12.

Multiplexing experimental designs
Multiplexing various samples into one sequencing lane
reduces the monetary cost of RNA-Seq DE analysis, albeit
by dividing the available sequencing depth over various
samples. Our strategy consisted of simulating multiplex-
ing n-control samples vs. n treatment samples into two
sequencing lanes. This way, the amount of total sequenced
data is constrained and each control and treatment sam-
ple is expected to be represented at an average depth
1/n × 100%. The absolute value of reads produced in a

lane of sequence (i.e. 100% depth) has increased as RNA-
Seq technologies evolve, currently this value can be up to
100 million reads. The multiplex experimental setups we
tested are:

• 2 vs. 2 biological replicates at 50% sequencing depth
• 3 vs. 3 biological replicates at 33% sequencing depth
• 4 vs. 4 biological replicates at 25% sequencing depth
• 6 vs. 6 biological replicates at 17% sequencing depth
• 8 vs. 8 biological replicates at 13% sequencing depth
• 12 vs. 12 biological replicates at 8% sequencing depth
• 32 vs. 32 biological replicates at 3% sequencing depth
• 96 vs. 96 biological replicates at 1% sequencing depth

Endnotes
aOur results obtained using edgeR are presented in the
Additional file 1: Figure S2.
bAdditional file 4: Figure S3 shows the minimum fold-
change at which a transcript is assigned a padj ≤ 0.01 for
every n scenario.
cThe details of our negative binomial model can be found
in Additional file 3, including Additional file 5: Figure
S1, which shows the maximum likelihood estimates of
the model’s mean and dispersion parameters for 46, 446
transcript isoforms.

Additional files

Additional file 1: Figure S2. FPR and TPR detected by edgeR as a function
of sequencing depth and replication. Different symbols represent the
number n of control vs. treatment samples (n = 2, 3, 4, 6, 8, and 12) across
sequence depths [ 100% → 1%]. A: TPR padj ≤ 0.01. B: FPR padj ≤ 0.01.
The solid grey line (“multiplex line”) connecting the TPR values of n
biological replicates at 1

n × 100% sequencing depth shows the increase of
TPR as more biological replicates n are used despite the loss power due to
the sequencing depth reduction required by the multiplexing of lanes. This
trend remains true even for the n = 32 and n = 96 cases.

Additional file 2: Figure S4. Venn-diagram showing the TP and FP calls
made by DESeq (left, blue circle) and edgeR (right, red circle) and how they
overlap between each other and the total pool of transcripts designated as
truly DE (top, green circle). A: the Venn-diagram for the case in which the
number of biological replicates is n = 12 and depth is 100%. This
combination of n and depth is somewhat unrealistic as the cost of 24 lanes
of sequencing would be almost prohibitive; however, it shows a ‘best case
scenario’ situation in which 2870 of the total 5689 truly DE transcripts were
detected by the union of DESeq and edgeR. Of these 2870 TP detections,
most of them (2360) were detected by both algorithms – hence either
algorithm would have sufficed. B: the Venn-diagram for n = 4 and depth is
25%. This more realistic experimental design choice of n and depth shows
the value of using both algorithms; only 913 out of the total 5697 truly DE
transcripts were detected by both algorithms, only two thirds of them
(591) were detected by both algorithms. These contrasting scenarios show
that the use of both algorithms aids to further constrain the list of viable DE
candidates in a fast and cheap manner.

Additional file 3: Negative binomial modelc.

Additional file 4: Figure S3. Smallest fold-change required for a
transcript to be called DE (padj ≤ 0.01) as a function of n biological
replicates (using DESeq). The more replicates available; the smaller the
fold-change required for a transcript to be called DE by DESeq or edgeR.

http://www.biomedcentral.com/content/supplementary/1471-2164-13-484-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-484-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-484-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-484-S4.eps
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Additional file 5: Figure S1.Maximum likelihood estimates of the NB
mean µ̂i and dispersion parameter φ̂ for 46,446 transcript isoforms. The
green line is a linear regression of log10 φ̂ against log10 µ̂, and corresponds
to the NBPSeq model relationship φ̂ = cµ̂α−2 with α = 1.700, c = 0.364.
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12. Lü B, Yu J, Xu J, Chen J, Lai M: A novel approach to detect
differentially expressed genes from count-based digital databases
by normalizing with housekeeping genes. Genomics 2009,
94:211–216.

13. Willenbrock H, Salomon J, Søkilde R, Barken KB, Hansen TN, Nielsen FC,
Møller S, Litman T: Quantitative miRNA expression analysis:

comparing microarrays with next-generation sequencing. RNA 2009,
15:2028–2034.

14. Zheng W, Chung LM, Zhao H: Bias detection and correction in
RNA-Sequencing data. BMC Bioinf 2011, 12:290.

15. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L: Improving
RNA-Seq expression estimates by correcting for fragment bias.
Genome Biol 2011, 12:R22.

16. Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C,
Hunkapiller K, Jensen RV, Knight CR, Lee KY, Ma Y, Maqsodi B, Papallo A,
Peters EH, Poulter K, Ruppel PL, Samaha RR, Shi L, Yang W, Zhang L,
Goodsaid FM: Evaluation of DNAmicroarray results with quantitative
gene expression platforms. Nat Biotechnol 2006,
24:1115–1122.

17. Risso D, Schwartz K, Sherlock G, Dudoit S: GC-Content normalization for
RNA-seq data. BMC Bioinf 2011, 12:480.

18. Oshlack A, Wakefield MJ: Transcript length bias in RNA-seq data
confounds systems biology. Biol Direct 2009, 4:14.

19. Auer PL, Srivastava S, Doerge RW: Differential expression–the next
generation and beyond. Brief Funct Genomics 2011
doi:10.1093/bfgp/elr041.

20. Fang Z, Cui X: Design and validation issues in RNA-seq experiments.
Brief Bioinf 2011, 12:280–287.

21. Wang Y, Ghaffari N, Johnson CD, Braga-Neto UM, Wang H, Chen R, Zhou
H: Evaluation of the coverage and depth of transcriptome by
RNA-seq in chickens. BMC Bioinf 2011, 12(Suppl 10):S5.

22. Łabaj PP, Leparc GG, Linggi BE, Markillie LM, Wiley HS, Kreil DP:
Characterization and improvement of RNA-Seq precision in
quantitative transcript expression profiling. Bioinformatics 2011,
27:i383–391.

23. Marioni JC, Mason C, Mane SM, Stephens S, Gilad Y: RNA-seq: an
assessment of technical reproducability and comparison with gene
expression arrays. Genome Res 2008, 18:1509–1517.

24. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E,
Veyrieras JB, Stephens M, Gilad Y, Pritchard JK: Understanding
mechanisms underlying human gene expression variation with RNA
sequencing. Nature 2010, 464:768–72 .

25. Anders S, Huber W: Differential expression analysis for sequence
count data. Genome Biol 2010, 11(10):R106.

26. Kvam VM, Liu P, Si Y: A comparison of statistical methods for
detecting differentially expressed genes from RNA-seq data. Am J
Bot 2012, 99(2):248–256.

27. Porreca GJ, Zhang K, Li JB, Xie B, Austin D, Vassallo SL, LeProust EM, Peck BJ,
Emig CJ, Dahl F, Gao Y, Church GM, Shendure J:Multiplex amplification
of large sets of human exons. Nat Methods 2007, 4:931–936.

28. Smith AM, Heisler LE, St Onge RP, Farias-Hesson E, Wallace IM, Bodeau J,
Harris AN, Perry KM, Giaever G, Pourmand N, Nislow C:
Highly-multiplexed barcode sequencing: an efficient method for
parallel analysis of pooled samples. Nucleic Acids Res 2010,
38:e142.

29. Wang L, Si Y, Dedow LK, Shao Y, Liu P, Brutnell TP: A low-cost library
construction protocol and data analysis pipeline for Illumina-based
strand-specific multiplex RNA-seq. PLoS ONE 2011, 6:e26426.

30. Alon S, Vigneault F, Eminaga S, Christodoulou DC, Seidman JG, Church
GM, Eisenberg E: Barcoding bias in high-throughput multiplex
sequencing of miRNA. Genome Res 2011, 21:1506–1511.

31. Timmermans MJ, Dodsworth S, Culverwell CL, Bocak L, Ahrens D,
Littlewood DT, Pons J, Vogler AP:Why barcode? High-throughput
multiplex sequencing of mitochondrial genomes for molecular
systematics. Nucleic Acids Res 2010, 38:e197.

32. Robinson MD, Oshlack A: A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol 2010,
11:R25.

33. Di Y, Schafer D, Cumbie J, Chang J: The NBP negative binomial model
for assessing differential gene expression from RNA-seq. Stat Appl in
Genet andMol Biol 2011, 10:Article 24.

34. Zhou YH, Xia K, Wright FA: A powerful and flexible approach to the
analysis of RNA sequence count data. Bioinformatics 2011,
27:2672–2678.

35. Singh D, Orellana CF, Hu Y, Jones CD, Liu Y, Chiang DY, Liu J, Prins JF:
FDM: a graph-based statistical method to detect differential
transcription using RNA-seq data. Bioinformatics 2011, 27:2633–2640.

http://www.biomedcentral.com/content/supplementary/1471-2164-13-484-S5.pdf
http://dx.doi.org/10.1093/bfgp/elr041


Robles et al. BMC Genomics 2012, 13:484 Page 14 of 14
http://www.biomedcentral.com/1471-2164/13/484

36. Li B, Dewey CN: RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC
Bioinformatics 2011, 12:323.

37. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A: Differential
expression in RNA-seq: a matter of depth. Genome Res 2011,
21:2213–2223.

38. Langmead B, Hansen KD, Leek JT: Cloud-scale RNA-sequencing
differential expression analysis with MYRNA. Genome Biol 2010,
11:R83.

39. Robinson M, Smyth G:Moderated statistical tests for assessing
differences in tag abundance. Bioinformatics 2007, 23(21):2881–2887.

40. Anders S: Analysing RNA-Seq data with the DESeq Package. 2010.
[http://www.bioconductor.org/help/course-materials/2011/BioC2011/
LabStuff/DESeq.pdf]

41. McIntyre LM, Lopiano KK, Morse AM, Amin V, Oberg AL, Young LJ,
Nuzhdin SV: RNA-seq: technical variability and sampling. BMC
Genomics 2011, 12:293.

42. Bashir A, Bansal V, Bafna V: Designing deep sequencing experiments:
detecting structural variation and estimating transcript abundance.
BMC Genomics 2010, 11:385.

43. Robinson M, McCarthy D, Smyth G: edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics 2010, 26:139–140.

44. Stephen S, Cullerne D, Spriggs A, Helliwell C, Lovell D, Taylor JM:
BioKanga: a suite of high performance bioinformatics applications.
in preparation 2012, [http://code.google.com/p/biokanga/]

45. JabRef Development Team: JabRef. JabRef Development Team 2010.
[http://jabref.sourceforge.net/faq.php]

46. Muller A: TeXMed – a BibTeX interface for PubMed 2002–2012.
[http://www.bioinformatics.org/texmed/]

47. Chen H, Boutros PC: VennDiagram: a package for the generation of
highly-customizable Venn and Euler diagrams in R. BMC Bioinf 2011,
12:35.

doi:10.1186/1471-2164-13-484
Cite this article as: Robles et al.: Efficient experimental design and
analysis strategies for the detection of differential expression using RNA-
Sequencing. BMC Genomics 2012 13:484.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.bioconductor.org/help/course-materials/2011/BioC2011/LabStuff/DESeq.pdf
http://www.bioconductor.org/help/course-materials/2011/BioC2011/LabStuff/DESeq.pdf
http://code.google.com/p/biokanga/
http://jabref.sourceforge.net/faq.php
http://www.bioinformatics.org/texmed/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Sequencing depth
	Replication
	Efficient experimental design
	Approach

	Results
	Comparisons of statistical methods: edgeR, DESeq, and NBPSeq using simulated data under the null
	Comparison of statistical methods: DESeq and edgeR using simulated data with 15% DE transcripts
	Detection of DE as a function of number of biological replicates n
	Detection of DE as a function of sequencing depth
	Detection of DE across multiplex experimental design strategies
	Fold-changes as indicators of DE

	Discussion
	Comparisons of DE algorithms: edgeR, DESeq and NBPSeq
	Effects of replication for detection of DE
	Effects of sequencing depth for detection of DE
	Multiplexing experimental designs

	Conclusions
	Methods
	Negative binomial model and biological variation simulation
	R packages for DE in RNA-Seq
	edgeR (version 2.4.0, Bioconductor)
	DESeq (version 1.6.1, Bioconductor)
	NBPSeq (version 0.1.4, CRAN)

	Construction of the synthetic datasets
	Calculation of true and false positive rates
	Under the null hypothesis
	In the presence of an alternative hypothesis

	Simulating variable levels of sequence data and replication
	Multiplexing experimental designs

	Endnotes
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

