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In many cases modal tests are conducted on individual components of complex engineer- 
ing structures where interest is confined to deriving an undamped model of the structure. 
A method is proposed for this task which demands a minimum of input data and which, 
in particular, does not require accurate measurements around resonance. The method is 
simple to program and its application to various practical structures is described. 

1. INTRODUCTION 

Experimental modal analysis, or vibration system identification, has become an 
increasingly popular technique in recent years. Developments in measurement 
and instrumentation technology have facilitated the acquisition of data of sufficient 
accuracy to be submitted to the calculation procedures which constitute modal analysis, 
leading to extraction of the modal properties of a test structure, and thence to a mass 
and stiffness model of it. 

One of the earliest such techniques used on mechanical structures was that of 
Salter [l] based on a graphical analysis, and we shall return to his work later. 

However, the recent development of numerical modal analysis algorithms has been 
extensive and the curve-fitting procedures upon which they are based are very refined 
[2,3]. These methods are generally proven by using synthesized data, usually polluted 
with random errors to add realism, and in these test cases they perform excellently. 
However, their very refinement can render them remote from their users who will often 
not appreciate the finer aspects of their workings, nor know how to proceed following 
an unsatisfactory result. In this paper and its companion [4], the use of modal analysis 
techniques for practical applications is examined and two complementary and simple 
methods are presented which can be programmed with relative facility on either mini- 
or mainframe computers. 

This present paper is concerned with a class of structures whose demands on the modal 
analysis process are essentially for a simple undamped model. Such is the case when the 
damping in the test structure is both relatively small (thereby permitting the following 
method to be used) and of no intrinsic interest (so that its exclusion from the analysis 
process is of no consequence). This situation is encountered in a great many practical 
applications, and especially those which include studies and modelling of the individual 
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components which form part of an assembled structure. Usually, the individual com- 
ponents are themselves very lightly damped, and such damping as they do possess is 
often of little consequence to the assembled structure which generally derives most of 
its damping from the junctions and joints between the various components. Also, interest 
is generally confined in these studies to predicting the natural frequencies of the assembly 
from knowledge of its components, and for this purpose the damping is unimportant. 
These premises are very similar to those of Salter [l]. 

In addition to providing a simple means for analyzing virtually undamped structures, 
the method described below is also useful as an alternative to the more common 
curve-fitting procedures, such as that described in reference [4], which rely heavily on 
frequency response measurements near resonance. Under certain conditions, these reson- 
ance data will be ill defined or inaccurate due to measurement problems or to non-linear 
behaviour of the structure, and in such cases, the method described below can provide 
a valuable means of avoiding serious errors in the modelling procedure. 

Although quite different in its method of use, the procedure described below does 
exhibit marked similarities to the graphical method of Salter [l], the general shape of 
the frequency response curve rather than detailed measurements in resonant regions 
being used in both. It is based upon the fact that the locations of resonance and 
antiresonance frequencies are determined by the mass and stiffness properties of the 
structure. 

2. THEORETICAL BASIS 

2.1. MATHEMATICAL FOUNDATION OF MODAL ANALYSIS 

The response q,(w) to an input force Q~(w) of a harmonically excited N-degree-of- 
freedom system with hysteretic damping may be expressed in modal terms as a receptance, 

where ,4j is the ith element of the rth complex mode shape 
a “modal constant” rAjk as 

rAjk = r6j rd’k, 

and obtain the equation 

N 
r Ajk 

CYik(W)=,sI chj _w2)’ 

(1) 

vector {d},. One may define 

(2) 

(3) 

In this form the equation is identical to equation (9.5.14) quoted by Bishop and Johnson 
PI. 

It is convenient to write the complex quantity A? as: 

hf =wz(l+in,), (4) 

where w, is the natural frequency and nlr the loss factor of the rth mode. The receptance 
(Yjk(w) may thus be rewritten as 

a,k(W)= ; r Ajk 
r=~ w?[l-(o/w,)*+in,]’ 

(5) 
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The corresponding inertance Iik (w) may be written as 

4(w) 
lik(m) =QRO= -da&) = c” r Aik 

r=t 1 -(w~/w)~(~ +i7j,)’ 
(6) 

Inertance data are available directly from practical measurements with accelerometers 
and force transducers. 

2.2. IDENTIFICATION OF MODAL CONSTANTS FROM MEASURED INERTANCES 

For a system with negligible damping, equation (6) may be written as 

One can select N discrete response frequencies Q,, & . . . , ON and incorporate the 
corresponding inertances into a matrix equation: 

(1 - w:/ny 

. . * 

or 

A 1 jk 

ZAik 

NAik 

always provided that no selected response frequency may coincide with a natural 
frequency. 

The matrix [R] contains terms which are functions only of the natural frequencies and 
the selected response frequencies. The terms are real and of either sign and the matrix 
is very easy to invert with negligible error, thus allowing the identification of modal 
constants in terms of response data: 

{AjkI=[RI-‘{Jk(W)I. (9) 

2.3. DAMPING 

Sometimes it is convenient to include a modal loss factor as a secondary correction if 
inclusion of approximate damping terms is thought to be necessary. The simplest approach 
is found by considering equation (5) for the condition w = w,. In this case, for sufficiently 
light damping, the series for C+(@,) is dominated by the rth term and there is a resonance 
peak whose amplitude has negligible contributions from other modes. The equation is 

Gjk (wr) = rAjk/iVrW f 2 (101 

from which the loss factor is obtained as 

777 = ]rAjk(/]~jk(W~)IW?. !11) 

This formulation has been given by Ewins [6] who developed it further to obtain the 
loss factor in terms of measured responses at two near-resonance frequencies. 

3. IMPLEMENTATION OF IDENTIFICATION PROCEDURE 

3.1. COMPUTER PROGRAM 

A computer program has been written to carry out the calculations outlined in the 
foregoing sections. The “standard” way of using the program is as follows: first, to plot 
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the frequency response corresponding to a set of measured data read from file or tape; 
second, to set up matrix [R] NxN and vector {I}Nxl of selected measured data and to 
solve by matrix inversion to give [RI-’ and the vector {A} of modal constants (the 
damping loss factor can be estimated from near-resonance response data if required); 
third, to regenerate the response from the modal constants and to compare this with the 
original by plotting it on the same graph, preferably with use of continuous lines in 
contrast to the discrete points of measured values. If the comparison is not sufficiently 
close, another selection of response data may be made and the second and third steps 
repeated. 

3.2. SELECTION OF DATA POINTS 

Although very simple in concept, the success of the method in practical situations 
depends upon the choice of the very few data required as input and this topic is discussed 
in some detail. 

3.2.1. Complete modal representation 
The frequency response of an undamped single mode is shown in Figure 1 as a 

logarithmic plot of mobility modulus versus frequency. The symmetry about the vertical 
asymptote is a convenient feature of mobility (d(w)/Q(w)) as distinct from receptance 
or inertance, whose plots are skewed. 

30 - 

(stiffness line) 
-20 dB/deccde 
(mass line) 

Log Frequency * 

Figure 1. The frequency response of a single mode. 0 dB corresponds to A,/w,; W, = OJ,/V’~: wz = w, Y k/2. 

When several modes with modal constants of differing magnitudes are combined, the 
resultant mobility plot will be as in Figure 2, which illustrates a 4-mode system. The 
signs on the curve segments indicate the phase of the corresponding mobility: i.e., +90” 
or -90”. 

The identification calculation of equation (9) requires knowledge of the four natural 
frequencies w1 to o4 and of the frequency response data at the four selected response 
frequencies Ri to f14. The mobilities Y, to Y4 are readily transformed into inertances 
of correct sign for inclusion in the equation. The selection of four from the many responses 
for which data would be available from a mobility measurement can be quite arbitrary 
in this case of complete modal representation. The response curve can be regenerated 
from the set of four identified modal constants by using equation (7) for a large number 
of values of w. This regenerated curve will coincide with the original response data within 
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Figure 2. Selection of response data for identification: complete modal representation 

a close tolerance which is directly related to the error in measurement of inertance or 
mobility. 

3.2.2. Incomplete modal representation 
In the majority of practical cases, vibration data are acquired by measurement over 

limited frequency ranges on structures which, being continuous, have a great many 
degrees of freedom and a corresponding number of modes. Thus it is generally impossible 
to carry out complete modal analysis which encompasses all the modes, and in the general 
case an N-mode representation has to be used to approximate to a greater-than-N set 
of data. 

If equation (9) is applied to a greater-than-N-mode system, the measured inertances 
{h,(w)} will each contain contributions from modes beyond the Nth and therefore the 
calculated modal constants will have errors associated with such out-of-range contribu- 
tions. These errors can be reduced by increasing N. The effect is illustrated in Figure 3, 

Figure 3. Comparison of regenerated curve with original data: incomplete modal representation. --, True 
curve; -, regenerated curve. (a) Two modes; (b) three modes; cc) four modes. 
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in which the tip mobility of a freely supported beam is represented by 2-, 3- and 4-mode 
approximations successively. Since the first mode of the body is at zero frequency, it is 
not shown on the plot although it is included in the model. Further consideration of 
responses of the same beam is given in subsequent figures. The circles on Figure 3 
indicate the N selected responses used in identification calculations: in this case they 
are mid-amplitude responses below resonance. The regenerated curve, of course, passes 
through the selected data points and fits approximately elsewhere-clearly, the tit 
improves as the number of modes included increases. Above the last mode represented, 
the regenerated curve is always asymptotic to a line at -20 dB/decade. The fit of the 
two curves is quite good up to the last resonance included, but not beyond. 

With an incomplete modal representation such as shown in Figure 3, there can be, no 
unique solution for equation (9): the values obtained for the modal constants depend 
on the selection of response data. For this reason, a least-squares or pseudo-inverse 
approach, in which many sets of response data are used instead of only N, will not 
necessarily converge to give an optimum set of modal constants, and it is appropriate 
to consider which are the best points to select. 

One may define those modes which have natural frequencies within the measured 
range as “low” and those of higher frequency outside the range as “high”. Accordingly, 
one can designate the inertance contribution from low modes as IL and that from high 
modes as 1,. Thus the measured inertances selected for the identification calculation are 
given by 

V1=VL}+VH]. (12) 

The modal constants {A} obtained by use of equation (9) thus have two components, 

{A]=LG}+L%], (13) 

where the suffix C = Correct and E = Erroneous. It follows that 

L&1 = [W’Ud, WE) = [Rl~~ ‘Ud (14,15) 

One should select response frequencies so as to maximize {A,} and minimize {AE}, which 
is seen from equations (14) and (15) to be maximizing {IL} and minimizing (1,). It is also 
desirable for the elements of [RI-’ to diminish along the rows so that less weight is given 
to the higher frequency inertance values which are more likely to be in error than those 
at low frequency because of the increasing influence of out-of-range modes. 

The choice of response data points can have a very significant influence in the results, 
as shown in Figure 4. The response data of Figure 4(a) were chosen to have mobilities 
with mid-range moduli and +90” phase. The curve fit between regenerated and original 
data is reasonable, showing divergence only at higher frequencies. The response data of 
Figure 4(b) are substantially the same as for Figure 4(a), with the difference that the 
response at 50 Hz is omitted and one at 1000 Hz added. The regenerated curve based 
on identified modal constants in this case does indeed match the selected data points in 
amplitude and phase, but is otherwise drastically wrong. All the identified modal constants 
have the wrong sign, as indicated in Figure 4(b). Such a failure of identification is 
immediately obvious because of the mismatch of regenerated and original data. In this 
particular example the response frequencies 0, to onhr are not evenly interspersed between 
the natural frequencies wi to WN with the result that the [RI-’ matrix features terms 
getting larger to the right along the rows so that the erroneous contribution of out-of-range 
high frequency modes is emphasized. 

Such errors can be reduced by selecting response frequencies as far as possible at or 
just below antiresonances so as to minimize the contribution of out-of-range modes. 
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Figure 4. The effect of selection of response data upon the identification. -, True curve; -regenerated 
curve based on identified modal constants. (a) Selected response data at 31.6, 50.1, 144.5, 331, 575 Hz. 
resonances at 0,85.9, 237,464,767 Hz; (b) selected response data at 31.6, 144.5,331, 575, 1000 Hz, segments 
marked + have phase angle +90” and segments marked - have phase angle -90”. 

Figure 5 shows the in- and out-of-range contributions for the rotational mobility at 
the tip of a beam. The measured antiresonances AR, to AR5 (which incorporate the 
contributions of all modes) occur at frequencies lower than those of the summed in-range 
modes. At the measured antiresonances the contributions of in- and out-of-range modes 
are equal in amplitude, but of opposite sign. At frequencies below these antiresonances 
the contributions from the out-of-range modes are smaller than those in-range and the 
error in the identification calculation is reduced. Figure 6 is based on error-free inertance 

AR, AR, AR, AR, 

Log Frequency - 

Figure 5. High and low frequency contributions to mobility. Segments marked + have phase +90”, those 
marked - have phase -90”. 
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Figure 6. The effect of variation of a response data point in the vicinity of an antiresonance. 

data and shows the errors of three of the five modal constants for a 5-mode approximation 
to an infinite-degree-of-freedom system. The figure shows that in the case of the modal 
constants of the third and fourth modes, choice of a data point below the fourth 
antiresonance reduces the error. The much larger error of the end-of-range 5th modal 
constant increases, however. 

Experience has shown that satisfactory curve fits of regenerated data are usually 
obtained if the response data selected for identification contain as many antiresonances 
as possible. Antiresonances are, of course, associated with zeroes in {I}, thus reducing 
the effect of measurement errors in practical cases. An optimum selection of data used 
for identification of a point mobility is illustrated in Figure 7(a) in which only one 
non-zero response at low frequency is measured. The other data points-being antireson- 
antes-are characterized only by their frequencies which contribute to matrix [RI. 

Log Frequency -+ 

Figure 7. Identification of a point response: response data at antiresonances. (a) Point response 
identification; (b) Salter skeleton of point response. 

The data used in these cases correspond very closely to those required for constructions 
of the Salter skeleton shown for the same point response in Figure 7(b). The skeleton 
is located by a stiffness line asymptotic to the true curve at low frequency and thereafter 
established by mass and stiffness lines intersecting at the frequencies of resonance and 
antiresonance. 

A transfer response of the same 5-mode system is shown in Figure 8(a). Response 
data suitable for identification are indicated. In this case there are only two antiresonances, 
so three non-zero points were selected, two being at local minima. The alternation of 
modal constant signs is indicated. 
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Figure 8. Identification of a transfer response: response data at antiresonances where possible. (a) Transfer 
response identification; (b) Salter skeleton of transfer response. 

The corresponding Salter skeleton is shown as Figure 8(b) and it is seen that in the 
absence of antiresonances the downward trend of response level with increasing frequency 
is accentuated. This is a significant feature of most transfer responses. 

Salter indicated that the skeleton should have its vertical lines adjusted in length 
according to the resonant amplitude of the response curve and then be clothed by a 
curve whose sharpness is inversely related to the amount of damping which Salter 
expressed in terms of Q, the inverse of the loss factor n. 

The important advantage of the identification process of equation (9) as applied here 
is that it establishes the modal constants without errors attributable to damping, since 
the response data which are chosen are remote from the regions of resonance where 
damping has most effect. In other identification processes, expecially those in which 
circle-fitting in the complex plane is used, one evaluates damping first and other modal 
constants as a function of modal damping subsequently. 

3.3. THE IDENTIFICATION OF AN ISOLATED MODE-THE “WINDOW” METHOD 

It is to be expected that end-of-range modes will have enhanced values because they 
will incorporate the effects of more distant modes. If three modes are selected from an 
N-mode response, an identification can be carried out by using (for a point response) 
one non-zero response and two antiresonances. The “middle” modal constant will have 
a calculated value reasonably close to its true value, whereas the two “outside” constants 
will have enhanced values. The situation is sketched in Figure 9. It is thus possible to 
identify an N-mode response by a series of 3-mode “windows”, with all the “middle” 
constants retained together with the lowest and the highest, as sketched in Figure 10. 
Regenerated curves based on such constants have produced acceptably accurate fits to 
measured data. Since the calculations involve only 3 x 3 matrices, a hand-calculator will 
suffice. 

3.4. IDENTIFICATION OF SMALL MODAL CONSTANTS 

So far, the systems discussed have had well spaced natural frequencies and modal 
constants of the same order of magnitude. In a more general case it is likely that the 
point at which response is measured will be quite close to a node of at least one of the 
modes and, consequently, will have little response at that particular resonance. In such 
a case, that modal constant will be small and will be subject to a relatively large error. 
This error is unlikely to cause a mismatch of regenerated curve to original data, but will 
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Figure 9. The identification of an isolated mode by the window method. . , True responses of individual 
modes; -, responses of modes identified in 3-mode calculation; -, measured responses = true total of 
all modal contributions. Curve A=response of mode at We , raised to include effects of modes at w, z and 
below; curve B = response of mode at w, maintained at true value: curve C = response of mode at w,+ i raised 
to include effects of modes at w,+~ and above. 

Constants for ’ 
Modes I and 2 

Constant for ,’ ” ; I. ’ I , 
Mode 3 / 
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Constant for ” 

,/’ I / I 
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Mode 4 ! 
,,,/Window 4 

_- 

Constants for ” 
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Figure 10. Illustration of the window method of identification. 

be significant if it is used in the determining of a mode shape vector. This relationship 
of modal parameters is further discussed in section 4 below. 

In the case of a weak isolated mode, the magnitude of the modal constant, AR, is 
related to the ratio of the modal frequency wR to the adjacent antiresonance frequency 
WAR. Suppose that the local response is dominated by modes of lower frequency which 
have an effectively constant inertance, AL, in the range of interest. Thus the inertance 
is given by 

I =AL+AR/(~-w~/w~). (16) 
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The local resonance occurs when w = wK and antiresonance when 

AI,= -A,/(1 -&I&d, (17) 

which leads to 

AR/AL = (w~/u/,~ )’ -- 1. (18) 

This relationship between modal constant and mR/uAR ratio is tabulated in Table 1. 
It follows that a weak mode will generally have an antiresonance very close to its 
resonance so that its effect will be simply to put a small local kink in the response curve, 
with no long-range effects. 

When data from several response curves of the same system are compared, there arc 
often small discrepancies in resonance frequencies, which are resolved by adjusting to 
the average value. In such a case, it is desirable to adjust the antiresonance frequent) 
of a weak mode so as to preserve the (wR/wAR ) ratio thereby avoiding gross error in the 
identified value of its modal constant. 

TAHL.E 1 

Small modal constant us. (wR/uAR) ratio 

(tiK/wAR ) ratio 0.95 0.98 0.99 1.01 1.02 1 ,os 

Modal constant ratio -0.1 -0.04 -0.02 +0.02 +0.04 to.1 

3.5. RESIDUALS 

The idea of an isolated mode can usefully be extended to the consideration of an 
isolated group of modes. Suppose that the N modes of equation (5) were such a group, 
filling the frequency range of interest, but that there were also other modes outside this 
range at lower and higher frequencies. For the lower natural frequencies the inequality 

w,<c w 119) 

would hold and in the range of interest, the L lower modes would be approximated by 

Conversely, for the higher natural frequencies one has 

w, >>w (21) 

and the H higher modes are approximated by 

z ,Aja=Rik. 
r=N+L.+L W, 

(22) 

The term (-SJw’) corresponds to a mass residual which accounts for out-of-range low 
frequency terms. The name “samm” has been proposed for Sik, which has dimensions 
of l/mass and units of (l/kg). 

The term (Rjk) corresponds to a residual flexibility accounting for the out-of-range 
high frequency terms. Rjk has dimension 1 /stiffness. Equation (5) may now be rewritten 
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3.5.1. Low frequency residuals 
It is possible to take account of low frequency residuals by including an arbitrary 

resonance frequency, lower than the range of interest, in identification calculations. In 
the case of freely supported structures or components, the low frequency response is 
dominated by the rigid body modes at zero frequency and the identification can be 
carried out by using equation (9) without modification. Only one zero frequency modal 
constant can be calculated by this method and this will generally contain contributions 
from more than one rigid body mode. 

3.5.2. High frequency residuals 
Although in many practical cases only one low frequency resonance (zero) need be 

considered, there is no such simplification in the case of high frequency residuals, since 
for a practical continuous structure, there is no bound to the number of modes. Rep- 
resentation of such modes is necessarily approximate, but equation (22) provides the 
key. The high frequency residual can be calculated by declaring an extra mode at an 
arbitrary frequency, wN, higher than the range of interest, and then using equation (9) 
in the normal way. The residual stiffness would be given by 

K,,,= l/Rik =&/,Ai,. (24) 

The choice of ON has some influence on the accuracy of the modal constants within 
the range of interest as can be seen, for example, in Figure 11, which applies to the 

Frequency (kHr) 

Figure 11. Sensitivity of modal constants to residual “resonance” frequency 

rotational response at a beam tip featured in Figures 5 and 6. The curves start at the 
true 6th natural frequency of the beam. Each applies to a different modal constant and 
each passes through zero error at some value of w 6. A trial-and-error process of varying 
ti6 and comparing the resulting regenerated response data with original data would give 
an optimum value in the range 1500-2000 Hz. Another feature of the curves is of value, 
however: they all become asymptotic to horizontal lines at the highest frequencies. Thus, 
if a high enough value of 06 is chosen, a definite set of modal constants will be established 
so that in equation (24), the high frequency residual can be expressed as a residual stiffness. 
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The discussion and example above correspond to the case of a point response for 
which force input and response occur at the same co-ordinate. It is usual in the case of 
transfer responses for the high frequency residual term to be negligibly small, as indicated 
by the steep fall of response in Figure 8 at higher frequencies. 

3.5.3. Visualization of high frequency residual 
Assuming that the low frequency residual S,/w’ can be represented by a zero-frequency 

mode, one may write, for the point receptance, 

(25) 

Remembering equation (24), one can visualize the high frequency residual as a spring 
as illustrated in Figure 12. 

Figure 12. Visualization of high frequency residual as a spring. 

4. RELATIONSHIPS OF MODAL PARAMETERS 

4.1. DERIVATION OF MODAId CONSTANTS 

Each of the co-ordinates of an N-degree-of-freedom system may have (in principle) 
an input force and each will have an acceleration response. Such a system will have a 
complete inertance matrix [I(w)] NxN, of wttich &(w), as defined in equation (61, is a 
typical element. For each mode there is a matrix [A], containing all the modal constants 
of that mode. Their inter-relationship can be developed by extending equation (2) to 
include all j and k: 

This equation can be used in the calculation of mode shape data {4jr from the identified 
modal constants [A],. It is not necessary to know all the elements of [A], in order to 
find all the elements of {4},; one row or column will suffice. 

For example, if the jth column of [Al7 has been established by identifying the frequency 
response curves obtained at all N co-ordinates when a single force was applied at 
co-ordinate j, one can write 

rAjj = (r4j)*, hence &i = *(,Ajj)“‘, (271 

,Aik = dj rdk, hence r4k = rAik/Ai = rA,kl(rAjj)“*. (28) 

Equation (28) can be applied for k = 1, (j - 1) and k = (j + l), N giving eventually all 
the data for {4},. Subsequently, the complete matrix of modal constants [A], can be 
calculated from {c$}~ by using equation (26). 
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For one specific modal constant, 

rAik = r&j rbk = II-A,iI(,A,i)“~I[,Ak,I(,A,,)“‘!= ,A,, rAkt/rAtz. (29) 

Thus, the modal constants of the response at co-ordinate i arisingfromforce at co-ordinate k 
can be derived from the modal constants of responses at i,j and k arisingfrom force input at a 
different co-ordinate, i. 

4.2. APPL~ICATION OF DERIVA-T‘ION Rl t ATIONSHIPS 

4.2.1. Single point excitation 
The possibility of determining a complete mode shape vector {+}, from measurements 

of response obtained with a single co-ordinate of excitation has been exploited by several 
investigators, including Flanelly er al. [7,8], Goyder [3] and Potter and Richardson [9], 
and may now be regarded as a standard technique. The derivation of one row or column 
of [A], involves identification of one point response and (N- 1) transfer responses. It 
is to be expected in practice that some transfer measurements relating to points of a 
structure remote from each other or otherwise poorly coupled (by proximity to a node. 
for example) will give modal constants of small value which have proportionately large 
errors. 

Richardson and Kniskern [lo] have responded to these difficulties by proposing a 
method which allows the inclusion of data from several columns or rows of the modal 
constant matrix: in other words, by using more than one excitation point. 

4.2.2. Multiple point measurements 
A method of acquiring more reliable data is to obtain the point modal constants 

corresponding to the main diagonal of [A], by identifying the point responses obtained 
at each co-ordinate in turn. It will be remembered that point responses always feature 
antiresonances and have levels of response which tend to be maintained, rather than fall 
off, at higher frequencies. These features enhance the likelihood of obtaining accurate 
modal constants. The numerical values of the elements of the mode shape matrix [b,] 
are simply obtained from the square roots of the corresponding modal constants, as in 
equation (27). These square roots are indeterminate in sign, and thus it is necessary to 
obtain the signs by other means. This is done most readily by measuring the transfer 
responses associated with force input at one co-ordinate which is not a node of any mode 
and finding the signs of the modal constants from the phase information. 

4.2.3. Point response at inaccessible locations 
Some points on structures are accessible for attachment of accelerometers, but not 

accessible for force input, requiring as it does not only the force transducer but also 
alignment of a shaker and drive rod. The inside of a small diameter bearing housing 
would typify such an inaccessible location. The point inertance is required, perhaps, in 
order to predict the effect of the support upon the dynamics of a rotating shaft. If one 

‘designates the inaccessible location as co-ordinate A and nearby accessible location as 
co-ordinate B, the inertance matrix relating A and B is 

(30) 

The elements of the second column, I AR and IRB, with force input at B, can be measured. 
The modal constants, ,AAn and rABB, can be identified and then rAaa found, by using 



MODAL IDENTIFICATION: LIGHT DAMPING 71 

the equation 

~AAA = r&idrAm (33) 

The response l& can then be reconstituted by using a sum of modal contributions similar 
to equation (5). However, difficulties arise if there are residual terms, as discussed in 
section 4.3, and a discussion of the associated problem is given in reference [ll]. 

4.2.4. Improvement of rotational measured data 
Some practical difficulties have been encountered in the measurement of rotational 

mobilities of beams. For example, the inertance matrix for the tip of a beam can be 
written as 

(32) 

The parameter (6/M) is difficult to measure accurately, not least because of the problem 
of producing an input moment, M. As is explained in what follows, inaccuracies in (i/M) 
may be compensated for by deriving the modal constants of that parameter from those 
of (g/F) and (6/F) which are amenable to reasonably accurate measurement. 

4.3. RESIDUALS AND DERIVATION 

It must now be pointed out that high frequency residuals cannot be derived. Derivation 
is possible for modes within the frequency range of interest because it is an expression 
of the orthogonality properties of the normal mode. If a mode shape is known and the 
amplitude of one particular element of that mode is known, then the amplitudes of all 
elements are determined. The high frequency residual is an approximation to the 
combined effect of a number of modes and can be expressed in terms of a modal constant 
of a fictitious mode at an assumed “resonance” frequency. There is no residual mode 
.shape. Consequently, residual terms for I AA cannot be derived from IA& IBB measure- 
ments. At this juncture, it seems as if the use of a high frequency residual and derivation- 
two most useful devices in modal identification-nullify each other. Fortunately, there 
is a workable solution to the problem: the representation of a high frequency residual 
as a spring introduced above in section 3.5 proves to be a valuable contrivance [12]. 

Similar comments apply in general to low frequency residuals in those cases where 
the effects of several modes of different frequencies are included. The most common 
cases encountered in this study of lightly damped structures is of freely supported 
components. Their low frequency residuals correspond to rigid body modes at zero 
frequency, to be dealt with in the next section. 

4.4. RIGID BODY MODES 

A freely supported body has six rigid body modes. Three of these are translational 
and three are rotational and each has a mode shape which is orthogonal to all the others. 
Since they all have the same resonance frequency, zero, they can combine. A general 
rigid body motion is thus a combination of rigid body modes. As in the case of bending 
modes, the individual rigid body modes have definite shapes which relate to specific 
co-ordinates and are amenable to the derivation process. It is very easy to excite rigid 
body motion featuring more than one mode and in such a case, derivation is not simple 
and can only work when the modes are separated. It is a feature of the identification 
calculations based on equation (8), which are used in the computer program, that [R] 
is singular if two resonance frequencies are the same. Consequently, the program can 
identify only one set of modal constants at zero frequency-most usually corresponding 
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to a combination of modes-and these must be separated before [@I, the mode shape 
matrix, can be evaluated. The motion of a beam in two dimensions is a simple case which 
will be discussed here. 

4.4.1. Separation of rigid body modes 
Consider the tip response of a beam as shown in Figure 13, with inertance matrix 

(k/F) (X/M) 
CIbJ)l= [ (kjF) (ijlM) . 1 

(33) 

Figure 13. Rigid body tip responses of a free-free beam. 

One wishes to find the modal constants of the rigid body modes, ,,[A], and this process 
is facilitated by use of equation (8). First, one sets w, = 0 and observes that the first 
column of [I?] has each element unity. Then one observes that the remaining elements 
of the first row of [R] tend to zero as R r, the first excitation frequency, tends to zero. 
Thus, one obtains: 

I,, (0) = d,k, (34) 

where the prefix 0 denotes first mode (at zero frequency). The elements of ,,[A] can thus 
be found from consideration of low frequency inertances which relate steady accelerations 
to steady forces. 

There are in fact two rigid body modes excited by an input force F which does not 
pass through the centroid G and which consequently produces rotation about G as well 
as translation of G. Thus 

Fe = I$, F = mkT, (35,36) 

where _%r is the component of 2 which corresponds to the translational rigid body mode. 
The rotational component _%R is given by 

2, = es = e=F/IG, (37) 

upon using equation (35). Combining equations (36) and (37) and rearranging gives 

ri;/F=(~;;,+X,)/F=(l/m)+(e’/IG)=oA1,, (38) 

and, from equation (35), 

(i/F) = ellc = “Azl. (39) 

The applied moment A4 excites only the rotational rigid body mode: 

A4 = I$ 140) 

Thus 
(i/M) = l/k = OAz, (41) 

and using equation (37) again gives 
. . 

(&Z/M = elk = ~4 12. (42) 
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The complete matrix of modal constants is 

(43) 

Simple application of the derivation formula (by which (g/M) is obtained in terms of . . . . 
(X/F) and (8/F)) does not hold, since 

<AD f o&&L. (44) 

This happens because the two rigid body modes which are excited by F are not separated. 
When the separation has been carried out, by calculating the mass of the free body and 
simply subtracting its reciprocal, one may write 

,[A1 = o[AIT +o[AIR. (471 

Now that the sets of modal constants have been separated, useful derivation relationships 
do hold: 

UAZZT '&:IT/&IIT, 0‘422R =&IR/W%IR. (4649) 

When selected curves from the response surface of a freely-supported body are identified. 
it is the total matrix ,,[A] which is obtained, and in the general case it might be quite 
difficult to separate the modal constants of several rigid body modes although the general 
relationships involved in rigid body motion have been developed [12]. 

4.5. CONSISTENCY 

It is usually possible to collect more data than is strictly necessary for identifying the 
modal constants of a system. Such “redundant” data can be used to make second estimates 
of constants and thus help to avoid gross errors. Suppose that one column artd the 
leading diagonal of a mobility or inertance matrix have been measured, a procedure 
which is likely to give the best data for identification as discussed in section 4.1. There 
will have been N points of excitation used and the first step to obtaining a consistent 
model is to check that the resonance frequencies measured at different points do coincide, 
or, if not, to estimate a best value by using simple averaging. It is important that the 
identification calculations for the different point responses are all carried out with the 
same set of nominal resonance frequencies, care being taken with adjacent antiresonance 
frequencies as indicated above, in section 3.4. 

It is to be expected that the point modal constants will be the more accurately evaluated. 
Extra data will be available from a set of transfer responses which will give second 
estimates for the point modal constants using the derivation relationships developed in 
section 4.1. In some cases, particularly where rotations are concerned, the derived values 
of point modal constants may well be nearer their true values than the directly identified 
set. In any event, the values ultimately adopted for the matrices of modal constants [A], 
must be adjusted so that they consistently conform to the derivation relationships of 
equation (29). 

The data contained in the N matrices, designated [A],, can be reduced and be 
contained in the single matrix [@lNxN. The resonance frequencies will be listed (squared) 
in the diagonal matrix [mFINxN. 

Sometimes, the application of consistency checks to redundant measurements yields 
an unsatisfactory result: namely, that consistency is clearly not observed by the data. 
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This can arise for a number of reasons; one, clearly, is that the measured data used are 
very inaccurate but a second one of particular interest is the possibility that what has 
been identified as a single mode resonance is in fact a number of modes whose frequencies 
are so close that they cannot be seen separately. Such conditions arise on any system 
with two or more identical natural frequencies, and in practical structures with close 
natural frequencies where the prevailing damping level is just sufficient to merge the 
two modes into a single resonance peak. In these cases, it is not possible to identify the 
modal properties satisfactorily (one of the basic conditions of the method has been 
violated) but it is possible to detect the existence of a problem of this type and thus to 
avoid some of the consequences which might ensue from ignoring it altogether. 

Figure 15. Measured and identified (a) transfer inertance of a compressor blade, (b) point inertance on 
a turbine-rotor and (c) mobility of helicopter platform. For (a) and (b). . measured points and -- 
identified curve; for IC), measured points and - regenerated curve. 
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5. APPLICATIONS OF THE IDENTIFICATION AND DERIVATION PROCESS 

5.1. MEASUREMENTS ON BEAMS 

Measurements were made of the point mobility matrices at the tips of two freely 
supported beams. The matrices involved co-ordinates of translation and of rotation as 
indicated in Figure 13. The beams were made of steel, with a cross-section 25 mm x 

32 mm. The so-called “Long Beam” had length 1.4 m and natural frequencies at 0, 86, 
237, 464, 767, etc., Hz. The “Short Beam”, of length 0.65 m, had natural frequencies 
at 0, 399, 1100, etc., Hz-quite distinct from those of its companion. 

The vibration behaviour of such simple beams is accurately predictable and the 
theoretical mobilities of the beams are plotted as continuous lines in Figures 14(a) and 
(b). Corresponding measured data are plotted as points and it can be seen that there 
are minor random discrepancies (as might be expected), but also some major systematic 
errors, most noticeably in the rotational mobility (i/M) at low frequency. 

The Long and Short Beams coupled end to end at a butt joint would together constitute 
a “Coupled Beam” of length 2.05 m, having natural frequencies 0, 40, 110, 217, 358, 
535, 747, etc., Hz. The mobility properties at a point 0.65 m along the beam were 
calculated theoretically and are displayed as the continuous lines of Figure 14(c). The 
points on this figure were calculated, frequency by frequency, from the raw data of 
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Figures 13 and 14(a), by using standard mobility coupling matrix calculations. It is 
apparent that the correlation between these calculations and the ideal is very poor. 

Identification calculations were carried out on the data for the individual beams, having 
the effect of smoothing the curves and eliminating random errors. Further calculations 
were then made so that the modal constants of the second row of the mobility matrix 
were derived from those calculated for the first row, due account being taken of the 
rigid body modes. 

Thus, the relatively difficult-to-measure quantities, (i/F) and (8/M), were obtained 
from the inherently more easily measured (x/F) and (A/M). The results of the 
identification and derivation process on the two beams were shown as Figures 14(d) and 
(e), which show considerable improvement when compared with their predecessors, 
Figures 14(a) and (b), having no random errors and greatly reduced systematic errors. 
Finally, the resultant predicted mobilities of the nominated point on the Coupled Beam 
are shown in Figure 14(f). Discrepancies between the calculated result and the ideal are 
apparent, but the responses have the correct general characteristics and are certainly a 
significant improvement on the raw data predictions of Figure 14(c). 

5.2. APPLICATIONS TO PRACTICAL STRUCTURES 

In order to demonstrate the application of this identification method to practical 
structures, we cite three examples where it has been used on components of complex 
engineering structures. The three structures are as follows: (i) a compressor blade; (ii) 
a gas turbine rotor; (iii) an external carrier platform for a helicopter. In each case, a 
mathematical model of the component in question was required for further analysis-such 
as the vibration modelling of a larger structure of which the testpiece was a component 
[13], or the derivation of excitation forces [14]. Figure 1.5 illustrates a mobility plot for 
each of the components, showing both measured data (as points) and regenerated data 
(continuous line) and all share the characteristic that the inherent damping is so low as 
to inhibit detailed measurements on the resonant regions. 

6. CONCLUDING REMARKS 

In this paper we have presented a method for the experimental modal analysis of 
structures which is of particular value in those cases where the damping is so light that 
(a) its magnitude is of no intrinsic interest, and (b) accurate measurements of the resonant 
response characteristics are very difficult. Such conditions are frequently encountered in 
studies of practical systems where the separate components of a complex structural 
assembly are studied individually (usually to determine a suitable subsystem model which 
can then be combined with other similar models to describe the full assembly). In these 
cases, attention is generally confined to an undamped model-primarily to predict natural 
frequencies-since the actual damping levels of the full assembly will usually be dominated 
by the joints between the components, and not by the damping possessed by the 
components themselves. 

Thus one can clearly identify a class of structure for which an accurate mass and 
stiffness description is required. One can also assert that when testing such components, 
it is often difficult to make accurate frequency response measurements in the immediate 
vicinity of the resonances-because of their low damping-and thus a technique such as 
the one reported here which does not rely on the accuracy of these data is of particular 
value. 

The method has been used on many applications over a period of several years-both 
in the research laboratory and in industry-and has proven to be a robust and reliable 



MODAL IDENTIFICATION: LIGHT DAMPING 79 

tool, especially when used with engineering skill and judgement. Its simplicity makes it 
easy to implement and the reduced version- the “window” method-is amenable to 
hand-calculator programming for accurate estimation of an individual modal parameter. 

As with all experimental modal analysis methods, it is recommended that some 
redundant frequency responses be measured and analyzed in order to provide cross 
checks of the accuracy of the modal parameters determined in this way. Visual comparison 
of experimental and theoretically regenerated data is not always a sufficiently critical 
assessment. 
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