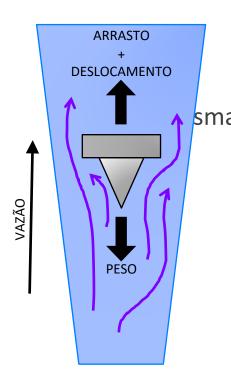
PTC3421 – Instrumentação Industrial

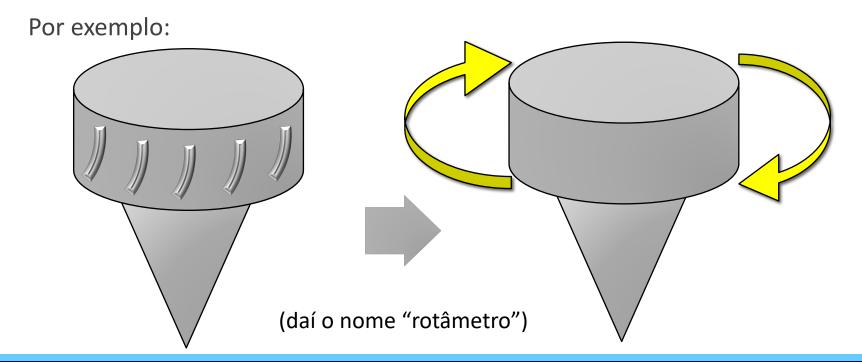
Vazão — Parte II

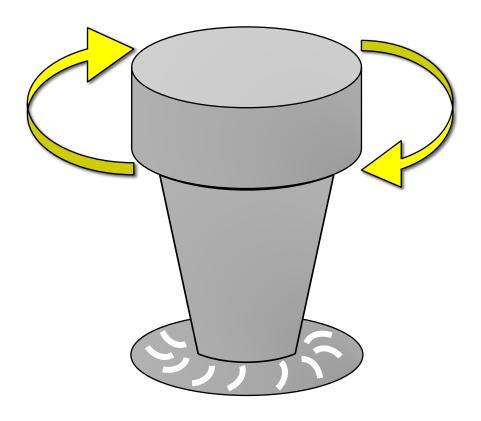

V2017A

PROF. R. P. MARQUES

Sensores

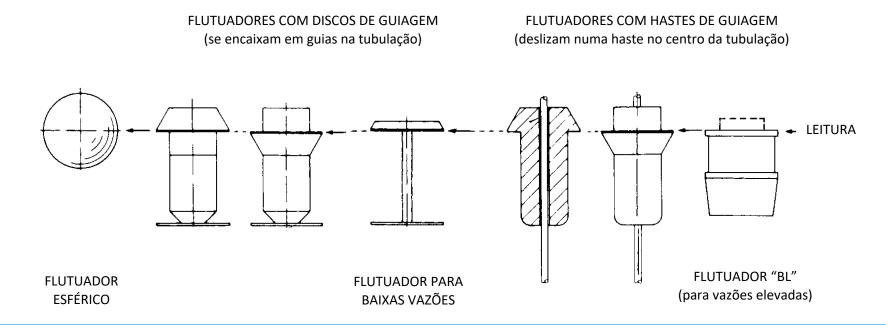
MECÂNICOS	Pistões	Vazão volumétrica
	Engrenagens	Vazão volumétrica
	Rotâmetros	Vazão volumétrica
	Turbinas	Vazão volumétrica
	Disco de nutação	Vazão volumétrica
	Vórtice	Vazão volumétrica
PRESSÃO	Placas de orifício	Vazão volumétrica
	Bocais de vazão	Vazão volumétrica
	Venturis	Vazão volumétrica
	Tubos de Pitot	Vazão volumétrica
	Medidores centrífugos	Vazão volumétrica
EFEITO CORIOLIS		Vazão mássica
ELETROMAGNÉTICOS		Vazão volumétrica
TÉRMICOS		Vazão mássica
ULTRASSOM (efeito Doppler, tempo de viagem)		Vazão volumétrica

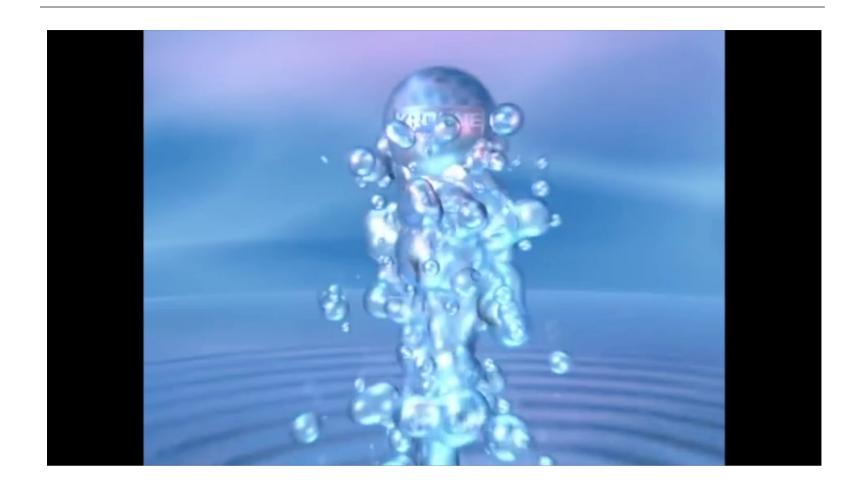

O flutuador tende a descer devido a seu peso e é empurrado para cima pela força de arrasto (devido à pressão cinemática) do fluído.


Como o arrasto sobre o flutuador diminui com o aumento da seção transversal (pois a sma quantidade de movimento se distribui sobre uma área maior), o flutuador tende a subir quando a vazão aumenta e descer quando a vazão diminui, atingindo uma quota de equilíbrio que depende da vazão.

A altura em que o flutuador se equilibra determina a vazão.

Para que o flutuador atinja um ponto de equilíbrio, é necessário que ele se situe no centro da seção transversal. Um mecanismo simples para atingir tal objetivo (e que adicionalmente auxilia a estabilização da atitude do flutuador) é a inclusão de ranhuras ou canais helicoidais no flutuador que provoquem um torque rotacional a partir do fluxo do fluído.

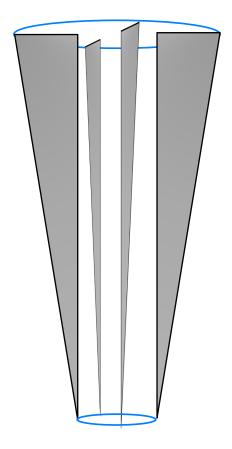

Ou:



Há ainda diversos tipos de formato para o flutuador, para atender objetivos diversos:

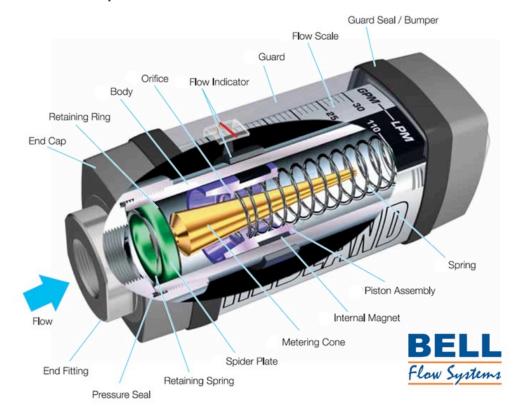
- Maior ou menor relação entre peso e superfície de choque para diminuir ou aumentar a sensibilidade do instrumento;
- Perfis variados conforme a viscosidade do fluído.

Por exemplo:



Disponível em https://www.youtube.com/watch?v=DVLBDm9c8ak

Guiagem:


O disco de guiagem fica preso ao centro pelas guias e pode deslizar apenas na vertical.

Tradicionalmente os flutuadores são instalados em tubos de vidro e a leitura é manual, mas há rotâmetros instalados em tubulações opacas cuja posição é detectada por um sensor magnético (similar ao de sensores de nível).

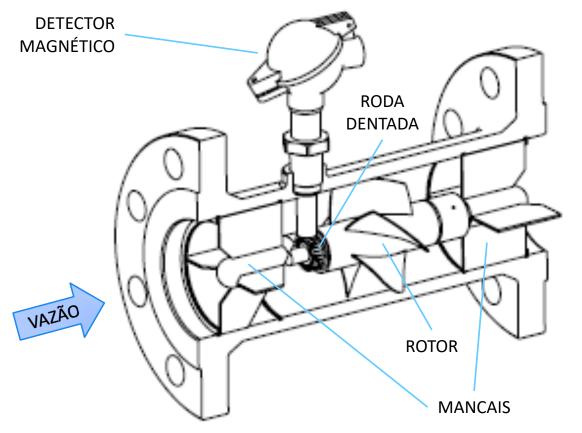
Utilizando uma mola para substituir o peso aparente do flutuador e um sistema de guias para mantê-lo no centro da tubulação, é possível ter rotâmetros que funcionem em qualquer posição (vertical, horizontal ou inclinada). Por exemplo:

Os rotâmetros ficam em contato com o fluído, portanto pode haver desgaste do material com o uso, especialmente em fluídos corrosivos, vazões elevadas, altas temperaturas, etc.

Por outro lado, os rotâmetros não têm partes móveis e são a princípio bastante confiáveis, e não são danificados por eventuais partículas ou impurezas misturadas ao fluído.

Além disso, não há partes a serem calibradas.

Rotâmetros não precisam de alimentação para funcionar.


Dependendo do projeto, do fluído e das condições de operação a medida de um rotâmetro pode ser bastante precisa, mas em aplicações comuns a precisão é relativamente baixa.

Rotâmetros apresentam grande interferência no fluxo (a obstrução do fluxo é considerável), mas a regularização do fluxo a montante afeta relativamente pouco a medida.

É possivelmente o medidor de vazão mais barato.

Turbinas

Um medidor a turbina consiste num rotor, instalado internamente em um trecho reto de tubulação e um sistema de medição da rotação da turbina (usualmente um detector eletromagnético).

O Detector conta pulsos e determina a rotação da turbina, que é diretamente proporcional à vazão volumétrica.

Turbinas

Há diversos tipos de turbinas: para líquidos, gases, fluídos de alta ou baixa viscosidade, vazões elevadas ou reduzidas, etc.

Turbinas

Há diversos tipos de turbinas: para líquidos, gases, fluídos de alta ou baixa viscosidade, vazões elevadas ou reduzidas, etc.

Com o tipo adequado, é possível atingir grande precisão na medida (< 0,5%), possibilitando que esses instrumentos sejam utilizados para estimar vazão acumulada.

A turbina tem partes móveis e fica exposta ao fluído, de modo que condições extremas (corrosividade, temperatura, etc.), impurezas ou particulados no fluído podem afetar o equipamento.

A medida é afetada pela viscosidade, volume, específico, etc. Além disso, o fluxo de movimento do fluído (e.g. arrasto rotacional) pode afetar a medida, sendo recomendável regularizar o fluxo a montante.

O medidor em si também afeta o fluxo.

Disco de Nutação

Medidores baseados em disco de nutação também são potencialmente muito precisos, sendo adequados para se estimar vazão acumulada.

Não apresentam partes móveis, porem o disco fica exposto ao fluído, podendo sofrer desgaste.

Disco de Nutação

Disponível em https://www.youtube.com/watch?v=M9nVkSZ6_H4

Em mecânica dos fluídos, denomina-se

ESTRADA DE VÓRTICES DE VON KÁRMAN

ao padrão periódico de vórtices causados pela separação do fluxo de um fluído por uma estrutura fixa ou corpo

Disponível em https://www.youtube.com/watch?v=GlTcRhh3gYc

A frequência de repetição dos vórtices depende de propriedades do fluído (que usualmente variam com pressão, temperatura, etc.), mas principalmente da vazão.

Medindo-se a frequência das ondas de pressão causadas pelos vórtices pode-se estimar a vazão volumétrica de um fluído conhecido.

Disponível em https://www.youtube.com/watch?v=GmTmDM7jHzA

Os medidores de vórtice não são capazes de medir vazões baixas (pela ausência de vórtices).

O medidor não precisa de peças móveis para gerar os vórtices, mas apenas para medir sua frequência. Pouca energia do fluxo é desviada nesse processo.

O fluxo a montante precisa ser regulado para não afetar a medida (por exemplo não podem haver vórtices pré-existentes no fluxo).

O medidor é adequado para grandes tubulações e vazões elevadas.

