

ANTI-SÉPTICOS EM ODONTOLOGIA

Maria Regina Simionato - 2018

Anti-sépticos orais — usados para:

Anti-sepsia de mucosas

Durante o tratamento endodôntico

Irrigação subgengival

Prevenir a formação de biofilme

Remover o biofilme estabelecido

CONTROLE DE PLACA DENTAL

Mecânico

- Uso de escovas e fio dental
- Eficiência é dependente da dextreza e cooperação do paciente

Químico (anti-sépticos orais)

Quando há necessidade de melhorar a remoção da placa

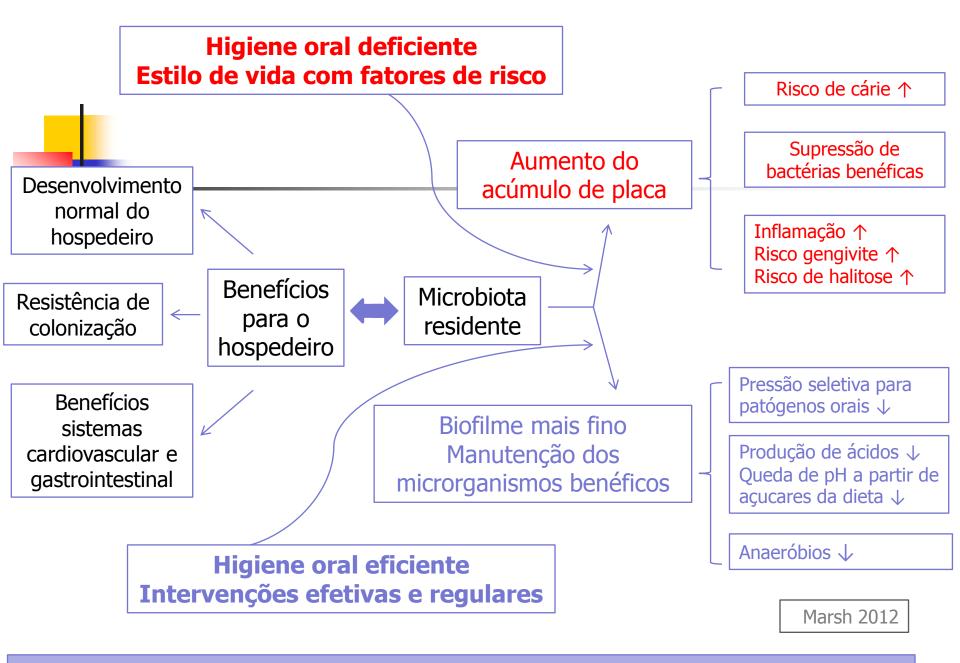
Veículos de liberação dos agentes químicos

- Dentifrícios: Triclosan; sais metálicos; clorexidina
- Enxaguatórios bucais: Clorexidina; óleos essenciais;
 triclosan; cloreto de cetilpiridíneo
- Sprays: Clorexidina
- Gel, verniz, gomas de mascar: Clorexidina; SnF₂
- Agentes tópicos: Clorexidina; PVPI
- Resinas bioativas (liberados ou imobilizados): Clorexidina;
 nanopartículas de Ag; metacrilatos quaternários de amônio

Quando a higiene oral é difícil, comprometida ou impossível

- Pacientes com traumatismo maxilar
- Pacientes com coordenação motora limitada

Indicações do uso de anti-sépticos orais associados ao controle mecânico da placa


- Complementares às medidas de higiene oral, pois:
 - a maioria da população tem um controle mecânico da placa inadequado
 - a presença de agentes antimicrobianos nas mucosas orais reduz a colonização de bactérias patogênicas capazes de recolonizar superfícies dentais supra e subgengivais

Resulta em:

- Menor pressão seletiva para patógenos orais
- Menor produção de ácidos
- Menor número de anaeróbios

Características dos estudos para aprovação de substâncias com atividade inibitória de placa ou ou atividade antiplaca (Council of Dental Therapeutics 1986):

- Duplo cego paciente/pesquisador
- Presença de grupo controle
- Avaliação microbiológica
- Seleção de uma população representativa
- Ensaio clínico randomizado
- Uso da formulação associada com o controle mecânico de placa
- Atividade inibitória de placa ou antiplaca deve ser provada em estudos de longa duração (pelo menos 6 meses)
- Uso pelo paciente em casa
- Evidência de sua segurança (ausência de efeitos colaterais)

Prevenção baseada na hipótese ecológica da placa dental

Controle químico da placa dental

Agentes anti-placa devem **controlar** quantidade de placa ao invés de tentar **eliminá-la**, mantendo as propriedades benéficas da microbiota residente da cavidade oral

Terapias de sucesso:

Manutenção do biofilme compatível com saúde oral

Manutenção das propriedades benéficas da microbiota residente

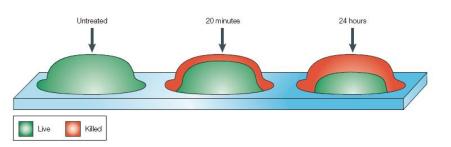
Anti-sépticos orais ou agentes anti-placa (mecanismos de ação)

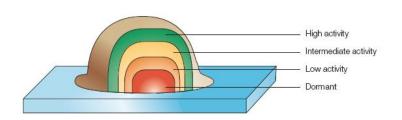
Destroem a matriz da placa (Rompem a estrutura)

Atividade antimicrobiana

- Atividade antimicrobiana baseada em:
 - Concentração Inibitória Mínima (MIC)-bacteriostático
 - Concentração Bactericida Mínima (MBC)-bactericida

Geralmente determinados em planctônicos

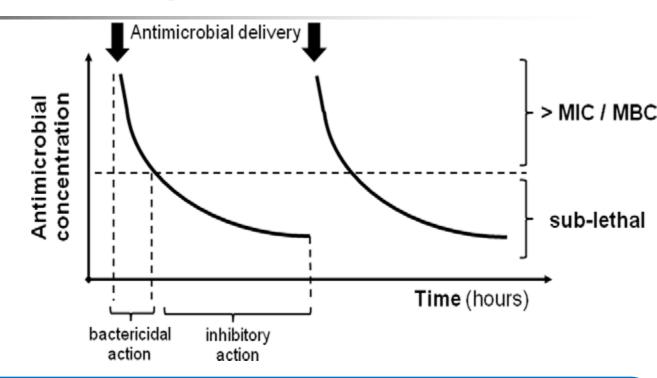

Agentes anti-placa



Células em biofilme (especialmente de biofilmes mais maduros)

Sensibilidade reduzida à morte por agentes antimicrobianos

Maior tolerância/resistência de células em biofilme


- Penetração reduzida do agente antiplaca
 - ligação à matriz do biofilme
 - dissolução do agente na superfície do biofilme
- Menor taxa de crescimento das bactérias
- Presença de células persistentes ou dormentes
- Presença de eDNA (quelante da cátions)
- Transferência de genes de resistência

Padrão farmacocinético de anti-sépticos orais

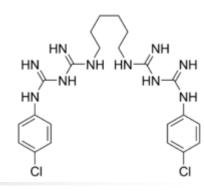
Marsh 2012

- Fio dental
- Enxaguatório bucal (30-60 seg)

- O agente deve liberar uma concentração suficiente para exercer seu efeito inibitório no biofilme (MIC/MBC) em curto período de tempo.
- A formulação deve assegurar uma retenção prolongada dos componentes ativos nas superfícies orais para que sejam liberados em concentrações que ainda exerçam efeito biológico (SUBSTANTIVIDADE).

- Efetividade potência
- Substantividade persistência
- Penetrabilidade
- Seletividade não agir sobre células do hospedeiro
- Não favorecer o crescimento de oportunistas
- Não induzir mutações
- Não selecionar microrganismos resistentes
- Não produzir efeitos colaterais

Presença de álcool na formulação



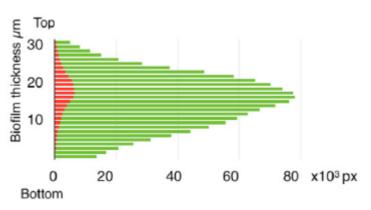
- Pode aumentar risco para câncer bucal em usuários regulares, mas não existem evidências científicas
- Soluções alcoólicas são contra-indicadas para uso:
 - crianças
 - pacientes com mucosites
 - pacientes que receberam irradiação de cabeça e pescoço
 - pacientes imunocomprometidos
 - alcoólatras

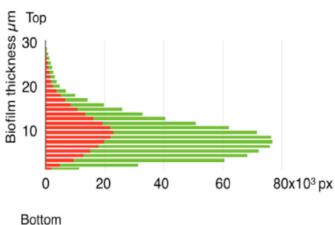
Biguanidina

Clorexidina – molécula catiônica

- Enxaguatórios bucais (0,12%)
- Gel (0,12%; 1%; 2%) ⇒ aplicação tópica; irrigação oral; moldeiras individuais
- Verniz

Eficiência


- "Gold standard"
- Estudos clínicos (Curta e longa duração) → ↓placa ↓gengivite
- ↓*S. mutans* (Curtos períodos)
- Substantividade 30% da dose é retido na cavidade bucal
- Amplo espectro de ação Gram +, Gram e leveduras

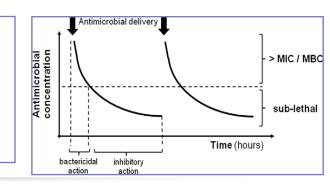

É considerado seguro, pois é pouco absorvido pelo trato gastrointestinal e portanto apresenta pouca toxicidade

Efeito da clorexidina em biofilmes

Biofilmes formados *in situ* durante 7 dias (28 μm espessura) CHX 0,1% - 1 aplicação 1 min.

	Controle	СНХ
Biomassa	1,0	0,82 (ns)
Viabilidade	95%	63% (s)

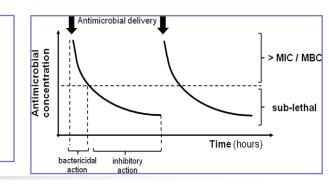
Clorexidina x risco de cáries



não necessariamente 🗸 risco de cárie

(S. mutans não é o único micro-organismo cariogênico)

- Bochecho com CHX não $\downarrow S$. mutans por longos períodos
- Gel de CHX 1% (10-14 dias) \downarrow *S. mutans* por 4-8 semanas
- CHX benéfico na prevenção de cáries radiculares


Mecanismos de ação CHX

Biofilme

- Liga-se a células da mucosa, a micro-organismos, a glicoproteínas da película adquirida, reduzindo a colonização;
- Mantém-se ligada à superfície por longo período de tempo (substantividade) exercendo atividade biológica;
- Exerce atividade antimicrobiana:
 - Bactericida
 - Bacteriostática

Mecanismos de ação CHX

Atividade antimicrobiana

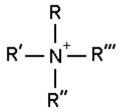
- Concentrações altas (> 0,12%) bactericida (20s)
 - Rompimento da membrana citoplasmática
 - Coagulação do citoplasma
- Concentrações sub-letais (0,02-0,06%) bacteriostático
 - Afeta a integridade da membrana citoplasmática

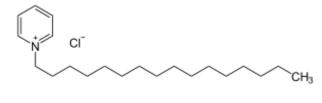
inibe transporte de açúcares e produção de ácidos altera manutenção de pH intra-celular altera a ação de proteases (gingipaínas)

Cheng et al. 2017

Efeitos colaterais CHX

1. Pigmentação de dentes, restaurações e mucosas





- 2. Distúrbios reversíveis do paladar
- 3. Aumento da formação de cálculo supragengival
- 4. Sensação de queimação, mucosa seca (temporárias)
- 5. Lesões descamativase eritematosas

Indicações da CHX

- 4
- Como alternativa aos procedimentos mecânicos de higiene oral quando estes não podem ser realizados (fratura, pósoperatório de procedimentos cirúrgicos);
- Como adjuvante temporário dos procedimentos regulares da higiene oral em pacientes incapazes de manter adequada remoção de placa;
- Como agente tópico de mucosa antes de procedimentos invasivos (anestesia, cirurgias);
- Como bochecho pré-operatório antes de procedimentos odontológicos para reduzir a carga bacteriana oral;
- Como bochecho pré-operatório antes de cirurgias eletivas (reduz infecção hospitalar e pneumonia pós operatória).

Compostos quaternários do amônio

Cloreto de cetilpiridínio (0,5%) – ccp

(molécula catiônica)

Enxaguatórios bucais

(Dificuldade de formulação em dentifrícios)

Eficiência

Moléculas + fortemente carregadas

ligam-se com facilidade às superfícies orais

Substantividade (< clorexidine)

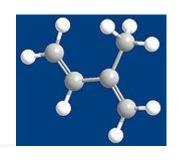
- efeitos anti-placa e anti-gengivite
- amplo espectro de ação

Mecanismos de ação

Liga-se película

Reduz a colonização bacteriana

Liga-se à membrana citoplasmática



Efeitos colaterais

- Pigmentação de dentes e mucosas
- Formação de cálculo
- Descamação da mucosa

Compostos fenólicos

Óleos essenciais

Listerine (1879)

Eucaliptol
Timol
Derivados de fenol
Mentol
Metil salicilato

Enxaguatório bucal

Eficiência

Estudos clínicos

- ↓ Placa dental
- ↓ Gengivite (< que clorexidina)</p>
- ↓ Anaeróbios Gram na placa supra e sub

Efeitos colaterais

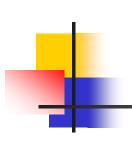
Sensação de queimação

Mecanismos de ação

Penetra no **biofilme** exercendo:

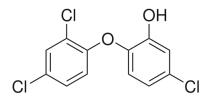
- Atividade antimicrobiana (bactericida e bacteriostática)
- Previne agregação com bactérias Gram +
- Reduz a taxa de multiplicação

- Carga bacteriana é reduzida
- Maturação da placa mais lenta



Redução da biomassa e patogenicidade da placa

Atividade antimicrobiana


- Concentrações altas bactericida (30s)
 - Rompimento da parede celular
 - Precipitação de proteínas celulares
- Concentrações sub-letais
 - Inativação de enzimas essenciais

Porcentagem de redução de placa e gengivite por anti-sépticos

Agente ativo	% redução Índice Gengival	% redução Índice de Placa
Clorexedina 0,12%	28,7±6,5	40,4±11,5
Óleos essenciais	18,2±9,0	27,0±11,0
CPC	13,4±8,7	15,4±7,6

Adaptado de Gunsolley JC 2010

Bis-fenol

Compostos fenólicos

Triclosan + copolímero (Gantrez)

(citrato de zinco, polivinilmetil éter e ácido maléico)

substantividade

Dentifrício

Enxaguatório bucal

Eficiência

- Efeitos anti-placa e anti-gengivite; ↓inflamação
- Baixa toxicidade
- Amplo espectro de ação antimicrobiana
- Substantividade: detectado na placa até 8h após a escovação (1/2 vida ca. 20 min)

Mecanismos de ação Triclosan

- Em altas concentrações:
 - Rompem parede celular

 lise celular
 - Danos na membrana celular
 - Denaturação de proteínas
- Em concentrações sub-inibitórias:
- ullet Interferem na atividade enzimática $\displaystyle igsim \downarrow$ produção de ácidos
 - ↓ atividade de proteases
- Interferem no transporte de nutrientes

Halogênios

🔭 Iodo-povidona

- Aplicações tópicas
- Irrigação subgengival

Mecanismo de ação

Reações de halogenação

(Iodo + proteínas)

- Tluoreto de estanho, citrato de zinco, cloreto de zinco, sulfato de cobre
 - Dentifrícios
 - Enxaguatórios bucais

Eficiência

- Amplo espectro de ação: Gram + e Gram -
- Substantividade
- SnF₂ apresenta algum efeito antiplaca e antigengivite

Mecanismos de ação

Mecanismo de ação em concentrações sub-letais:

Inibem transporte de açúcares

Inibem produção de ácidos

Inibem atividade de proteases

Efeitos colaterais

- Pigmentação de dentes e mucosas
- Sabor metálico

Boca seca

Agentes anti-placa

- Enzimas: mutanase, dextranase, glucanase
 - Destroem a matriz extracelular → disrupção do biofilme

- Detergentes e surfactantes (lauril sulfato de sódio)
 - Presentes na maioria dos dentifrícios
 - Disrupção do biofilme
 - Danificam membrana plasmática (altas concentrações)
 - Inibem enzimas (baixas concentrações)