7. Câmaras Frigoríficas

7.1. Definição

- ♠ É um recinto utilizado para condições controladas de armazenamento com auxílio da refrigeração;
- ◆ Empregadas em dois níveis básicos de armazenamento:
 - Instalações com temperatura acima de 0°C;
 - Instalações à baixas temperatura (necessidade de valores inferiores à -18°C)

7.1. Definição

- ◆ Fatores que devem ser considerados na escolha do tipo de câmara frigorífica:
 - Produto: as câmaras frigoríficas estão voltadas para armazenamento e manutenção das qualidades do produto;
 - Custo de investimento;
 - Manutenção;
 - Local: disponibilidade de água, energia, vias de acesso, futuras ampliações, etc.

7.2. Dimensões de câmaras frigoríficas

- ◆ Fatores que influenciam nas dimensões de uma câmara assegurando uma operação econômica:
 - Quantidade de produto a ser estocado em períodos mais longos;
 - Porcentagem de produto a ser estocado acima ou abaixo de 0°C;
 - Quantidade e dimensões dos lotes de produtos;
 - Necessidade ou não de paletelização.

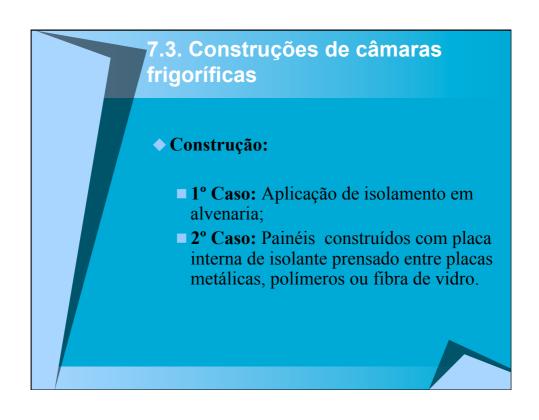
7.2. Dimensões de câmaras frigoríficas

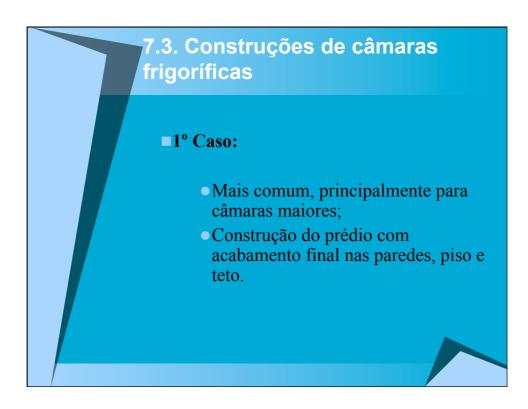
- Altura das câmaras:
 - 7 a 9 metros quando são utilizadas empilhadeiras;
 - Câmaras menores (varejo): 3 metros já que a movimentação do produto é manual;
- ◆ Papel da embalagem na conservação do produto:
 - Conservação das qualidades físicas e sanitárias;
 - Padronizadas, facilitam as etapas de movimentação e transporte.

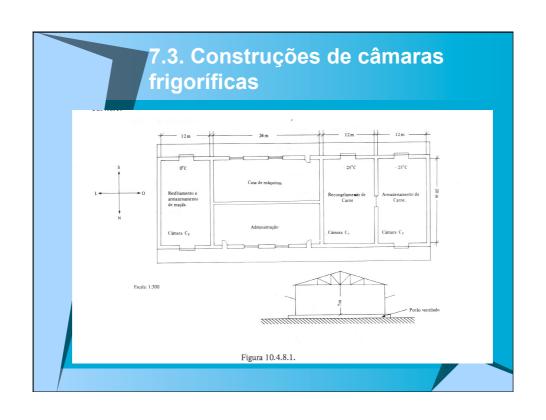
7.2. Dimensões de câmaras frigoríficas

- ◆ Utilização de paletes:
 - reduzem o tempo de carregamento e descarregamento, permite maior controle dos lotes e maior proteção ao produto.

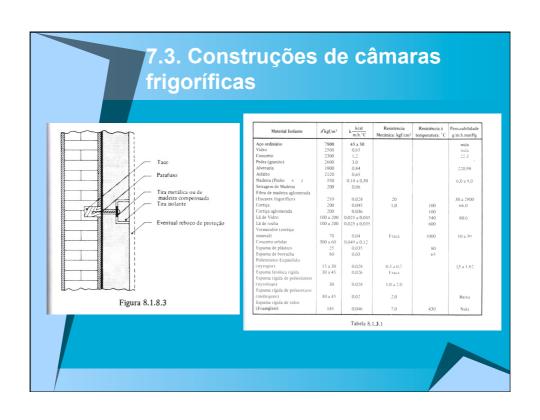
7.2. Dimensões de câmaras frigoríficas Medidas de Paletes Local Medida Padrão 1.000 x 1.200 mm América do Sul 1.219 x 1.016 mm (48x40') América do Norte 1.054,2 x 1.054,2 mm (42x42') América do Norte 1.000 x 1.200 mm * Brasil PBR1 1.050 x 1.250 mm ³ PBR2 Brasil Ásia 1.100 x 1.100 mm JIS África 1.000 x 1.200 mm Europa 1.200 x 800 mm Europallet Europa 1.000 x 1.200 mm Europallet 1.140 x 1.140 mm Europallet *padronizada, mas existem várias medidas no mercado, de acordo com a utilização desejada pelo cliente.

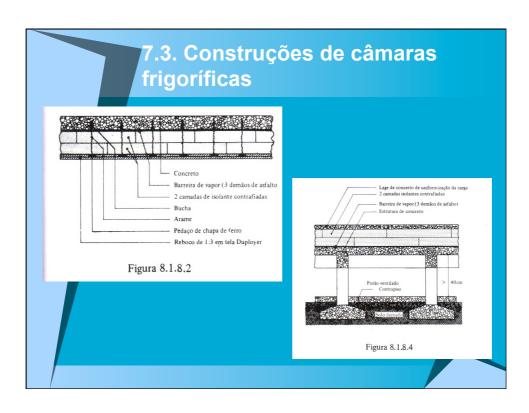


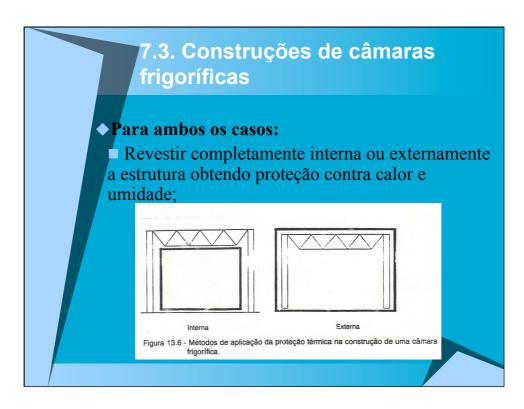




- **Considerações:**
- Deverá estar previsto corredores para o deslocamento das empilhadeiras na câmara frigorífica;
- O piso da câmara deverá estar marcado indicando os limites do corredor e os espaços onde serão colocados os paletes ou caixas contendo o produto;
- Há necessidade de ventilação entre os paletes e entre eles e a parede da câmara.







◆2° Caso:

- Construídas em diversas dimensões com diversas espessuras das placas de isolante;
- Processo de fixação: as juntas são preenchidas com materiais flexíveis (elastômeros) e resistentes que atuam como junta de dilatação;
- ■Vantagem no tempo de montagem e redução na mão-de-obra.

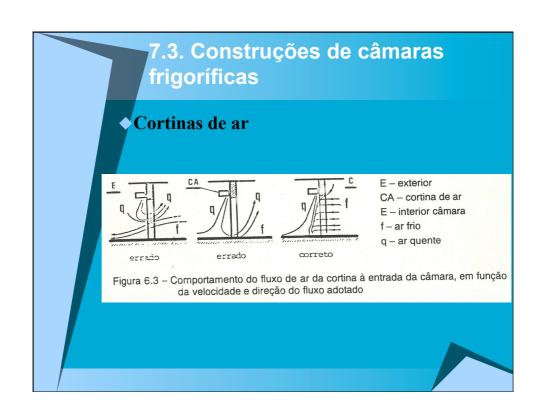
♦ Piso:

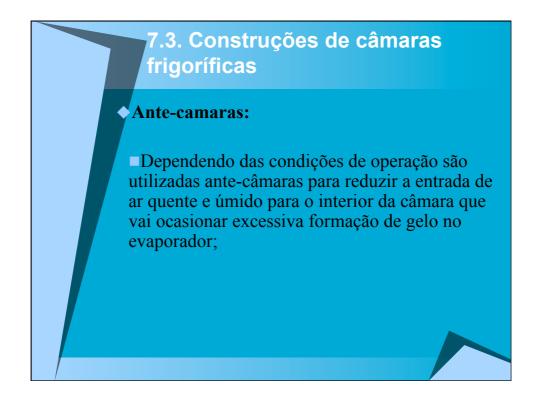
- Considerações com relação ao tipo de solo e proximidade de lençol freático;
- Para T menor que 0°C deverá ser construído para permitir a circulação de ar externo, impedindo um possível congelamento (condensação de vapor d'água) responsável por trincas;
- Para não destruir o isolamento durante a movimentação do produto utiliza-se o chamado piso de rolamento (laje de concreto com boa resistência mecânica);
- Deve ter uma pequena inclinação principalmente em câmaras que exigem algum tipo de lavagem.

7.3. Construções de câmaras frigoríficas

◆Teto:

- Protegido contra incidência direta de luz solar (responsável por uma considerável carga térmica);
- Ter boa ventilação externa e acesso para instalações de tubulações e elétricas;
- Ausência de vigas expostas para evitar cantos que prejudiquem a vedação e isolamento;
- Emprego de ferragens deve ser estudado para evitar condução de calor entre a parte interna e externa provocando pontos de condensação.


♦ Iluminação:


- □Iluminação interna deverá ser suficiente para apenas identificação do produto;
- Os pontos de luz deverão ser protegidos adequadamente por meio de globos ou caixas especiais.

7.3. Construções de câmaras frigoríficas

◆Portas:

- ■Seleção: tipo de tráfego e operação;
- Fabricadas em diversos modelos, movimentadas manual ou eletricamente;
- Para reduzir a entrada de ar externo são utilizadas cortinas de ar ou cortinas plásticas;

♦ Isolamento

■Finalidade do Isolamento:

- Diminuir a entrada de calor;
- Isolar a área fria: se a câmara frigorífica não estiver devidamente isolada será necessária uma carga adicional de refrigeração ⇒ Deverá ser circulado um volume maior de ar exigindo ⇒ ventilador mais potente;
- Prevenir a condensação nas superfícies das paredes.

Tabela 4.1 - Propriedades de alguns isolantes mais comuns.

Isolante	Cortiça	Fibra de Vidro	Poliestireno Expandido	Poliuretano Expandido
Densidade (kg/m³)	100 – 150	20 – 80	10 – 30	40
Condutividade Térmica (kcal/m.h.ºC:	0,032	0,030	0,030	0,020
Resisténcia a Passagem de Água	regular	nenhuma	boa	boa
Resisténcia à Difusão de Vapor, em Relação ao Ar Parado	20	1.5	70	100
Segurança ao Fogo	pobre	boa	pobre	pobre
Resisténcia a compressão (kg/m²)	5000	nenhuma	2000	3000
Custo	relativamente alto	baixo	relativamente alto	alto

7.3. Construções de câmaras frigoríficas

- ♦ Propriedade do material em retardar o fluxo de calor:
 - Condutividade térmica;
 - Resistência térmica.

♦Barreira de vapor:

- Presença de água ou gelo no isolamento provoca alterações na eficiência da barreira térmica pois a condutividade térmica do gelo é maior que a do ar no interior do isolamento;
- ■Umidade crítica: ocorre quando a temperatura do isolante está abaixo do ponto de orvalho do ar ambiente, e o vapor d'água do ar se condensa no isolamento:
- O efeito da umidade na condutividade do isolante não é muito sério quando está na forma de vapor, a condutividade aumenta pela presença de umidade condensada.

7.3. Construções de câmaras frigoríficas

♦Barreira de vapor:

- ■Resistência à difusão do vapor: Tabela 4.1;
- É importante a determinação do perfil de temperatura ao longo do isolante de modo a evitar algum ponto onde possa ocorrer condensação;

♦ Aplicações de barreira de vapor:

- ■Isolamento térmico;
- ■Tubulações frias.

♦ Finalidades da barreira de vapor:

- ■Prevenir a formação de água no interior do isolante ⇒ manter o isolamento seco reduzindo a carga térmica para o sistema de refrigeração;
- ■Previnir danos estruturais por apodrecimento, corrosão ou destruição pela expansão da água ao congelar;
- Deve ser colocada no lado do isolamento exposto à alta pressão de vapor, (lado quente).

7.3. Construções de câmaras frigoríficas

♦ Materiais usados como barreira de vapor:

- ■Folhas de alumínio;
- ■Folhas plásticas;
- Camadas de asfalto frio.

- ◆Para seleção de uma câmara e equipamentos frigoríficos devem ser preenchidos os seguintes ítens, levando em consideração à carga térmica necessária:
 - **Clima:** ganho de calor pelas paredes e piso;
 - **■Dados estatísticos de:**
 - Temperatura média de bulbo seco do mês mais quente;
 - Umidade relativa do mesmo mês;
 - Temperatura máxima de bulbo seco que se pode esperar no mês.

7.4. Seleção de câmaras frigoríficas

■Água:

- Origem;
- Quantidade disponível.

■ Energia:

- Energia disponível;
- Quantidade máxima que pode ser fornecida.

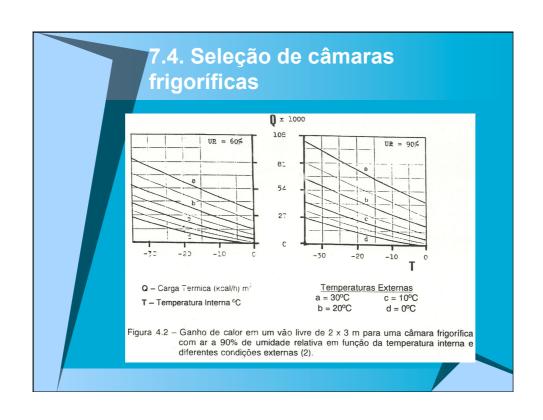
♦ Produtos:

- ■Tipo;
- Quantidade a ser resfriada ou congelada;
- Temperatura de recebimento e resfriamento;
- Entrada e saída diária na câmara;
- ■Tipo de embalagem;
- Características físicas do produto;
- Finalidade do produto (venda direta, distribuição, matéria-prima, etc.)
- ■Tipos de movimentação que recebe.

7.4. Seleção de câmaras frigoríficas

♦Descrição da instalação:

- ■Localização;
- ■Dimensões;
- □Cópia do prédio existente;
- ■Área disponível;
- ■Liberdade de planejamento.


- **♦ Carga Térmica por Transmissão:**
 - \Box Q = S. U. (Te Ti). 24h
 - **■Observações:**
 - Corrigir a temperatura com relação à orientação (leste, oeste, norte e teto) se estiver exposta ao sol;
 - Em um prédio sem receber raios solares a temperatura externa será a temperatura de bulbo úmido da região;

7.4. Seleção de câmaras frigoríficas

- ♦ Carga Térmica por Infiltração:
- Carga térmica adicional com relação ao ar que entra na câmara cada vez que a porta é aberta;

$$\square Q = \underline{V}. \quad n \quad (He - Hi)$$

Outro método para calcular a carga térmica de infiltração toma como base a área livre da porta, os valores podem ser obtidos através de gráficos ou equações empíricas (Figura 4.2)

♦ Carga térmica do produto:

- Composta pela retirada de calor do produto para reduzir a temperatura até o nível desejado e da geração de calor durante a estocagem como no caso de frutas e hortaliças;
- ♦ A quantidade de q a ser removida é calculada conhecendo-se:
 - O Produto; Seu estado inicial;

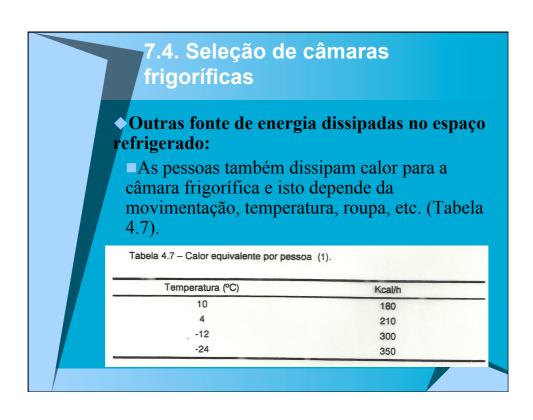
 - Temperatura de início de congelamento;
 - Calor latente.

- **♦**Carga térmica do produto:
 - **Assim deve-se calcular:**
 - oq removido no resfriamento
 - \circ Qa = m. Cp₁ (T₁ -T₂)
 - oq removido no resfriamento até a temperatura de início de congelamento
 - $Qb = m. Cp_1. (T_1 T)$
 - oq removido no congelamento
 - \circ Qc = m. L
 - oq removido na redução de temperatura entre o início de congelamento até o valor final desejado
 - \circ Qd = m. Cp₂ (Tf T)

7.4. Seleção de câmaras frigoríficas

- **♦**Carga térmica do produto:
 - Deve-se considerar a embalagem
 - \circ Q = me. Cpe. Δ T

- Outras fonte de energia dissipadas no espaço refrigerado:
 - ■Luzes;
 - Tipo de lâmpada e intensidade de luz resultam em carga térmica apreciáveis (Tabela 4.5)


Tabela 4.5 - Calor dissipado (kcal/h) para diferentes tipos de lâmpadas e intensidade luminosa (7).

Intensidade (lux)	Vapor de mercúrio	Fluorescente	Sódio	Incandescente
75	5,0	6,7	2,3	15,3
125	8,3	11,1	3,8	25,4
250	17,0	22,2	7,6	50,7

- Outras fonte de energia dissipadas no espaço refrigerado:
 - Motores dos ventiladores;
 - ■Motores e movimentação de empilhadeiras;
 - A instalação de motores dentro do espaço refrigerado deve ser considerada no cálculo da carga térmica (Tabela 4.6)

Tabela 4.6 - Calor equivalente para motores elétricos (kW/kW) (1).

Motor (kW)	Motor no espaço refrigerado	Motor fora do espaço refrigerado	
0.1 a 0,4	1,8	1,0	
0.4 a 2,2	1,5	1,0	
2,2 a 15,0	1,3	1,0	

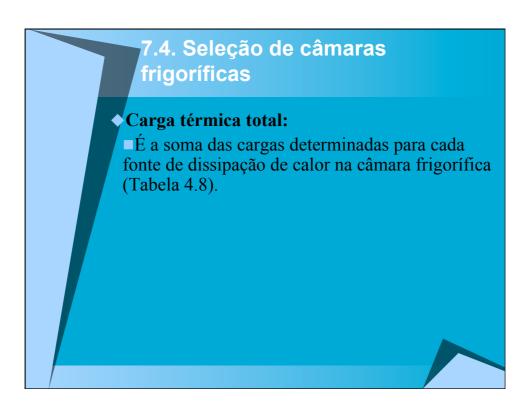


Tabela 4.8 - Resumo dos valores da carga térmica de uma câmara com capacidade para 300 toneladas de maçãs, supondo-se um carregamento diário de 15 toneladas. Note o valor correspondente ao resfriamento do produto (33.000 kcal/24h) em relação ao total.

Fonte de Carga Térmica		Q (kcal/24h)	
Transmissão		118.548	Q _{TR}
Infiltração		40.318	Qi
Produto (máxima estocagem)	Resfriamento	363.000	Q _P
	Respiração	94.170	
lluminação		4.008	Q _{IL}
Pessoas		3.600	Q _{PE}
Empilhadeira		12.900	Q _{EM}
Sub-total 1		636.544	
Ventiladores (10%)		63.654	Q _{VE}
Sub-total 2		700.200	
Segurança (10%)		70.020	
Total		770.220	
Capacidade Frigorífic	a = 770.220/24 = 32.100) kcal/h	
	770.220/20 = 38.520	kcal/h	