

Escola Politécnica da Universidade de São Paulo

PME 3344

Termodinâmica Aplicada

2^a Lei da Termodinâmica - Exercícios

Utilizando a tabela apropriada, determine a variação da entropia específica nos estados indicados, em kJ/kg.K.

- a) Água, $p_1=10$ MPa, $T_1=400$ °C, $p_2=10$ MPa, $T_2=100$ °C
- b) R134a, $h_1=261,23$ kJ/kg, $T_1=-40$ °C, vapor saturado a $p_2=0,5$ MPa
- c) Ar como gás ideal, $T_1=7$ °C, $p_1=0.2$ MPa, $p_2=0.1$ MPa, $T_2=327$ °C

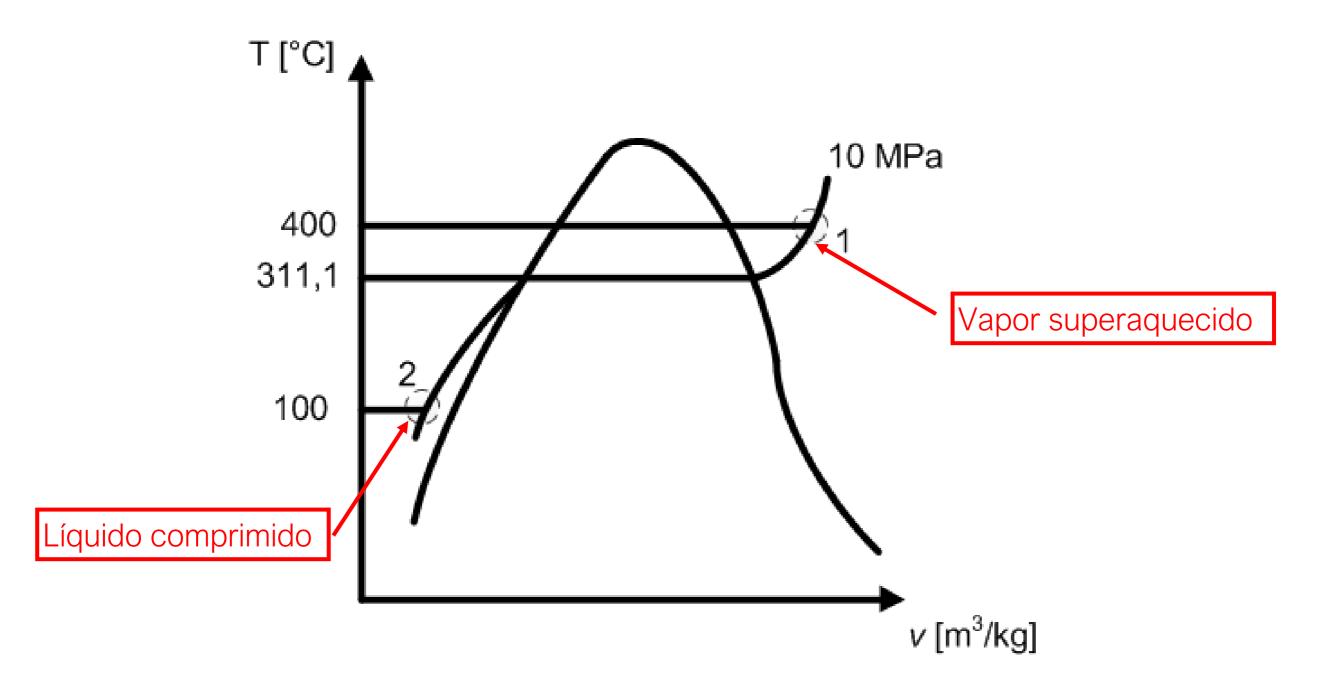
a) Água, $p_1=10$ MPa, $T_1=400$ °C, $p_2=10$ MPa, $T_2=100$ °C

	Tabela B.1.2 (<i>continuação</i>) Água saturada: tabela em função da pressão											
Volume específico Energia interna Entalpia Entropia (m³/kg) (kJ/kg K) (kJ/kg K)												
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
Р	T	Vį	V_V	a_l	u_{lv}	$\mu_{\rm v}$	h_l	h_{lv}	h _v	sį	SN	Sv
9000	303,40	0,001418	0,02048	1350,47	1207,28	2557,75	1363,23	1378,88	2742,11	3,2857	2,3915	5,6771
10000	311,06	0,001452	0,01803	1393,00	1151,40	2544,41	1407,53	1317,14	2724,67	3,3595	2,2545	5,6140
11000	318,15	0,001489	0,01599	1433,68	1096,06	2529,74	1450,05	1255,55	2705,60	3,4294	2,1233	5,5527

 $s_1 = 6,2119 \text{ kJ/kg.K}$

	la B.1.3 (-		
Vapor	rd'água si	uperaque	cido	
Т	V	и	h	S
J	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)
	P	= 10 000 k	cPa (311,	06)
Sat.	0,01803	2544,41	2724,67	5,6140
350	0,02242	2699,16	2923,39	5,9442
400	0,02641	2832,38	3096,46	6,2119
450	0,02975	2943,32	3240,83	6,4189
500	0,03279	3045,77	3373,63	6,5965
550	0,03564	3144,54	3500,92	6,7561
600	0,03837	3241,68	3625,34	6,9028
650	-	-	-	-
700	0,04358	3434,72	3870,52	7,1687
800	0,04859	3628,97	4114,91	7,4077
900	0,05349	3826,32	4361,24	7,6272
1000	0,05832	4027,81	4611,04	7,8315
1100	0,06312	4233,97	4865,14	8,0236
1200	0,06789	4444,93	5123,84	8,2054
1300	0,07265	4660,44	5386,99	8,3783

a) Água, $p_1=10$ MPa, $T_1=400$ °C, $p_2=10$ MPa, $T_2=100$ °C


,	<mark>a B.1.1</mark> saturada:	tabela em	função da	temperat	:ura							
		Volume es (m³/		Ene	ergia inter (kJ/kg)	na		Entalpia (kJ/kg)			Entropia (kJ/kg K)	
Temp.	Pressão kPa	Líquido sat.	Vapor sat.	Líquido sat.	Еуар.	Vapor sat.	Líquido sat.	Ечар.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
T	Р	V_l	V_V	a_l	a_{lv}	$\mu_{\rm v}$	h_l	h _{lv}	h _v	Sį	Stv	Sv
95	84,55	0,001040	1,98186	397,86	2102,70	2500,56	397,94	2270,19	2668,13	1,2500	6,1659	7,4158
100	101,3	0,001044	1,67290	418,91	2087,58	2506,50	419,02	2257,03	2676,05	1,3068	6,0480	7,3548
105	120,8	0,001047	1,41936	440,00	2072,34	2512,34	440,13	2243,70	2683,83	1,3629	5,9328	7,2958

$$s_2=s_{liquido,T=100^{\circ}C}=1,3068 \text{ kJ/kg.K}$$

$$s_2-s_1=1,3068 - 6,2119=-4,9051 \text{ kJ/kg.K}$$

a) Água, $p_1=10$ MPa, $T_1=400$ °C, $p_2=10$ MPa, $T_2=100$ °C

b) R134a, $h_1=261,23$ kJ/kg, $T_1=-40$ °C, vapor saturado a $p_2=0,5$ MPa

	a B.5.1 a saturad	0											
		Volur	me espe (m³/kg)		Ene	rgia into (kJ/kg)			Entalpia (kJ/kg)			Entropia kJ/kg K	
Temp. °C	Pressão kPa	Líquido saturado V _{f=1}	Evap.	Vapor saturado <i>V</i> v	Líquido saturado u _l	Evap.	Vapor saturado u _v	Líquido saturado h _l	Evap.	Vapor saturado <i>h</i> v	Líquido saturado s _l	Evap.	Vapor saturado s _v
-4 5	39,6	0,000701	0,45783	0,45853	143,15	208,99	352,15	143,18	227,14	370,32	0,7740	0,9956	1,7695
-4 0	51,8	0,000708	0,35625	0,35696	148,95	206,05	355,00	148,98	224,50	373,48	0,7991	0,9629	1,7620
-35	66,8	0,000715	0,28051	0,28122	154,93	202,93	357,86	154,98	221,67	376,64	0,8245	0,9308	1,7553

Para T=-40°C: h_1 =148,98 kJ/kg e h_v =373,48 kJ/kg $\rightarrow h_1 < h_1 < h_v$

$$h_{1} = x_{1}h_{v,1} + (1 - x_{1})h_{l,1}$$

$$x_{1} = \frac{h_{1} - h_{l,1}}{h_{v,1} - h_{l,1}} = \frac{261,23 - 148,98}{373,48 - 148,98} = 0,50$$

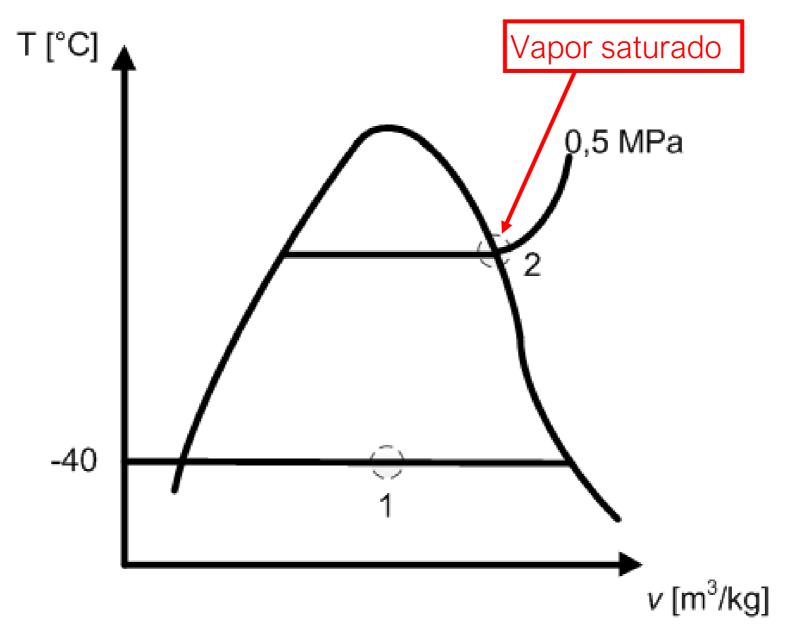
$$s_{1} = x_{1}s_{v,1} + (1 - x_{1})s_{l,1}$$

$$s_1 = (0,5*1,7620) + ((1-0,5)*0,7991) = 1,2806kJ / kg.K$$

b) R134a, $h_1=261,23$ kJ/kg, $T_1=-40$ °C, vapor saturado a $p_2=0,5$ MPa

	a <mark>B.5.1</mark> saturad	0											
		Volui	me espe (m³/kg)		E ne	rgia inte (kJ/kg)			Entalpia (kJ/kg)			Entropia kJ/kg K	
Temp. °C	Pressão kPa	Líquido saturado V _{f=1}	Evap. <i>V</i> _N	Vapor saturado <i>V</i> v	Líquido saturado u _I	Evap.	Vapor saturado u _v	Líquido saturado h _l	Evap.	Vapor saturado <i>h</i> v	Líquido saturado s _l	Evap.	Vapor saturado s _v
15	489,5	0,000805	0,04133	0,04213	220,10	166,35	386,45	220,49	186,58	407,07	1,0725	0,6475	1,7200
20	572,8	0,000817	0,03524	0,03606	227,03	162,16	389,19	227,49	182,35	409,84	1,0963	0,6220	1,7183
25	666,3	0,000829	0,03015	0,03098	234,04	157,83	391,87	234,59	177,92	412,51	1,1201	0,5967	1,7168

Interpolando p_2 = 500 kPa: p_a =489,5 kPa \rightarrow s_a =1,7200 kJ/kg.K p_b =572,8 kPa \rightarrow s $_b$ =1,7183 kJ/kg.K


$$s_2 = s_a + (p_2 - p_a) \frac{s_2 - s_1}{p_2 - p_1} =$$

$$s_2 = 1,7200 + (500 - 489,5) \frac{(1,7183 - 1,7200)}{(572,8 - 489,5)} = 1,7198 \text{kJ/kg.K}$$

b) R134a, $h_1=114,44$ kJ/kg, $T_1=-40$ °C, vapor saturado a $p_2=0,5$ MPa

$$s_2-s_1=1,7198-1,2086=0,5112 \text{ kJ/kg.K}$$

c) Ar como gás ideal, $T_1=7$ °C, $p_1=0.2$ MPa, $p_2=0.1$ MPa, $T_2=327$ °C

Sendo gás ideal
$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$$
 ou $s_2 - s_1 = C_p \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$

TABELA A.7

Propriedades termodinâmicas do ar (gás ideal; pressão de referência para a entropia é 0,1 MPa ou 1 bar).

<i>T</i> [K]	u kJ/kg	ħ kJ/kg	$s_T^0 \text{ kJ/kg} \times \text{K}$	P_r	V _r
200	142,77	200,17	6,46260	0,2703	493,47
220	157,07	220,22	6,55812	0,3770	389,15
240	171,38	240,27	6,64535	0,5109	313,27
260	185,70	260,32	6,72562	0,6757	256,58
280	200,02	280,39	6,79998	0,8756	213,26
290	207,02	290,43	6,83521	0,9899	195,36

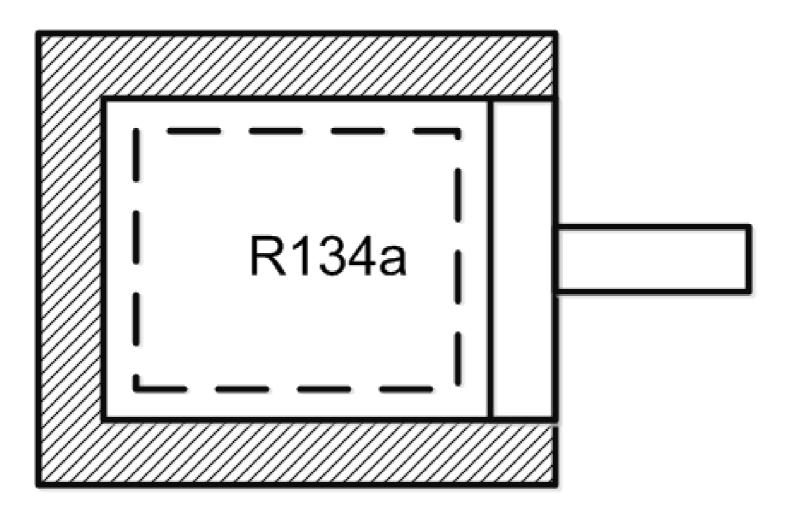
$$s_2 - s_1 = s_{T_2}^0 - s_{T_1}^0 - R \ln \frac{p_2}{p_1}$$
 ou $s_2 - s_1 = s_{T_2}^0 - s_{T_1}^0 + R \ln \frac{v_2}{v_1}$

- c) Ar como gás ideal, $T_1=7$ °C, $p_1=0.2$ MPa, $p_2=0.1$ MPa, $T_2=327$ °C
 - $T_1=7$ °C=280 K, $p_1=0.2$ MPa ; $T_2=327$ °C=600 K, $p_2=0.1$ MPa
 - $C_{p,ar}=1,004 \text{ kJ/kg.K}$

$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} = 1,004 * \ln \left(\frac{600}{280}\right) - 0,287 * \ln \left(\frac{0,1}{0,2}\right)$$
$$= 0,7652 + 0,1989 = 0,9641kJ/kg.K$$

TABELA A.7

Propriedades termodinâmicas do ar (gás ideal; pressão de referência para a entropia é 0,1 MPa ou 1 bar)


<i>T</i> [K]	α kJ/kg	ħ kJ/kg	s⁵ kJ/kg × K	P_r	V _r
280	200,02	280,39	6,79998	0,8756	213,26
600	435,10	607,32	7,57638	13,092	30,561

$$s_2 - s_1 = s_{T_2}^0 - s_{T_1}^0 - R \ln \frac{p_2}{p_1} = (7,57638 - 6,79998) - 0,287 * \ln \left(\frac{0,1}{0,2}\right) =$$

$$= 0,7764 + 0,1989 = 0,9753kJ / kg.K$$

Um conjunto pistão-cilindro, isolado, contém fluido refrigerante 134a, inicialmente ocupando 0,02 m³ a 650 kPa, 40°C. O fluido refrigerante se expande até um estado final onde a pressão é de 350 kPa. O trabalho desenvolvido pelo fluido refrigerante é medido como 5300 J. Este valor está correto?

Hipóteses:

- Sistema: massa de R134a
- Processo adiabático
- Variações desprezíveis de energia cinética e potencial

Aplicando a 2ª Lei para sistemas:

$$\Delta S = \int_{1}^{2} \frac{\delta Q}{T} + S_{gerada}$$

Processo adiabático: $\delta Q = 0$

Logo: $\Delta S = S_{gerada} \ge 0 \Rightarrow s_2 - s_1 \ge 0 \Rightarrow s_2 \ge s_1$ (Condição para a qual o processo é possível)

Aplicando a 1ª Lei para sistemas:

$$\Delta U = U_2 - U_1 = Q_{1-2} - W_{1-2}$$

$$u_2 - u_1 = \frac{-W_{1-2}}{m}$$

Para o estado 1: p₁=650 kPa, T₁=40°C→vapor superaquecido

Logo: $u_1=405,38 \text{ kJ/kg}$, $v_1=0,03525 \text{ m3/kg}$, $s_1=1,7696 \text{ kJ/kg}$.

$$v_1 = \frac{V_1}{m} \Rightarrow m = \frac{V_1}{v_1} = \frac{0,02}{0,03525} = 0,57 \text{kg}$$

Logo:
$$u_2 = 405,38 - \frac{5,3}{0,57} = 396,08kJ/kg$$

Para o estado 2: u₂=396,08 kJ/kg, p₂= 350 kPa→ vapor superaquecido

Logo: $T_2=23.8$ °C, $s_2=1.7845$ kJ/kg.K e $s_1=1.7696$ kJ/kg.K

Portanto: $s_2 > s_1 \rightarrow Processo proposto é possível$

A figura abaixo mostra uma proposta de um equipamento para produzir potência utilizando energia sob a forma de calor proveniente de um processo industrial a alta temperatura em conjunto com uma entrada de vapor. A figura fornece dados para a operação em estado estacionário. Todas as superfícies são bem isoladas, exceto uma a 527°C, através da qual ocorre transferência de calor a uma taxa de 4,21 kW. Desprezando as variações de energia cinética e potencial, calcule a potência teórica máxima que pode ser desenvolvida em kW.

Hipóteses:

- Volume de controle: equipamento
- Regime permanente
- Variações desprezíveis de energia cinética e potencial
- Transferências de calor ocorrem a 527°C

Aplicando o balanço de massa:

$$\frac{dm_{vc}}{dt} = \sum_{e} \dot{m}_{e} - \sum_{s} \dot{m}_{s} \qquad \frac{dm_{vc}}{dt} = 0 \text{ (Regime permanente)}$$

$$\therefore \dot{m}_{\rho} = \dot{m}_{\varsigma} = \dot{m}$$

Aplicando a 1^a Lei para o volume de controle:

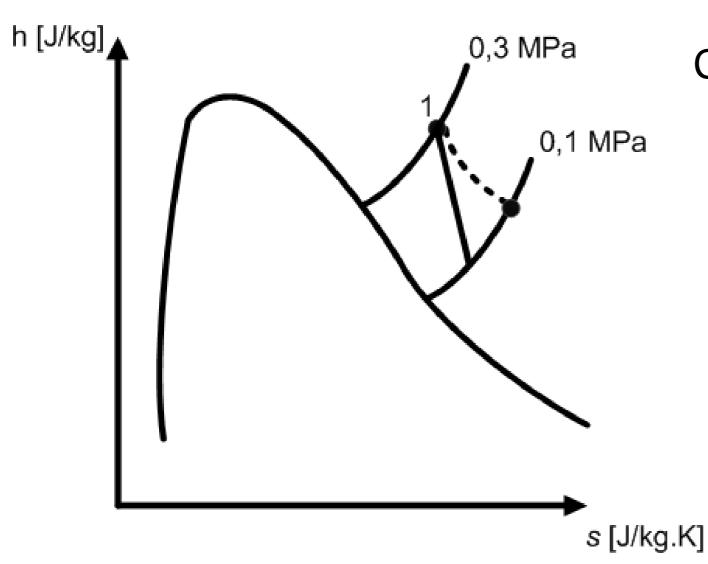
$$\frac{dE_{vc}}{dt} = \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + gz_{e} \right) - \sum_{s} \dot{m}_{s} \left(h_{s} + \frac{V_{s}^{2}}{2} + gz_{s} \right) + \dot{Q}_{vc} - \dot{W}_{vc}$$

$$\frac{dE_{vc}}{dt} = 0 \quad \text{(Regime permanente)}$$

$$\dot{Q}_{vc} = 4,21kW$$

$$\dot{m}(h_1 - h_2) + 4,21 - \dot{W}_{vc} = 0$$

$$\dot{W}_{vc} = \dot{m}(h_1 - h_2) + 4,21 \Longrightarrow \dot{W}_{vc} \uparrow h_2 \downarrow$$


Aplicando a 2^a Lei para o volume de controle:

$$\frac{dS_{vc}}{dt} = \sum_{e} \dot{m}_{e} s_{e} - \sum_{s} \dot{m}_{s} s_{s} + \sum_{s} \frac{\dot{Q}_{vc}}{T} + \dot{S}_{gerada}$$

$$\therefore \dot{m}_e = \dot{m}_s = \dot{m} \qquad \frac{dS_{vc}}{dt} = 0$$

$$0 = \dot{m}(s_1 - s_2) + \frac{\dot{Q}_{vc}}{T} + \dot{S}_{gerada}$$

$$S_2 = S_1 + \frac{\dot{Q}_{vc}}{\dot{m}T} + \frac{\dot{S}_{gerada}}{\dot{m}}$$

Como queremos reduzir o trabalho:

$$\dot{W}_{vc} \uparrow h_2 \downarrow$$

Observando o diagrama hXs:

$$h_2 \downarrow s_2 \downarrow$$

Logo:

$$s_2 = s_1 + \frac{\dot{Q}_{vc}}{\dot{m}T} + \frac{\dot{S}_{gerada}}{\dot{m}} \rightarrow s_{2,m\'{i}nimo} \Rightarrow \frac{\dot{S}_{gerada}}{\dot{m}} = 0 \Rightarrow s_{2,m\'{i}nimo} = s_1 + \frac{\dot{Q}_{vc}}{\dot{m}T}$$

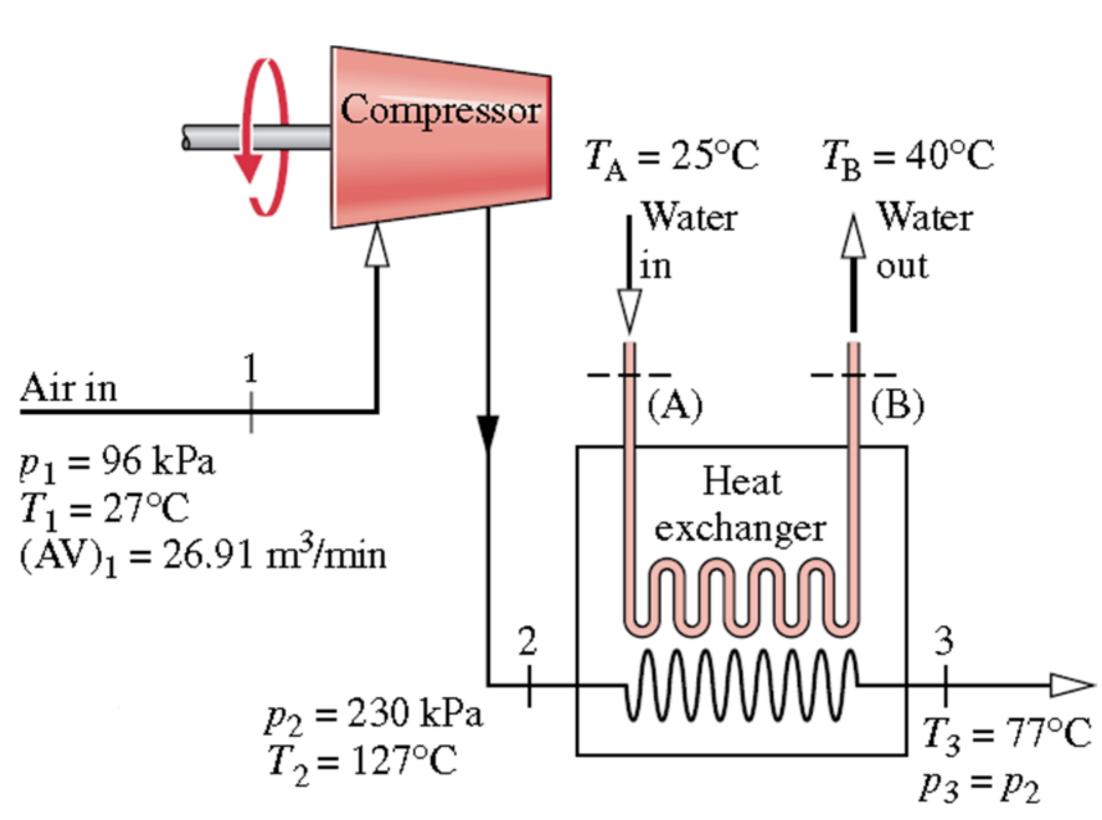
$$S_{2,m\text{inimo}} = S_1 + \frac{\dot{Q}_{vc}}{\dot{m}T}$$

Para o estado 1: vapor a 0,3 MPa e 500°C \rightarrow vapor superaquecido s_1 = 8,3250 kJ/kg.K; h_1 =3485,96 kJ/kg

Logo:

$$s_{2,m\'{n}imo} = s_1 + \frac{\dot{Q}_{vc}}{\dot{m}T} = 8,3250 + \frac{4,21}{0,026*(527+273)} = 8,5274 \text{kJ/kg.K}$$

Para o estado 2: vapor a 0,1 MPa e s_2 = 8,5274 kJ/kg.K T_2 =395,1°C; h_2 =3268,16 kJ/kg


$$\dot{W}_{vc,m\acute{a}ximo} = \dot{m}(h_1 - h_2) + 4,21 =$$

$$= 0,026*(3485,96 - 3268,16) + 4,21 = 9,87kW$$

Ar considerado como gás ideal escoa através do compressor e do trocador mostrado abaixo. Uma corrente separada de água líquida também escoa no trocador de calor. Os dados fornecidos são para a operação em regime permanente. A troca de calor com a vizinhança pode ser desprezada, bem como variações de energia cinética e potencial. Determine:

- a) A potência do compressor, em kW e a vazão mássica de água de resfriamento, em kg/s
- b) As taxas de geração de entropia, em kW/K, para o compressor e o trocador de calor

Hipóteses:

- Regime permanente
- Perdas de calor desprezíveis
- Não há trabalho realizado/fornecido no trocador
- Variações desprezíveis de energia cinética e potencial
- Ar considerado gás perfeito

Aplicando o balanço de massa para o volume de controle definido pelo compressor:

$$\frac{dm_{vc}}{dt} = \sum_{e} \dot{m}_{e} - \sum_{s} \dot{m}_{s} \qquad \frac{dm_{vc}}{dt} = 0 \text{ (Regime permanente)}$$

$$\therefore \dot{m}_1 = \dot{m}_2 = \dot{m}_{ar}$$

Aplicando a 1^a Lei para o volume de controle definido pelo compressor:

$$\frac{dE_{vc}}{dt} = \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + gz_{e} \right) - \sum_{s} \dot{m}_{s} \left(h_{s} + \frac{V_{s}^{2}}{2} + gz_{s} \right) + \dot{Q}_{vc} - \dot{W}_{vc}$$

$$\frac{dE_{vc}}{dt} = 0$$
 (Regime permanente) $\dot{Q}_{vc} = 0$ (Processo adiabático)

$$\dot{Q}_{vc} = 0$$
 (Processo adiabático)

Logo:
$$0 = \dot{m}_{ar} (h_1 - h_2) - \dot{W}_{compressor} \Rightarrow \dot{W}_{compressor} = \dot{m}_{ar} (h_1 - h_2)$$

$$\dot{m}_{ar} = \rho_{ar} V_{ar} A_{ar} = \frac{V_{ar} A_{ar}}{v_{ar}}$$

$$p_{ar} v_{ar} = R_{ar} T_{ar} \Rightarrow v_{ar} = \frac{R_{ar} T_{ar}}{p_{ar}}$$

$$= \frac{96 \times 10^3 * \left(\frac{26,91}{60}\right)}{287 * (27 + 273)} = 0,50 \, kg/s$$

$$\dot{m}_{ar} = \frac{p_{ar}V_{ar}A_{ar}}{R_{ar}T_{ar}} =$$

$$= \frac{96x10^3 * \left(\frac{26,91}{60}\right)}{287 * \left(27 + 273\right)} = 0,50 \, kg/s$$

Utilizando a tabela A.7:

$$h_1(T_1 = 300K) = 300,47kJ/kg; h_2(T_2 = 400K) = 401,30kJ/kg$$

$$\dot{W}_{compressor} = \dot{m}_{ar} (h_1 - h_2) = 0.50 * (300.47 - 401.30) = -50.4kW$$

Aplicando o balanço de massa para o volume de controle definido pelo trocador:

$$\frac{dm_{vc}}{dt} = \sum_{e} \dot{m}_{e} - \sum_{s} \dot{m}_{s}$$

$$\frac{dm_{vc}}{dt} = 0 \text{ (Regime permanente)}$$

$$\therefore \dot{m}_2 = \dot{m}_3 = \dot{m}_{ar}$$

$$\therefore \dot{m}_A = \dot{m}_B = \dot{m}_{\acute{a}gua}$$

Aplicando a 1^a Lei para o volume de controle definido pelo trocador:

$$\frac{dE_{vc}}{dt} = \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + gz_{e} \right) - \sum_{s} \dot{m}_{s} \left(h_{s} + \frac{V_{s}^{2}}{2} + gz_{s} \right) + \dot{Q}_{vc} - \dot{W}_{vc}$$

$$\frac{dE_{vc}}{dt} = 0 \quad \text{(Regime permanente)}$$

$$\dot{Q}_{vc} = 0$$
 (Processo adiabático) $\dot{W}_{vc} = 0$

$$0 = \dot{m}_{ar} (h_2 - h_3) + \dot{m}_{água} (h_A - h_B) \Rightarrow \dot{m}_{água} = \dot{m}_{ar} \frac{(h_2 - h_3)}{(h_B - h_A)}$$

Para líquidos: $h=C_pT$. Admitindo $C_{p,\acute{a}gua}=constante=4184J/kg.K$

Utilizando a tabela A.7:
$$h_3(T_1 = 350K) = 350,78kJ / kg$$

$$\dot{m}_{água} = \dot{m}_{ar} \frac{\left(h_2 - h_3\right)}{\left(h_B - h_A\right)} = 0.50 * \frac{\left(401.30 - 350.78\right)}{4.184 * \left(40 - 25\right)} = 0.403 \, kg/s$$

Aplicando a 2^a Lei para o volume de controle definido pelo compressor:

$$\frac{dS_{vc}}{dt} = \sum_{e} \dot{m}_{e} s_{e} - \sum_{s} \dot{m}_{s} s_{s} + \sum_{s} \frac{\dot{Q}_{vc}}{T} + \dot{S}_{gerada}$$

$$\frac{dS_{vc}}{dt} = 0 \text{ (Regime permanente)}$$

$$0 = \dot{m}_{ar} (s_1 - s_2) + \dot{S}_{gerada, compressor}$$

$$\dot{m}_1 = \dot{m}_2 = \dot{m}_{ar}$$

$$\dot{Q}_{vc}=0$$
 (Processo adiabático)

$$0 = \dot{m}_{ar} \left(s_1 - s_2 \right) + \dot{S}_{gerada, compresson}$$

$$\dot{S}_{gerada,compressor} = \dot{m}_{ar} \left(s_2 - s_1 \right)$$

Para gás perfeito:

$$s_2 - s_1 = s_{T_2}^0 - s_{T_1}^0 - R \ln \frac{p_2}{p_1} = s_{400}^0 - s_{300}^0 - 0,287 * \ln \frac{230}{96} =$$

$$= 7,1593 - 6,8693 - 0,2508 = 0,0392 \, kJ/kg.K$$

$$\dot{S}_{gerada,compressor} = \dot{m}_{ar} (s_2 - s_1) = 0.5 * 0.0392 = 0.0196 \, kW/K$$

Aplicando a 2^a Lei para o volume de controle definido pelo trocador:

$$\frac{dS_{vc}}{dt} = \sum_{e} \dot{m}_{e} s_{e} - \sum_{s} \dot{m}_{s} s_{s} + \sum_{s} \frac{\dot{Q}_{vc}}{T} + \dot{S}_{gerada}$$

$$\frac{dS_{vc}}{dt} = 0 \text{(Regime permanente)}$$

$$\dot{m}_2 = \dot{m}_3 = \dot{m}_{ar}$$

$$\dot{m}_A = \dot{m}_B = \dot{m}_{\acute{a}gua}$$

$$\dot{Q}_{vc} = 0$$
(Processo adiabático)

$$\dot{S}_{gerada,trocador} = \dot{m}_{ar} \left(s_3 - s_2 \right) + \dot{m}_{água} \left(s_B - s_A \right)$$

$$s_3 - s_2 = s_{350}^0 - s_{400}^0 - R \ln \frac{p_2}{p_1} = (7,0240 - 7,1593) - 0,287 * \ln \left(\frac{230}{230}\right)$$

$$s_3 - s_2 = -0,1353 kJ/kg.K$$

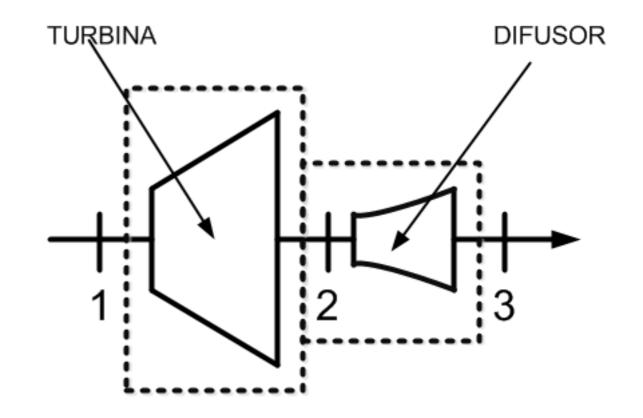
$$s_B - s_A = s_{liquido, T=40^{\circ}C} - s_{liquido, T=25^{\circ}C} = 0,5724 - 0,3673 = 0,2051 \, kJ/kg.K$$

$$\dot{S}_{gerada,trocador} = \dot{m}_{ar} (s_3 - s_2) + \dot{m}_{água} (s_B - s_A) =$$

$$= 0.5 * (-0.1353) + 0.403 * (0.2051) = 0.0150 \, kW/K$$

Ar entra em uma turbina de 3600 kW operando em regime permanente com uma vazão mássica de 18kg/s a 800°C, 0,3 MPa e velocidade de 100m/s. O ar se expande adiabaticamente na turbina e sai a uma velocidade de 150 m/s. O ar entra em um difusor onde é desacelerado isoentropicamente até uma velocidade de 10 m/s e uma pressão de 0,1 MPa. Assumindo que o ar se comporta como gás perfeito, determine:

- a) A pressão e a temperatura do ar na saída da turbina, em MPa e °C, respectivamente;
- b) A taxa de geração de entropia na turbina, em kW/K;
- c) Mostre o processo em um diagrama T-s.



Hipóteses:

- Regime permanente
- Processo na turbina: adiabático
- Processo no difusor: isoentrópico

Dados:

$$p_{1} = 0.3MPa$$
 $V_{2} = 150 \, m/s$
 $\dot{m}_{1} = 18 \, kg/s$ $V_{3} = 10 \, m/s$
 $v_{1} = 100 \, m/s$ $v_{2} = 100 \, m/s$
 $v_{3} = 100 \, m/s$
 $v_{3} = 0.1MPa$
 $v_{4} = 0.1MPa$
 $v_{5} = 0.1MPa$
 $v_{7} = 0.1MPa$
 $v_{7} = 0.1MPa$
 $v_{7} = 0.1MPa$

Pede-se: $p_2; T_2; S_{gerada, turbina}$

Para gás perfeito define-se:
$$p_r = \frac{p}{p_{crítica}}$$

Sendo: p = pressão no estado desejado; p_{crítica}= pressão crítica do fluido

Além disso:
$$\frac{p_2}{p_1} = \frac{p_{r2}(T_2)}{p_{r1}(T_1)}$$

TABELA A.7	
Propriedades termodinâmicas do ar (gás ideal; pressão de referência para a entropia é 0,1 MPa ou 1 bar)	

<i>T</i> [K]	u kJ∕kg	ħ kJ/kg	$s_7^0 \mathrm{kJ/kg} \! imes \! \mathrm{K}$	P_r	V_f
200	142,77	200,17	6,46260	0,2703	493,47
220	157,07	220,22	6,55812	0,3770	389,15
240	171,38	240,27	6,64535	0,5109	313,27
260	185,70	260,32	6,72562	0,6757	256,58
280	200,02	280,39	6,79998	0,8756	213,26
290	207,02	290,43	6,83521	0,9899	195,36
298,15	213,04	298,62	6,86305	1,0907	182,29
300	214,36	300,47	6,86926	1,1146	179,49

Aplicando o balanço de massa para o volume de controle definido pela turbina:

$$\frac{dm_{vc}}{dt} = \sum_{e} \dot{m}_{e} - \sum_{s} \dot{m}_{s} \qquad \frac{dm_{vc}}{dt} = 0 \text{ (Regime permanente)}$$

$$\therefore \dot{m}_1 = \dot{m}_2 = \dot{m}_{ar}$$

Aplicando a 1^a Lei para o volume de controle definido pela turbina:

$$\frac{dE_{vc}}{dt} = \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + gz_{e} \right) - \sum_{s} \dot{m}_{s} \left(h_{s} + \frac{V_{s}^{2}}{2} + gz_{s} \right) + \dot{Q}_{vc} - \dot{W}_{vc}$$

$$\frac{dE_{vc}}{dt} = 0$$
 (Regime permanente) $\dot{Q}_{vc} = 0$ (Processo adiabático)

$$0 = \dot{m}_{ar} \left(h_1 - h_2 + \frac{V_1^2 - V_2^2}{2} \right) - \dot{W}_{vc} \Longrightarrow h_2 = h_1 + \frac{V_1^2 - V_2^2}{2} - \frac{\dot{W}_{vc}}{\dot{m}_{ar}}$$

$$h_2 = 1130,02 + \frac{(100)^2 - (150)^2}{2} - \frac{3600}{18} = 923,77 \, kJ/kg$$

Pela Tabela A.7: h_2 = 923,77kJ/kg \rightarrow pr₂=72,4; T_2 =891,59 K=618,59°C

Aplicando a 1^a Lei para o volume de controle definido pelo difusor:

$$\frac{dE_{vc}}{dt} = \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + gz_{e} \right) - \sum_{s} \dot{m}_{s} \left(h_{s} + \frac{V_{s}^{2}}{2} + gz_{s} \right) + \dot{Q}_{vc} - \dot{W}_{vc}$$

$$\frac{dE_{vc}}{dt}$$
 = 0(Regime permanente) \dot{Q}_{vc} = 0 (Processo adiabático) \dot{W}_{vc} = 0

$$0 = \dot{m}_{ar} \left(h_3 - h_2 + \frac{V_3^2 - V_2^2}{2} \right) \Longrightarrow h_3 = h_2 + \frac{V_2^2 - V_3^2}{2}$$

$$h_3 = 923,77 + \frac{(150)^2 - (10)^2}{2} = 934,97 \, kJ/kg$$

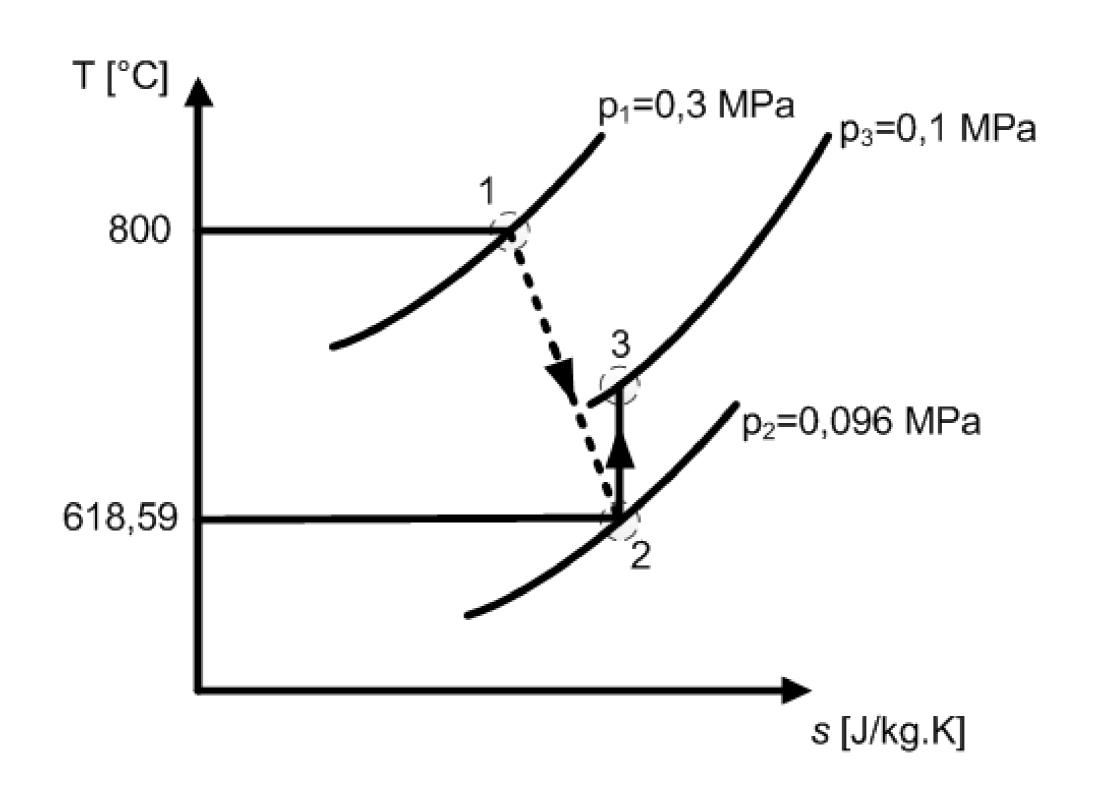
Pela Tabela A.7: $h_3 = 934,97kJ/kg \rightarrow pr_3 = 75,9$

Como:
$$\frac{p_2}{p_3} = \frac{p_{r2}}{p_{r3}} \Rightarrow p_2 = p_3 \frac{p_{r2}}{p_{r3}} = 0,1*\frac{72,6}{75,9} = 0,096MPa$$

Aplicando a 2ª Lei para o volume de controle definido pela turbina:

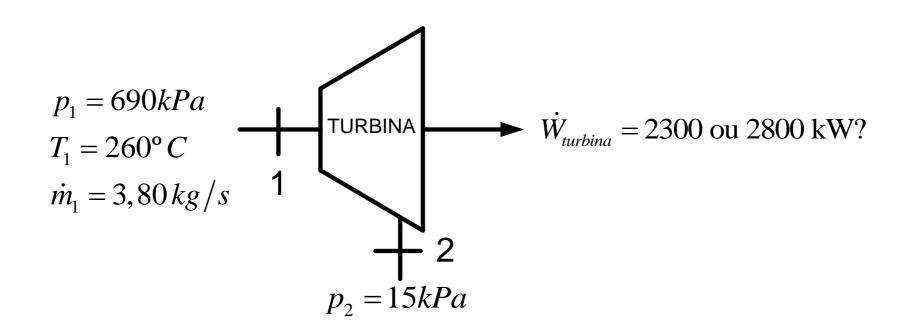
$$\frac{dS_{vc}}{dt} = \sum_{e} \dot{m}_{e} s_{e} - \sum_{s} \dot{m}_{s} s_{s} + \sum_{s} \frac{\dot{Q}_{vc}}{T} + \dot{S}_{gerada}$$

$$\frac{dS_{vc}}{dt} = 0$$
 (Regime permanente) $\dot{Q}_{vc} = 0$ (Processo adiabático)


$$\dot{m}_1 = \dot{m}_2 = \dot{m}_{ar} \quad 0 = \dot{m}_{ar} \left(s_1 - s_2 \right) + \dot{S}_{gerada,turbina} \Longrightarrow \dot{S}_{gerada,turbina} = \dot{m}_{ar} \left(s_2 - s_1 \right)$$

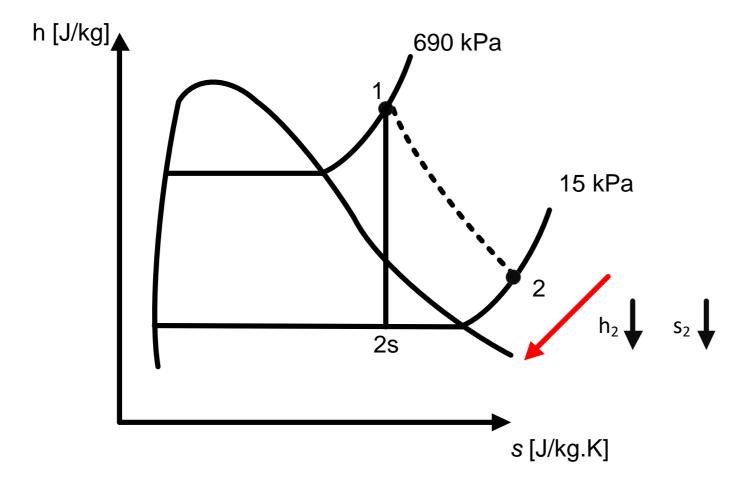
$$s_2 - s_1 = s_{891,59K}^0 - s_{1073K}^0 - R \ln \frac{p_2}{p_1} =$$

$$= (8,0051-8,2155) - 0,287 * \ln \left(\frac{0,096}{0,30} \right)$$


$$s_2 - s_1 = 0.1166 \, kJ/kg.K$$

$$\dot{S}_{gerada,turbina} = \dot{m}_{ar} (s_2 - s_1) = 18*0,1166 = 2,10 \, kW/K$$

A figura abaixo estabelece valores de teste em regime permanente para uma turbina a vapor operando com transferência de calor desprezível para sua vizinhança e variações desprezíveis de energia cinética e potencial. Uma cópia mal feita da folha de dados indica que a potência é 2300 kW ou 2800 kW. Determine se algum ou ambos os valores de potência podem ser corretos.



Solução (1)

Hipóteses:

- Regime permanente
- Variações desprezíveis de energia cinética e potencial
- Processo adiabático

Aplicando o balanço de massa para o volume de controle definido pela turbina:

$$\frac{dm_{vc}}{dt} = \sum_{e} \dot{m}_{e} - \sum_{s} \dot{m}_{s} \qquad \frac{dm_{vc}}{dt} = 0 \text{ (Regime permanente)}$$

$$\therefore \dot{m}_1 = \dot{m}_2 = \dot{m}$$

Aplicando a 1^a Lei para o volume de controle definido pela turbina:

$$\frac{dE_{vc}}{dt} = \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + gz_{e} \right) - \sum_{s} \dot{m}_{s} \left(h_{s} + \frac{V_{s}^{2}}{2} + gz_{s} \right) + \dot{Q}_{vc} - \dot{W}_{vc}$$

$$\frac{dE_{vc}}{dt} = 0$$
 (Regime permanente) $\dot{Q}_{vc} = 0$ (Processo adiabático)

$$\dot{W}_{vc} = \dot{m} \left(h_1 - h_2 \right)$$

Aplicando a 2^a Lei para o volume de controle definido pela turbina:

$$\frac{dS_{vc}}{dt} = \sum_{e} \dot{m}_{e} s_{e} - \sum_{s} \dot{m}_{s} s_{s} + \sum_{s} \frac{\dot{Q}_{vc}}{T} + \dot{S}_{gerada}$$

$$\frac{dS_{vc}}{dt} = 0$$
 (Regime permanente) $\dot{Q}_{vc} = 0$ (Processo adiabático)

$$\dot{S}_{gerada} = \dot{m}(s_2 - s_1)$$

$$\dot{W}_{vc,m\acute{a}ximo} \Rightarrow h_{2,m\acute{n}imo} \rightarrow s_{2,m\acute{n}imo} \Rightarrow \dot{S}_{gerada} = 0 \Rightarrow s_2 = s_1$$
 (Processo isoentrópico)

Para o estado 1: h_1 =2967,01 kJ/kg; s_1 =7,1411 kJ/kg.K \rightarrow vapor superaquecido

Para o estado 2: $s_{2s} = s_1 = 7,1411$ kJ/kg.K ; $p_2 = 15$ kPa \rightarrow mistura líquido/vapor \rightarrow $s_{l,2s} = 0,7548$ kJ/kg.K e $s_{v,2s} = 8,0084$ kJ/kg.K $h_{l,2s} = 225,91$ kJ/kg e $h_{v,2s} = 2599,06$ kJ/kg

$$x_{2s} = \frac{s_{2s} - s_{1,2s}}{s_{v,2s} - s_{1,2s}} = \frac{(7,1411 - 0,7548)}{(8,0084 - 0,7548)} = 0,88$$

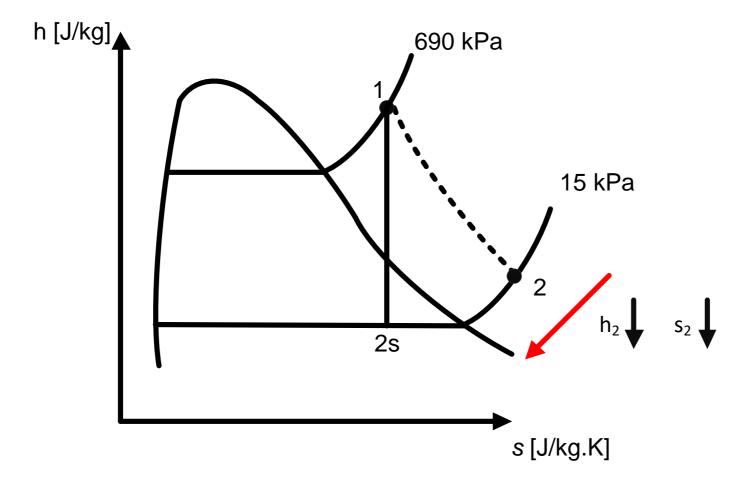
Logo:

$$h_{2s} = x_{2s}h_{v,2s} + (1-x_{2s})h_{1,2s} =$$

= 0,88*2599,06+(1-0,88)*225,91 = 2314,28 kJ/kg

Portanto:

$$\dot{W}_{vc} = \dot{m}(h_1 - h_2) = 3.80*(2967,01-2314,28) = 2480,4kW$$


Conclusão: o valor de 2800 kW não pode ser atingido e portanto o valor correto é 2300 kW

Solução (2)

Hipóteses:

- Regime permanente
- Variações desprezíveis de energia cinética e potencial
- Processo adiabático

Aplicando o balanço de massa para o volume de controle definido pela turbina:

$$\therefore \dot{m}_1 = \dot{m}_2 = \dot{m}$$

Aplicando a 1^a Lei para o volume de controle definido pela turbina:

$$\dot{W}_{vc} = \dot{m}(h_1 - h_2)$$

Aplicando a 2^a Lei para o volume de controle definido pela turbina:

$$\dot{S}_{gerada} = \dot{m}(s_2 - s_1)$$

Definindo que:

$$\dot{W}_{vc} = 2300kW \Rightarrow h_2 = h_1 - \frac{\dot{W}_{vc}}{\dot{m}} = 2967,01 - \frac{2300}{3,8} = 2361,75kJ/kg$$

Para o estado 2: h_2 =2361,75 kJ/kg ; p_2 =15 kPa \rightarrow mistura líquido/vapor $s_{l,2s}$ =0,7548 kJ/kg.K e $s_{v,2s}$ =8,0084 kJ/kg.K $h_{l,2s}$ =225,91 kJ/kg e $h_{v,2s}$ =2599,06 kJ/kg

$$x_{2s} = \frac{h_2 - h_{1,2}}{h_{\nu,2} - h_{1,2}} = \frac{(2361, 75 - 225, 91)}{(2599, 06 - 225, 91)} = 0,90$$

Logo:

$$s_2 = x_2 s_{v,2} + (1 - x_2) h_{1,2} =$$

= 0,90*8,0084 + (1-0,90)*0,7548 = 7,2830 kJ/kg.K

Como:

$$\dot{S}_{gerada} = \dot{m}(s_2 - s_1) = 3.8*(7.2830 - 7.1411) = 0.53922 \, kJ/kg.K \ge 0$$

O valor de 2300 kW não viola a 2ª Lei da Termodinâmica → O processo é possível

Definindo que:

$$\dot{W}_{vc} = 2800kW \Rightarrow h_2 = h_1 - \frac{\dot{W}_{vc}}{\dot{m}} = 2967,01 - \frac{2800}{3,8} = 2230,17kJ/kg$$

$$x_{2s} = \frac{h_2 - h_{1,2}}{h_{v,2} - h_{1,2}} = \frac{(2230,17 - 225,91)}{(2599,06 - 225,91)} = 0,85$$

Logo:

$$s_2 = x_2 s_{v,2} + (1 - x_2) h_{1,2} =$$

= 0,85*8,0084 + (1-0,85)*0,7548 = 6,9204 kJ/kg.K

Como:

$$\dot{S}_{gerada} = \dot{m}(s_2 - s_1) = 3.8*(6.9204 - 7.1411) = -0.8387 \, kJ/kg.K \le 0$$

O valor de 2800 kW viola a 2ª Lei da Termodinâmica → O processo não é possível