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Abstract

We write the exact renormalization-group recursion relations for nearest-neighbor ferromag-
netic Ising models on Migdal–Kadano� hierarchical lattices with a distribution of aperiodic
exchange interactions according to a class of substitutional sequences. For small geometric 
uctu-
ations, the critical behavior is unchanged with respect to the uniform case. For large 
uctuations,
as in the case of the Rudin–Shapiro sequence, the uniform �xed point in the parameter space can-
not be reached from any physical initial conditions. We derive a criterion to check the relevance
of the geometric 
uctuations. c© 1998 Elsevier Science B.V. All rights reserved.
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There are a number of recent investigations on the critical behavior of ferromagnetic
spin systems with the inclusion of aperiodic exchange interactions [1]. In particular,
there are detailed studies of the critical behavior in the ground state of the quantum
Ising chain in a transverse �eld [2–5] (which is known to be related to the transition
at �nite temperatures of the two-dimensional Ising model). The nearest-neighbor fer-
romagnetic exchange interactions are chosen according to some substitution sequences,
and the geometric 
uctuations are gauged by a wandering exponent ! associated with
the eigenvalues of the substitution matrix of the sequence. According to a heuristic
criterion proposed by Luck [3], the critical behavior remains unchanged (that is, of
Onsager type) for bounded 
uctuations (small values of !), but large 
uctuations
should induce much weaker singularities, similar to the case of a disordered Ising
ferromagnet.
In a very recent publication [6], we took advantage of the simpli�cations brought

about by a Migdal–Kadano� hierarchical (MKH) lattice [7] to perform some exact
calculations for characterizing the critical behavior of aperiodic ferromagnetic Ising
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models. The (layered) exchange interactions between nearest neighbors were chosen
according to a certain class of generalized Fibonacci sequences [8]. In this paper, we
review some of these calculations, discuss the well-known case of the Rudin–Shapiro
sequence, and present an exact derivation of an analog of Luck’s criterion to check
whether the geometric 
uctuations are strong enough to change the critical behavior of
the uniform system.
Consider a particular two-letter generalized Fibonacci sequence given by the substi-

tutions

A→AB ; B→AA : (1)

If we start with letter A, the successive application of this in
ation rule produces the
sequences

A→AB→ABAA→ABAAABAB→ · · · : (2)

At each stage of this construction, the numbers NA and NB, of letters A and B, can be
obtained from the recursion relations(

N ′
A

N ′
B

)
=M

(
NA
NB

)
; (3)

with the substitution matrix

M=
(
1 2
1 0

)
: (4)

The eigenvalues of this matrix, �1 = 2 and �2 =−1, govern most of the geometrical
properties. For any sequence, the total number of letters, at a large order n of the
construction, depends asymptotically on �n1. The 
uctuations are of the order |�2|n. It
is interesting to de�ne the wandering exponent [3],

!=
ln |�2|
ln �1

; (5)

that expresses the asymptotic dependence of the 
uctuations with the total number of
letters, �N (n)∼N!.
The nearest-neighbor Ising model is given by the Hamiltonian

H=−
∑
(i; j)

Ji; j�i�j ; (6)

with the spin variables �i=±1 on the sites of a hierarchical diamond structure. In
Fig. 1 , which is suitable for the period-doubling Fibonacci rule of Eq. (1), we draw
the �rst stages of the construction of a diamond lattice with a basic polygon of four
bonds (that is, of a MKH lattice with cell length b=2, and number of branches q=2,
which amounts to 4 bonds in the diamond unit cell). As indicated in this �gure, we
simulate a layered system by the introduction of the interactions JA¿0 and JB¿0 along
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Fig. 1. Some stages of the construction of a Migdal–Kadano� hierarchical lattice with bond length b=2 and
q=2 branches (which is called a diamond lattice) for the period-doubling sequence A→AB and B→AA
(letters A and B indicate the exchange interactions, JA and JB).

the branches of the structure. If we keep in mind the rules of Eq. (1), and decimate
the intermediate spins, it is straightforward [6] to establish the recursion relations

x′A=
2xAxB
1 + x2Ax

2
B

(7)

and

x′B=
2x2A
1 + x4A

; (8)

where xA= tanhKA; xB= tanhKB; KA= �JA; KB= �JB, and � is the inverse of the
temperature.
It should be remarked that a similar procedure can be used to consider much more

general substitutional sequences. However, to avoid any changes in the topology of the
hierarchical lattice, we restrict the analysis to period-multiplying substitutions. In these
cases, the largest eigenvalue of the in
ation matrix, �1, gives the multiplication factor
of the period. Therefore, b= �1 for all cases under consideration (and, in particular,
b= �1 = 2, for the diamond lattice of the �gure).
In the uniform case, JA= JB= J , Eqs. (7) and (8) reduce to the simple recursion

relation

x′=
2x2

1 + x4
; (9)

with two trivial and stable �xed points, x∗=0 and x∗=1, and a non-trivial and unstable
�xed point, x∗=0:543689 : : : , which come from the polynomial equation

x5 − 2x2 + x= x[x4 − 2x + 1]=0 : (10)

In the aperiodic case (JA 6= JB) under consideration, the A components of the coor-
dinates of the �xed points in the physical sectors of the xA–xB space (06xA; xB61)
come from the solutions of the equation

x9A + 2x
5
A − 4x3A + xA= xA[x4A − 2xA + 1][x4A + 2xA + 1]=0 : (11)
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Therefore, a comparison with Eq. (10) shows that the only �xed points are located
along the xA= xB direction, and given by the same values as in the uniform case,
x∗A= x

∗
B=0, x

∗
A= x

∗
B=1, and x

∗
A= x

∗
B=0:543689 : : : . The linearization about the non-

trivial uniform �xed point yields the asymptotic equations(
�x′A
�x′B

)
=CMT

(
�xA
�xB

)
; (12)

where MT is the transpose of the substitution matrix, and the structure factor C is
given by

C =
1− x∗A
x∗A

=0:839286 : : : : (13)

The diagonalization of this linear form gives the eigenvalues

�1 =C�1 = 2C =1:678573 : : : ; (14)

and

�2 =C�2 =−C =−0:839286 : : : : ; (15)

where �1 = 2 and �2 =−1 are the eigenvalues of the substitution matrix. As �1¿1
and |�2|¡1, the �xed point is a saddle node with a 
ipping approximation. Therefore,
given the ratio r= JB=JA between the exchange interactions, the critical temperature is
de�ned by the 
ow into this uniform �xed point. From Eqs. (9) and (10), we see that
the same eigenvalue �1 characterizes the (unstable) �xed point of the uniform model.
Thus, in this particular example, with the wandering exponent !=0, the geometric

uctuations are unable to change the critical behavior with respect to the uniform
system. We can draw a phase diagram, in terms of the ratio r and the temperature T ,
where the critical line displays the same (universal) exponents of the uniform case.
Also, it is not di�cult to check that the same sort of behavior (saddle point; largest
eigenvalue associated with the uniform system) still holds for all �nite values of the
branching number q of the diamond (b=2) structure.
To give an example with another value of the wandering exponent !, where the geo-

metric 
uctuations become relevant, consider the (four-letter) Rudin–Shapiro sequence
[8], A→AC; B→DC; C→AB, and D→DB. The substitution matrix is given by

MRS =



1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1


 ; (16)

with eigenvalues �1 = 2; �2 =−�3 =
√
2, and �4 = 0, and the wandering exponent !

=1=2. For the Ising model on the diamond hierarchical lattice of the �gure, it is easy
to write the set of recursion relations

x′A=
2xAxC
1 + x2Ax

2
C
; x′B=

2xDxC
1 + x2Dx

2
C
; (17)
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x′C =
2xAxB
1 + x2Ax

2
B
; x′D=

2xDxB
1 + x2Dx

2
B
: (18)

Again, there are two trivial �xed points, x∗A= x
∗
B= x

∗
C = x

∗
D=0 and 1, and the non-

trivial uniform �xed point, x∗A= x
∗
B= x

∗
C = x

∗
D=0:543689 : : : , as in the uniform case.

The linearization about this uniform �xed point gives a matrix relation of the same
form as Eq. (12),

(�x′)=CMT
RS(�x) ; (19)

with the same structure factor C, given by Eq. (13), and the eigenvalues

�1 =C�1 = 2C =1:678573 : : : ; (20)

�2;3 =C�2;3 =±C
√
2=±1:186930 : : : ; (21)

and

�4 =C�4 = 0 : (22)

Therefore, besides being unstable along the diagonal direction (xA= xB= xC = xD),
this uniform �xed point is also unstable along two additional directions in the four-
dimensional xA–xB –xC –xD parameter space. Given the ratios between the exchange
interactions, there is no temperature associated with any physical initial conditions in
this parameter space so that we can reach the uniform �xed point. The critical behavior
is of a much more subtle character as compared with the uniform case.
Now it is interesting to devise an analog of Luck’s criterion to gauge the in
uence

of the geometric 
uctuations. As we have seen in the previous examples, the largest
eigenvalue in the neighborhood of the uniform �xed point is given by

�1 = �1C = bC ; (23)

where it is important to remark that the calculations are always performed for substi-
tutional sequences and MKH lattices such that �1 = b. The second largest eigenvalue
is given by

�2 = �2C =
�2
b
�1 : (24)

Therefore, the 
uctuations are relevant if

|�2|= |�2|
b
�1¿1 : (25)

From the exact recursion relations between the free energies associated with successive
generations of a uniform ferromagnetic Ising model on a MKH lattice [7], we can
write

�1 = byt = b
D
2−� ; (26)
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where � is the critical exponent of the speci�c heat of the uniform model and D is the
fractal dimension of the lattice. From the de�nition of the wandering exponent, given
by Eq. (5), we can also write

|�2|= b! : (27)

Inserting these expressions into inequality (25), we show that the geometric 
uctuations
are relevant for

!¿!c=1− D
2− � : (28)

In the particular case of the diamond hierarchical lattice (b=2 and q=2) the fractal
dimension is given by

D=
ln(qb)
ln b

=2 ; (29)

so the criterion is reduced to the inequality

!¿!c=− �
2− � : (30)

As �1 = 2C =1:678573 : : : , we have �=−0:676533 : : : , and !¿0:252764 : : : , which
explains the universal behavior of the �rst example (!=0) and the relevance of the

uctuations in the case of the Rudin–Shapiro sequence (!=1=2). This same criterion
explains the change in the critical behavior of an aperiodic Potts model on the diamond
hierarchical lattice above 4 + 2

√
2 states, as recently shown by Magalhães, et al. [9].
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