
Sigrid Adriaenssens, Fabio Gramazio, Matthias Kohler,  
Achim Menges, and Mark Pauly

Editors



Bibliographic Information published by Die Deutsche Nationalbibliothek
Die Deutsche Nationalbibliothek lists this publication in the Internet at http://dnb.d-nb.de.

This work is licensed under creative commons license CC BY-NC-ND 2.5 CH.

© 2016, vdf Hochschulverlag AG an der ETH Zürich

Download open access:
ISBN 978-3-7281-3778-4 / DOI 10.3218/3778-4
Print version: 
ISBN 978-3-7281-3777-7

www.vdf.ethz.ch
verlag@vdf.ethz.ch

Cover illustration by Frank Hyde-Antwi, based on Figure 6 in “Textile Fabrication Techniques for 
Timber Shells: Elastic Bending of Custom-Laminated Veneer for Segmented Shell Construction 
Systems” by Simon Bechert, Jan Knippers, Oliver David Krieg, Achim Menges, Tobias Schwinn, 
and Daniel Sonntag (ICD/ITKE University of Stuttgart, Germany).

evolute.
the geometry experts

Hosts

Main Sponsor

Conference Sponsors

Workshop Sponsor

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html

http://vdf.ch/advances-in-architectural-geometry-2016.html
http://vdf.ch/advances-in-architectural-geometry-2016-e-book.html
https://creativecommons.org/licenses/by-nc-nd/2.5/ch/


Sigrid Adriaenssens, Fabio Gramazio, Matthias Kohler,  
Achim Menges, and Mark Pauly 

Editors

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



Foreword

Architecture and geometry have always been intrinsically linked. However, 
their operational relationship has been dramatically strengthened by the recent  
advent of computational design and digital fabrication techniques. These distinct 
developments are reciprocally dependent, as the digital fabrication of complex 
architectural components induces the need for advanced geometric strategies, 
and in return the potentials of geometrical computing instils a need for efficiency 
in the production of complex forms. Although currently confined to the exclu-
sive domain of specialists, such advanced geometric practices shall evolve to 
include a much larger and interdisciplinary professional group, including archi-
tects, engineers, computer scientists, and mathematicians. Their authorship in 
the creative development of specific computational tools may revolutionise the 
design process, all the way from initial conceptual form finding to its final fabri-
cation and construction.

The recent passing of Zaha Hadid led to speculation that this unexpected 
event could herald the decline of complex form in architecture. This conjecture 
may be amplified by the current accumulation of global political, social, and en-
vironmental emergencies demanding fast and pragmatic architectural solutions 
rather than extravagant shapes; however, this critical assumption proves to be 
short-sighted and simplistic. As a matter of fact, geometrical complexity remains 
the precondition for efficient structures in architecture, and this simple paradigm 
can be observed in nature, beyond time-dependent stylistic and formal discourse.

Since its first edition, which was organized by Helmut Pottmann in 2008, the 
aim of the Advances in Architectural Geometry symposium has been to propel 
this research area by providing a platform for interdisciplinary debate through 
scientific contributions of both technical and theoretical nature. Such develop-
ment of easy and elegant access to complex geometries in architecture not only 
demands radical progress in computational design tools and digital fabrication 
techniques, but primarily depends on the emergence of a novel design culture 
and building craft.

It is a special honour for the National Centre of Competence in Research 
(NCCR) Digital Fabrication to welcome the AAG community to ETH Zurich for the 
2016 edition of the conference. While the workshops and the paper presentations 
remain the core events of the AAG symposium, the NCCR Digital Fabrication is 
proud of the five exceptional keynote speakers who have kindly accepted our 
invitation and enrich this edition with their contributions. Lord Norman Forster, 
who lectures together with his partner Francis Aish, represents more than half a 
century of persistent architectural innovation and provides a long-term perspective 
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on the relationship between architecture and technology. Werner Sobek, whose 
practice operates at the interface between architecture and engineering, con-
tributes with his expertise in lightweight constructions and his interest in per-
formative structures. Complementary to these highly recognised professionals, 
Erik Demaine and Urs B. Roth contribute distinct perspectives on geometry. 
While they share a deep mathematical understanding and a passion for surpris-
ing “geometric discoveries”, their work methods are diametrically opposed. Erik 
Demaine develops his origami sculptures by engaging with computational algo-
rithmic techniques, whereas Urs. B. Roth’s heuristic search for form developed 
using sequences of accurate drawings and rigorous formulas that create their 
own peculiar aesthetic. Interesting enough, though, both consider themselves 
to be artists in addition to being scientists.

The peer-review process for the selection of papers was managed by the 
scientific co-chairs, covering the domains of architecture, structural engineering, 
mathematics, and computer science, with the support of the scientific committee 
and the AAG2106 coordinator. From a very large pool of submissions, 22 papers 
have been accepted and included in the present proceedings. In addition, 25 
posters have also been accepted for presentation, and the workshop chair has 
selected 12 workshop proposals for the pre-conference sessions. We extend our 
thanks and acknowledgements to all authors, tutors, reviewers, and organisers 
for their invaluable contributions to this process.

External industry partners are vital to both the integrity and the execution of 
such a large conference. We are very pleased to have strong and highly support-
ive partners and industry sponsors for the AAG2016.  We would like to especially 
thank our main sponsor ABB, our workshops sponsor Autodesk, and the con-
ference sponsors Moog, Waagner Biro, ERNE, Evolute, Absolute Joint System, 
and Disney Research for their backing and guidance.

Finally, we would also like to thank our colleagues and co-hosts at the  
Institute for Technology in Architecture (ITA), the Department of Architecture, 
and the ETH Zurich for their ongoing support and for providing the conference 
venues. We hope that you enjoy your time visiting ETH and Zurich, and wish 
you an excellent conference.

Sigrid Adriaenssens, Achim Menges, Mark Pauly (Scientific Co-Chairs)

Dave Pigram (Workshop Chair)

Fabio Gramazio, Matthias Kohler (Conference Chairs)

Orkun Kasap, Russell Loveridge (Organisers)
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Abstract
Curved beams along freeform skins pose many challenges, not least on the level 
of basic geometry. A prototypical instance of this is presented by the glass fa-
cades of the Eiffel tower pavilions, and the interrelation between the differential- 
geometric properties of the glass surface on the one hand, and the layout of beams 
on the other hand. This paper discusses how curved beams are represented by 
developable surfaces, and studies geometric facts relevant to beam placement 
along guiding surfaces. Surprisingly, many of the curves which are interesting 
from the viewpoint of pure geometry (geodesics, principal curves, etc.) occur 
in this context too. We discuss recent advances in the modelling of developable 
surfaces, and show how they permit the interactive design of arrangements of 
curved beams, in particular the design of so-called geometric support structures.

Keywords: 
developable surfaces, support structures, interactive design, Darboux frame
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Figure 2. Curved-Crease Sculptures. Left: Arum installation, 2012 Venice biennale,
by Zaha Hadid architects and Robofold. Its form is defined by sheet metal folded along
curved creases. Right: This virtual model of annuli folded along concentric rings by
(Tang et al., 2016) is motivated by actual paper objects, cf. (Demaine and Demaine,
2012).

2015, §3) for a short overview of this topic, and Figure 1 for examples. Material
properties however are not the only reason why developables occur: (Liu et al.,
2006) successfully exploited the viewpoint that a sequence of planar quadrilateral
panels approximates a developable. So does a sequence of cylindrical glass panels.
Such sequences occur e.g. in the 2007 Strasbourg railway station, the Eiffel tower
pavilions, see (Baldassini et al., 2013), or the 2015 Fondation Louis Vuitton, see
Figure 1, center.
Some piecewise-smooth surfaces can be flattened without even cutting them

along creases. One distinguishes two cases: (i) surfaces which locally around ev-
ery point can be flattened, but a global flattening requires a certain number of
cuts (Figure 2 left); (ii) surfaces capable of flattening without a single cut (Fig-
ure 2 right). The behaviour of such curved-crease sculptures, especially regarding
degrees of freedom in modeling, is entirely different from the skins of Figure 1.

Figure 2. Curved-crease sculptures. Left: Arum installation, 2012 Venice biennale, by Zaha Hadid architects and Robofold. 
Its form is defined by sheet metal folded along curved creases. Right: This virtual model of annuli folded along concentric 
rings by Tang et al. (2016) is motivated by actual paper objects, cf. Demaine and Demaine 2012.

surfaces, which may be infor-
mally introduced as surfaces that can be flattened without stretching or tearing.
We first discuss different kinds of developables occurring in freeform architecture.

Freeform skins composed of developables. Inextensible materials like paper and
sheet metal naturally assume developable shapes, so it is not surprising that
freeform skins consisting of developables have been built – see (Pottmann et al.,

Figure 1. Freeform skins composed of developables. Left: The Disney Concert Hall
consists of large near-developable pieces. Center: The Fondation Louis Vuitton, Paris,
is composed of strip sequences, each strip being made from cylindrical glass panels
and approximating a continuous developable. Right: The interior of the Burj Khalifa,
Dubai, exhibits a paneling by “geodesic” developable elements, using the terminology of
(Pottmann et al., 2008) and (Wallner et al., 2010). All three designs are by F. Gehry.

1

Figure 1. Freeform skins composed of developables. Left: The Disney Concert Hall consists of large, near-developable 
pieces. Center: The Fondation Louis Vuitton, Paris, is composed of strip sequences, each strip being made from cylindrical 
glass panels and approximating a continuous developable. Right: The interior of the Burj Khalifa, Dubai, exhibits a 
paneling by “geodesic” developable elements, using the terminology of Pottmann et al. (2008) and Wallner et al. (2010). 
All three designs are by F. Gehry.
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1. Developable Surfaces in  
Freeform Architecture

Our objects of study are composed of developable surfaces, which may be infor-
mally introduced as surfaces that can be flattened without stretching or tearing. 
We first discuss different kinds of developables occurring in freeform architecture.

Freeform skins composed of developables
Inextensible materials like paper and sheet metal naturally assume developable 
shapes, so it is not surprising that freeform skins consisting of developables 
have been built – see Pottmann et al. (2015, §3) for a short overview of this topic, 
and Figure 1 for examples. Material properties, however, are not the only reason 
why developables occur: Liu et al. (2006) successfully exploited the viewpoint that 
a sequence of planar quadrilateral panels approximates a developable. So does 
a sequence of cylindrical glass panels. Such sequences occur e.g. in the 2007 
Strasbourg railway station, the Eiffel tower pavilions see Baldassini et al. (2013), 
or the 2015 Fondation Louis Vuitton (see Fig. 1, centre).

Some piecewise-smooth surfaces can be flattened without even cutting them 
along creases. One distinguishes two cases: (i) surfaces which locally around 
every point can be flattened, but a global flattening requires a certain number 
of cuts (Fig. 2, left); (ii) surfaces capable of flattening without a single cut (Fig. 2, right). 
The behaviour of such curved-crease sculptures, especially regarding degrees of 
freedom in modelling, is entirely different from the skins of Figure 1.

Non-skin arrangements of developables
Developables may have other functions, in particular when they are positioned 
transverse to a freeform skin. Figure 5 shows the Eiffel tower pavilions, where 
the sides of curved beams supporting the glass facade contain developables 
orthogonal to that facade see Schiftner et al. (2012). Figure 3 shows so-called geo-
metric support structures – using the terminology of Pottmann et al. (2015, §6.1) – 
which can either be smooth like the curved beams of Figure 3, left or discrete like 
the shading elements in Figure 3, right.

2. Differential Geometry of Strips
We are interested in the degrees of freedom available to a designer who wishes 
to lay out developables positioned either tangential to a given surface Φ or trans-
verse to it (see Figures 1 and 3, respectively). This discussion requires studying the well 
known movement of the so-called Darboux frame, which is adapted to a curve c 
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Φ
t

u

n

Ψ

r

The Darboux frame associated with a curve in a surface Φ consists of the
curve’s unit tangent vector t, the surface’s normal vector n and the vector u = t×n. We
also consider the developable surfaces Ψ which follows that curve and which is orthogonal
to the reference surface Φ. Its rulings are indicated by the vector r.

or to the right, in the manner of the driver of a car can use the steering wheel.
Walking straight (κg = 0) produces a geodesic curve on the surface.

On the other hand, the normal curvature equals κn = II(t)/I(t), where I II
are the first and second fundamental forms of the surface, respectively. Therefore

is determined by the direction of the tangent vector t alone and can only be
influenced by taking a completely different route. In negatively curved regions
there are two asymptotic directions at each point where II(t) = 0, which are found
by intersecting an infinitesimal piece of surface with its own tangent plane. In that
case the above-mentioned insect can decide to follow the asymptotic line field to
achieve = 0 if necessary. In positively curved regions this is not possible.
Similarly, also the geodesic torsion is already determined by the direction

Figure 4. The Darboux frame associated with a curve in a surface Φ consists of the curve’s unit tangent vector t, the 
surface’s normal vector n and the vector u = t ×n. We also consider the developable surface Ψ, which follows that curve 
and which is orthogonal to the reference surface Φ. Its rulings are indicated by the vector r.

ANALYSIS AND DESIGN OF CURVED SUPPORT STRUCTURES 3

Figure 3. Developables which lie transverse to freeform skins. Left: Mediacité retail
centre, Liege (Ron Arad Architects, structural engineering: Buro Happold). Here both
families of intersecting curved beams are modeled as developables. Right: Kogod court-
yard, Smithsonian Institution (Foster and partners). Quadrilateral shading elements
approximate developables, and their lines of intersection approximate rulings.

known movement of the so-called Darboux frame which is adapted to a curve c
lying in Φ. We give an introduction to this frame, for more details see textbooks
like (O’Neill, 2006) or (Strubecker, 1969).
We assume that s is an arc length parameter and c(s) is a point of the curve

under consideration. Consider the unit tangent vector t(s), the vector n(s) or-
thogonal to the reference surface Φ, and the sideways vector u(s) = n(s) × t(s).
These vectors are used to describe a developable Ψ which follows the curve c. If
Ψ is orthogonal to Φ, it is the envelope of the plane spanned by t and n. If Ψ
is tangential to Φ, it is enveloped by the plane [t,u]. Figure 4 illustrates this
situation.
The goal of the computations which follow below is to find out the rulings of

the developable Ψ. Their position is relevant to manufacturing by bending from a
flat state. Figure 4 illustrates the Darboux frame {t,u,n} for a particular choice
of curve and developable. The rulings are indicated by thin lines – it is important
to note that a ruling does not have to be parallel to n.

The motion of the Darboux frame along a curve in a reference surface. The rota-
tional movement of the Darboux frame is governed by a vector of angular velocity,
called d. Any x moving with the Darboux frame has a rate of change expressed
in terms of the angular velocity as x′ = d

ds
x(s) = d× x. Thus,

d = τgt− κnu+ κgn =⇒




t′ = d× t = κgu + κnn
u′ = d× u = −κgt + τgn
n′ = d× n = −κnt − τgu

It is well known that the coefficients of d are the curve’s normal curvature κn, the
curve’s geodesic curvature κg, and its geodesic torsion τg. An insect crawling on
the surface Φ can freely choose the geodesic curvature κg by turning to the left

Figure 3. Developables which lie transverse to freeform skins. Left: Mediacité retail centre, Liege (Ron Arad Architects, 
structural engineering: Buro Happold). Here both families of intersecting curved beams are modeled as developables. 
Right: Kogod courtyard, Smithsonian Institution (Foster and partners). Quadrilateral shading elements approximate 
developables, and their lines of intersection approximate rulings.
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lying in Φ. We give an introduction to this frame, for more details see textbooks 
like O’Neill (2006) or Strubecker (1969).
We assume that s is an arc length parameter and c(s) is a point of the curve un-
der consideration. Consider the unit tangent vector t(s), the vector n(s) orthogo-
nal to the reference surface Φ, and the sideways vector u(s) = n(s) × t(s). These 
vectors are used to describe a developable Ψ which follows the curve c. If Ψ is 
orthogonal to Φ, it is the envelope of the plane spanned by t and n. If Ψ is tan-
gential to Φ, it is enveloped by the plane [t, u]. Figure 4 illustrates this situation.

The goal of the computations which follow below is to find out the rulings of 
the developable Ψ. Their position is relevant to manufacturing by bending from a 
flat state. Figure 4 illustrates the Darboux frame {t, u, n} for a particular choice of 
curve and developable. The rulings are indicated by thin lines – it is important to 
note that a ruling does not have to be parallel to n.

The motion of the Darboux frame along a curve in a reference surface
The rotational movement of the Darboux frame is governed by a vector of angular 
velocity, called d. Any x moving with the Darboux frame has a rate of change ex-
pressed in terms of the angular velocity as x' = d–ds x(s) = d × x. Thus,

 t' = d = × t = κgu + κnn
d = τgt – κnu + κgn ⇒ u' = d = × u = – κgt + τgn
 n' = d = × n = – κnt – τgu

{
It is well known that the coefficients of d are the curve’s normal curvature κn , the 
curve’s geodesic curvature κg , and its geodesic torsion τg . An insect crawling on 
the surface Φ can freely choose the geodesic curvature κg by turning to the left 
or to the right, in the manner of the driver of a car can use the steering wheel. 
Walking straight (κg = 0) produces a geodesic curve on the surface.

On the other hand, the normal curvature equals κn = II (t) / I (t), where I, II 
are the first and second fundamental forms of the surface, respectively. There-
fore, κn is determined by the direction of the tangent vector t alone and can 
only be influenced by taking a completely different route. In negatively curved 
regions there are two asymptotic directions at each point where II(t) = 0, which 
are found by intersecting an infinitesimal piece of surface with its own tan-
gent plane. In that case the above-mentioned insect can decide to follow the 
asymptotic line field to achieve κn = 0 if necessary. In positively curved regions 
this is not possible.

Similarly, also the geodesic torsion is already determined by the direction t: 
It is known that τg =  1–2 (κ2 − κ1 ) sin 2φ, where κ1, κ2 are the principal curvatures 
and φ is the angle between t and the vector indicating the principal direction. 
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Figure 5. Strips with different kinds of optimality properties. Left: Eiffel tower pavil-
ions (Moatti et Rivière architects, engineering by RFR). The top-down beams have a
rectangular cross-section and are thus modeled as a union of four developable strips
– two orthogonal to the glass surface Φ, two tangential to them. The guiding curves
are principal for Φ, implying optimal rulings. Image courtesy RFR. Right: A minimal
surface with two families of developable strips guided by curves with κn = 0, implying
straight development. Rulings are not optimal, but far from bad. Further, transverse
strips intersect not along rulings.

Mutual exclusivity of “good” properties. The beneficial properties of strips which
are mentioned in the proposition unfortunately are mutually exclusive. For devel-
opables orthogonal to a reference surface Φ, optimal rulings are impossible if we
are to have a straight development (principal curves are never asymptotic except
in the special case of Φ being developable). Conversely, a straight development
might imply bad rulings, if asymptotic curves happen to be geodesic (this could
happen if Φ is ruled but not developable).
Developables tangential to Φ with optimal rulings rarely have straight develop-

ment (only if Φ is one of Monge’s surfaces moulures, principal curves are geodesics).
Straight developments might lead to bad rulings if accidentally we choose a geo-
desic which is asymptotic (that can happen if Φ is ruled).
The reader is advised that the previous paragraphs heavily draw from knowledge

of the manifold interesting properties of curves in surfaces which are discussed in
older textbooks like (Blaschke, 1921).

The loss of design freedom. If one insists on optimal rulings (orthogonal to guiding
curves) then the only possibility is that the guiding curves are principal, which are
uniquely determined by the reference surface Φ. If Φ is already known, there is no
design freedom left. This dilemma had to be solved for the Eiffel tower pavilions,
see (Schiftner et al., 2012).
A similar dilemma occurs if we want to construct a family of developable strips

orthogonal to the reference surface which have straight development. We are stuck
with using the asymptotic curves which are uniquely determined by Φ.

Figure 5. Strips with different kinds of optimality properties. Left: Eiffel tower pavilions (Moatti et Rivière architects, 
engineering by RFR). The top-down beams have a rectangular cross-section and are thus modeled as a union of four 
developable strips – two orthogonal to the glass surface Φ, two tangential to them. The guiding curves are principal for 
Φ, implying optimal rulings. Image courtesy RFR. Right: A minimal surface with two families of developable strips guided 
by curves with κn = 0, implying straight development. Rulings are not optimal, but far from bad. Further, transverse strips 
intersect not along rulings.

The fact that both the “optimal rulings” and the “straight development” re-
quirements determine the strip layout has another consequence besides the in-
convenience of loss of design freedom: this layout may be unusable. While the
principal network is always right-angled, the network of asymptotic curves has no
such property. Only for very special surfaces like the one of Figure 5, right, it
looks nice in the sense that the angle of intersection of different asymptotic curves
is close to 90 degrees (the surface shown is a minimal surface, where the asymptotic
curves are exactly orthogonal).

4. Geometric modeling with developables

Developability as a constraint on spline surfaces. Geometric modeling of devel-
opable surfaces has been a topic of interest for a long time. We refrain from giving
a history of the extensive previous work in this area. The commonly used degree

Bézier surfaces and B-spline surfaces (see Figure 6) make it easy to produce
ruled surfaces – simply let n = 1, in both the polynomial and the rational cases.
The conditions on the control points of these surfaces which ensure developability
are not difficult, see (Lang and Röschel, 1992), but the nonlinear nature of these
constraints has prevented truly interactive modeling until recently. Similarly, ap-
proaches to modeling of developables via discretization and differential-geometric
analysis were too slow for interactive modelling.
The constraints expressing developability enjoy mathematical properties that

correspond directly to geometric design: The system has a high-dimensional solu-
tion manifold, implying design freedom. (Tang et al., 2016) showed how to solve
these constraints quickly enough for interactive modeling. Following earlier work
(Tang et al., 2014; Jiang et al., 2015), they modify constraints so that they are at

b(u)

a(u)

b0

b1

b2

b3

b4

a0a1

a2

a3

a4

Developable strips as ruled spline surfaces which connect two B-spline curves.
Here a B-spline curve a(u) is defined by its control points a0, a1, . . . ,aN . This image
shows the evaluation of the curve for a certain parameter value a(u), and similar for a
spline curve b(u), cf. (Tang et al., 2016).

Figure 6. Developable strips as ruled spline surfaces which connect two B-spline curves. Here a B-spline curve a(u) is 
defined by its control points a0 , a1 , . . . , aN . This image shows the evaluation of the curve for a certain parameter value 
a(u), and similar for a spline curve b(u), cf. Tang et al. 2016.
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We see that τg vanishes for the two principal directions and is highest exactly in 
between (i.e., if t bisects the principal directions).

Developable strips along a curve; Considerations regarding flattening 
A developable surface Ψ, which is orthogonal to the reference surface Φ and con-
tains the guiding curve c, is enveloped by the planes with normal vector u – see 
Figure 4. Thus, the direction r of rulings is computed as r = u × u'. In more detail,

r = u × u' = u × (d × u) = d – (d · u) u = (τgt – κnu + κgn) – ((τgt – κnu + κgn) · u) u = κgn + τgt .

A similar computation applies if Ψ encloses the constant angle α with the refer-
ence surface (we take planes with normal vector nα = cos α n + sin α u instead of 
u, and get rulings rα = τg t + ( κg sin α + κn cos α)(sin α n − cos α u)). For developables 
tangent to the guiding surface (i.e., α = 0), we get r = τg t − κn u.

We would also like to say some words about development, i.e. flattening of 
a developable strip Ψ. It is known that geodesic curvatures of curves are invari-
ant in this process. Thus, the guiding curve c is flattened to a straight line if and 
only if its geodesic curvature w.r.t. Ψ (not w.r.t. Φ) vanishes. In the notation em-
ployed above, this curvature of the development equals − κg cos α + κn sin α; for 
developables orthogonal to Φ, it equals κn . We summarise:

Consider a developable Ψ through a guiding curve c which itself lies in a refer-
ence surface Φ. The rulings of Ψ are called good resp. bad, if they are orthogonal 
resp. tangential to c. Then we have the following properties:

ANALYSIS AND DESIGN OF CURVED SUPPORT STRUCTURES 5

employed above, this curvature of the development equals −κg cosα+κn sinα; for
developables orthogonal to Φ, it equals κn. We summarize:

Proposition. Consider a developable Ψ through a guiding curve c which itself lies
in a reference surface Φ. The rulings of Ψ are called good resp. bad, if they are
orthogonal resp. tangential to c. Then we have the following properties:

If the curve c in Φ
is . . .

then a developable Ψ through
c, tangential to Φ, has . . .

and a developable Ψ through
c, orthogonal to Φ, has . . .

geodesic (κg = 0) straight development bad rulings
asymptotic (κn = 0) bad rulings straight development
principal (τg = 0) good rulings good rulings

Actually, the conclusion about τg = 0 applies for all angles between the reference
surface Φ and the developable Ψ, not only in the special cases α = 0 and α = 90◦.

3. Behaviour of developables aligned with reference surfaces

Manufacturing considerations. The mathematical considerations of the previous
section have practical implications regarding manufacturing and design, especially
design freedom. We discuss these issues in the following paragraphs. Obviously a
developable strip is more easily manufactured if it can be flattened to a straight
planar piece. This is because it will fit into a smaller rectangular sheet in its
flattened state. We mention that examples below (Figures 8 and 9) are based
on developables which will unfold not to straight planar strips, but to circular
ones. The individual strip even develop to circular strips of the same radius. This
property is of interest for manufacturing because it means that the unfolded state
of strips has simple geometry.
The reason why rulings are called good or bad is that they can be seen as the

infinitesimal axes of bending, when producing a developable surface from its flat
state. If the rulings are tangential to the reference surface, we would have to bend
longish sheets along the sheet instead of across. Obviously bending a strip is easier
if the ifinitesimal axis of bending runs across that strip.

Actually, the conclusion about τg = 0 applies for all angles between the reference 
surface Φ and the developable Ψ, not only in the special cases α = 0 and α = 90◦.

Proposition
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Figure 8. Strips which follow guiding curves. The top left image shows curves on
a reference surface Φ with a constant nonzero value of κn. Developables guided by
these curves (middle row) have circular development. Unfortunately the rulings of these
developables are in several places rather bad (the strips are interrupted there). Our
constraint solver finds a sequence of strips which, as far as they can, stay orthogonal to
Φ and close to the guiding curves (bottom row). The setup of surfaces in this procedure
automatically ensures good behaviour of rulings, but entails changes in the geometry.
Nevertheless the development of a sample strip is still rather circular (top, right).

An arrangement of developable strips is defined by additional constraints like
common intersection of strips (this corresponds to linear equations involving con-
trol points), and smooth transition of strips (more linear equations involving con-
trol points). For example, the six developable strips in Figure 7 (top row) which
appear to intersect in 9 rulings are actually 24 individual strips with common
boundary rulings which join smoothly.

Figure 8. Strips which follow guiding curves. The top left image shows curves on a reference surface Φ with a constant 
nonzero value of κn . Developables guided by these curves (middle row) have circular development. Unfortunately, the 
rulings of these developables are in several places rather bad (the strips are interrupted there). Our constraint solver finds 
a sequence of strips which, as far as they can, stay orthogonal to Φ and close to the guiding curves (bottom row). The 
setup of surfaces in this procedure automatically ensures good behaviour of rulings, but entails changes in the geometry. 
Nevertheless, the development of a sample strip is still rather circular (top, right).
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Figure 7. Interactive modeling of curved support structures. Top row: A configuration
of strips follows guiding curves in a reference surface Φ. Starting from a very simple
configuration, modeling is done by modifying the parametric representation of Φ and the
guiding curve network connected to Φ. The strips follow their respective guiding curves,
with their actual position in space being defined by the constraint solver. Bottom row:
Such deformations destroy developability, as indicated by the color coding (blue to green
indicates sufficient developability for manufacturing purposes). After each deformation
applied by the user the constraint solver re-establishes developability within seconds.

most quadratic and still sparse; and they employ fairness energies as a regularizer
for a Newton-type method in order to guide the user towards “sensible” parts of
the solution manifold.

Setup of variables. We describe our computational setup which follows (Tang et al.,
2016). A strip is modeled as a degree 3 × 1 cubic B-spline surface b(u, v) of C2

smoothness, whose shape is determined by two rows a0, . . . , aN and b0, . . .bN of
control points; each row being the control polygon of the upper and lower boundary
a(u), b(u), see Figure 6. We always assume that the boundary curve a is following
a guiding curve c which lies in the reference surface Φ. It does not matter if the
actual strip which is to be used in applications has boundaries different from a,b,
since developable strips may be freely extended and cropped to either side.

Setup of developability constraints. Developability is expressed by existence of a
unit vector nu, for all parameter values u, which is orthogonal to b− a and to the
derivatives a′, b′. These conditions read n · (b − a) = n · a′ = n · b′ = 0 and are
required to hold only for a finite number of values u1, u2, . . . and corresponding
normal vectors n1,n2, . . . , because the equivalent condition det(a′,b′,b − a) = 0
is piecewise-polynomial of degree not exceeding 6, cf. the analogous discussion by
(Tang et al., 2016).

Figure 7. Interactive modeling of curved support structures. Top row: A configuration of strips follows guiding curves 
in a reference surface Φ. Starting from a very simple configuration, modelling is done by modifying the parametric 
representation of Φ and the guiding curve network connected to Φ. The strips follow their respective guiding curves, 
with their actual position in space being defined by the constraint solver. Bottom row: Such deformations destroy 
developability, as indicated by the colour coding (blue to green indicates sufficient developability for manufacturing 
purposes). After each deformation applied by the user the constraint solver re-establishes developability within seconds.
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3. Behaviour of Developables Aligned with 
Reference Surfaces

Manufacturing considerations 
The mathematical considerations of the previous section have practical impli-
cations regarding manufacturing and design, especially design freedom. We 
discuss these issues in the following paragraphs. Obviously, a developable 
strip is more easily manufactured if it can be flattened to a straight planar 
piece. This is because it will fit into a smaller rectangular sheet in its flattened 
state. We mention that examples below (Figures 8 and 9) are based on develop-
ables which will unfold not to straight planar strips, but to circular ones. The 
individual strip even develop to circular strips of the same radius. This prop-
erty is of interest for manufacturing because it means that the unfolded state 
of strips has simple geometry.

The reason why rulings are called good or bad is that they can be seen as 
the infinitesimal axes of bending, when producing a developable surface from its 
flat state. If the rulings are tangential to the reference surface, we would have 
to bend longish sheets along the sheet instead of across. Obviously, bending a 
strip is easier if the ifinitesimal axis of bending runs across that strip.

Examples which have been built 
For a curved beam with rectangular cross-section which stays tangential/orthog-
onal to a reference surface Φ, optimal rulings are achieved if the beam follows 
the principal curves of Φ. This is exactly the case for the Eiffel Tower pavilions, 
see Figure 5.

Wooden panels which comprise a skin like the one shown by Figure 1 for the 
Burj Khalifa have straight development (simply because they were originally 
straight panels, before they were bent in order to fit the reference surface). They 
therefore follow geodesics of the reference surface. In the Burj Khalifa case the 
rulings on these panels are never bad, since the skin has no asymptotic direc-
tions, being of positive curvature. We would also like to point to previous work on 
geodesic timber constructions, see Pirazzi and Weinand (2006) and follow-up work.

Mutual exclusivity of “good” properties 
The beneficial properties of strips which are mentioned in the proposition un-
fortunately are mutually exclusive. For developables orthogonal to a reference 
surface Φ, optimal rulings are impossible if we are to have a straight develop-
ment (principal curves are never asymptotic except in the special case of Φ  
being developable). Conversely, a straight development might imply bad rulings, 
if asymptotic curves happen to be geodesic (this could happen if Φ is ruled but 
not developable).
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Figure 10. The strip sequence of Figure 8 is the basis of this system of curved beams.
The individual strips, being developable with “good” rulings, can be manufactured from
flat pieces by bending. As an additional geometric property, each beam unfolds into
a circular strip of the same radius. The members transverse to the beams follow the
system of curves shown in Figure 8 (even if there is no particular reason to do so).

sequence of developable strips which approximates the original setup and (from
construction) has nice rulings throughout.
The other main application is interactive modeling, made possible by quickly

solving developability constraints. Figures 7 illustrates how it works.

Limitations. The limitations which have been explained in Section 2 and Sec-
tion 3 apply generally, especially the paragraph on mutual exclusivity of desirable
properties. Since our procedure of computing developables always produces sur-
faces with “good” rulings, it is not possible to faithfully approximate developables
which might have certain geometric properties, but bad rulings. The result of the
computations either is not fully developable, or does not entirely have the desired
properties. Numerical solvers usually achieve a compromise between competing
constraints. It is therefore advisable to check after computation if some properties
have been lost. In fact our implementation in its current state provides real-time
feedback to the user, e.g. by color coding the surfaces according to developability,
see Figure 7. The user is able to decide on the importance of individual constraints
by tuning weights which govern the constraint solving.
Examples of these limitations are shown by Figure 9, where we almost lose de-

velopability, and by Figure 8 where a circular development is not achieved exactly
but only approximately. Since in the real world mathematical equalities are true
only up to tolerances, such imperfections often are no obstacle.

6.

Figure 10. The strip sequence of Figure 8 is the basis of this system of curved beams. The individual strips, being 
developable with “good” rulings, can be manufactured from flat pieces by bending. As an additional geometric property, 
each beam unfolds into a circular strip of the same radius. The members transverse to the beams follow the system of 
curves shown in Figure 8 (even if there is no particular reason to do so).
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0.01 0δ

Figure 9. Strips which follow guiding curves. The top left image shows curves on a
reference surface Φ which enjoy a constant nonzero value of κn, similar to Figure 8.
Constraint solving produces developable strips which, as far as they can, follow these
guiding curves in addition to being orthogonal to Φ. The detail at right illustrates the
degree of developability of the strips which are achieved in this way. It is measured via a
quad mesh produced by regular sampling of strips. For each face of this quad mesh, we
compute the value δ = distance of diagonals

average of 2 short edgelengths . This example is sufficiently developable

for manufacturing.

Positioning constraints. Besides developability, further constraints can be imposed
on an arrangement of strips. It is important that these constraints are linear or
quadratic – otherwise the method of (Tang et al., 2016) becomes slow.

An example of such a constraint is that a strip Ψ encloses a certain angle θ with
the reference surface Φ. If the normal vectors ni and n∗

i of Ψ resp. Φ in selected
points are available, then we require ni ·n∗

i = cos θ. This condition is neither linear
nor quadratic if the dependence of n∗

i on he control points is nonlinear, but we can
use a standard trick to make it linear: We simply consider n∗

i fixed during each
pass of the iterative solver.

Another constraint is that a strip boundary a follows a guiding curve c. We
consider a sample a(ui) of boundary points. The condition of closeness to c is
highly nonlinear. Also here a well known trick can be applied. By computing the
closest point c∗i on the guiding curve and the tangent vector t∗i there, we require
(a(ui) − c∗i ) × t∗i = 0. This equation expresses the requirement that the point a∗

i

lies on the tangent of the guiding curve. It becomes linear, if c∗i , t
∗
i are recomputed

before each pass of the iterative solver and are kept constant.

5. Results and Discussion

Applications. We discuss two main applications of the constraint solving proce-
dure: One is the establishment of developables which follow a pre-selected curve
network on a reference surface. We show two examples, namely Figures 8 plus 10,
and Figure 9. Using the formulae of Section 2, it is not difficult to compute rul-
ings of developables which however are not everywhere nicely transverse to Φ.
Using this data as input for the constraint solver described in Section 4 yields a

Figure 9. Strips which follow guiding curves. The top left image shows curves on a reference surface Φ which enjoy 
a constant nonzero value of κn , similar to Figure 8. Constraint solving produces developable strips which, as far as 
they can, follow these guiding curves in addition to being orthogonal to Φ. The detail at right illustrates the degree of 
developability of the strips which are achieved in this way. It is measured via a quad mesh produced by regular sampling 
of strips. For each face of this quad mesh, we compute the value δ =     distance of diagonals          . This example is sufficiently 
developable for manufacturing.

 average of 2 short edgelengths
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Developables tangential to Φ with optimal rulings rarely have straight de-
velopment (only if Φ is one of Monge’s surfaces moulures, principal curves are 
geodesics). Straight developments might lead to bad rulings if accidentally we 
choose a geodesic which is asymptotic (that can happen if Φ is ruled).

The reader is advised that the previous paragraphs heavily draw on knowl-
edge of the manifold interesting properties of curves in surfaces which are dis-
cussed in older textbooks like Blaschke (1921).

The loss of design freedom 
If one insists on optimal rulings (orthogonal to guiding curves) then the only possi-
bility is that the guiding curves are principal, which are uniquely determined by the 
reference surface Φ. If Φ is already known, there is no design freedom left. This 
dilemma had to be solved for the Eiffel tower pavilions, see Schiftner et al. (2012).

A similar dilemma occurs if we want to construct a family of developable 
strips orthogonal to the reference surface which have straight development. We 
are stuck with using the asymptotic curves which are uniquely determined by Φ.

The fact that both the “optimal rulings” and the “straight development” re-
quirements determine the strip layout has another consequence besides the in-
convenience of loss of design freedom: This layout may be unusable. While the 
principal network is always right-angled, the network of asymptotic curves has 
no such property. Only for very special surfaces like the one of Figure 5 right does 
it looks nice in the sense that the angle of intersection of different asymptotic 
curves is close to 90 degrees (the surface shown is a minimal surface, where 
the asymptotic curves are exactly orthogonal).

4. Geometric Modelling with Developables
Developability as a constraint on spline surfaces 
Geometric modelling of developable surfaces has been a topic of interest for 
a long time. We refrain from giving a history of the extensive previous work 
in this area. The commonly used degree m × n Bézier surfaces and B-spline 
surfaces (see Fig. 6) make it easy to produce ruled surfaces – simply let n = 1, in 
both the polynomial and the rational cases. The conditions on the control points 
of these surfaces which ensure developability are not difficult, see Lang and 
Röschel (1992), but the nonlinear nature of these constraints has prevented tru-
ly interactive modeling until recently. Similarly, approaches to modeling of de-
velopables via discretisation and differential-geometric analysis were too slow 
for interactive modelling.

The constraints expressing developability enjoy mathematical properties 
that correspond directly to geometric design: The system has a high-dimensional 
solution manifold, implying design freedom. Tang et al. (2016) showed how to solve 
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these constraints quickly enough for interactive modelling. Following earlier work 
(Tang et al. 2014; Jiang et al. 2015), they modify constraints so that they are at most qua-
dratic and still sparse; and they employ fairness energies as a regulariser for a 
Newton-type method in order to guide the user towards “sensible” parts of the 
solution manifold.

Setup of variables 
We describe our computational setup which follows Tang et al. (2016). A strip is 
modeled as a degree 3 × 1 cubic B-spline surface b (u,v) of C2 smoothness, whose 
shape is determined by two rows a 0 , . . . , aN and b 0 , . . . bN of control points; each 
row being the control polygon of the upper and lower boundary a (u), b (u), see 
Figure 6. We always assume that the boundary curve a is following a guiding curve 
c which lies in the reference surface Φ. It does not matter if the actual strip which 
is to be used in applications has boundaries different from a, b, since develop-
able strips may be freely extended and cropped to either side.

Setup of developability constraints
Developability is expressed by the existence of a unit vector nu, for all parameter 
values u, which is orthogonal to b − a and to the derivatives a', b'. These condi-
tions read n · (b − a) = n · a' = n · b' = 0 and are required to hold only for a finite 
number of values u1, u2, . . . and corresponding normal vectors n1, n2, . . . , because 
the equivalent condition det(a', b', b − a) = 0 is piecewise-polynomial of degree 
not exceeding 6, cf. the analogous discussion by Tang et al. (2016).

An arrangement of developable strips is defined by additional constraints 
like common intersection of strips (this corresponds to linear equations involving 
control points) and smooth transition of strips (more linear equations involving 
control points). For example, the six developable strips in Figure 7 (top row) which 
appear to intersect in 9 rulings are actually 24 individual strips with common 
boundary rulings which join smoothly.

Constraint solving
Tang et al. (2016) show how to solve the system of constraints quickly, by linearis-
ing the constraints and solving the resulting linear system (which at the same 
time is under-determined and has redundant equations) via regularisation. The 
regulariser is a fairness energy, thus pushing the solver towards “sensible” solu-
tions of the system. We extended their interactive modelling system for devel-
opable skins to the case of non-skin strip arrangements.

Positioning constraints
Besides developability, further constraints can be imposed on an arrangement of 
strips. It is important that these constraints are linear or quadratic – otherwise 
the method of Tang et al. (2016) becomes slow.
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An example of such a constraint is that a strip Ψ encloses a certain angle θ 
with the reference surface Φ. If the normal vectors ni and ni

∗ of Ψ resp. Φ in se-
lected points are available, then we require ni ·ni

∗ = cos θ. This condition is neither 
linear nor quadratic if the dependence of ni

∗ on the control points is nonlinear, but 
we can use a standard trick to make it linear: We simply consider ni

∗ fixed during 
each pass of the iterative solver.

Another constraint is that a strip boundary a follows a guiding curve c. We 
consider a sample a (ui) of boundary points. The condition of closeness to c is 
highly nonlinear. Also here a well-known trick can be applied. By computing the 
closest point ci

∗on the guiding curve and the tangent vector ti∗ there, we require 
(a(ui ) − ci

∗) × ti∗ = 0. This equation expresses the requirement that the point ai
∗, lies 

on the tangent of the guiding curve. It becomes linear, if ci
∗ , ti∗ are recomputed 

before each pass of the iterative solver and are kept constant.

5. Results and Discussion
Applications
We discuss two main applications of the constraint solving procedure: One is 
the establishment of developables which follow a pre-selected curve network 
on a reference surface. We show two examples, namely, Figures 8 plus 10, and Fig-

ure 9. Using the formulae of Section 2, it is not difficult to compute rulings of de-
velopables which however are not everywhere nicely transverse to Φ. Using this 
data as input for the constraint solver described in Section 4 yields a sequence 
of developable strips which approximates the original setup and (from construc-
tion) has nice rulings throughout.

The other main application is interactive modelling, made possible by quickly 
solving developability constraints. Figure 7 illustrates how it works.

Limitations
The limitations which have been explained in Section 2 and Section 3 apply gener-
ally, especially the paragraph on mutual exclusivity of desirable properties. Since 
our procedure of computing developables always produces surfaces with “good” 
rulings, it is not possible to faithfully approximate developables which might have 
certain geometric properties, but bad rulings. The result of the computations ei-
ther is not fully developable or does not entirely have the desired properties. Nu-
merical solvers usually achieve a compromise between competing constraints. It 
is therefore advisable to check after computation if some properties have been 
lost. In fact, our implementation in its current state provides real-time feedback 
to the user, e.g. by colour coding the surfaces according to developability, see 
Figure 7. The user is able to decide on the importance of individual constraints by 
tuning weights which govern the constraint solving.
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Examples of these limitations are shown by Figure 9, where we almost lose 
developability, and by Figure 8 where a circular development is not achieved exactly 
but only approximately. Since in the real world mathematical equalities are true 
only up to tolerances, such imperfections often are no obstacle.

6. Conclusion
We have presented an overview of the use of developables in freeform architec-
ture – both for freeform skins and other kinds of arrangements of developable 
strips. After a differential-geometric discussion we showed how the computa-
tional framework of Tang et al. (2016) can be extended and subsequently applied 
to strip arrangements – both for modelling and for computing arrangements de-
fined by guiding curves. It is the purpose of this paper to further the understand-
ing of the complex geometry of developable surfaces and to show the currently 
available possibilities of geometric modelling.
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Abstract
The fairness of meshes that represent geometric shapes is a topic that has been 
studied extensively and thoroughly. However, the focus in such considerations 
often is not on the mesh itself, but rather on the smooth surface approximated 
by it, and fairness essentially expresses a mesh’s suitability for purposes such 
as visualisation or simulation. This paper focusses on meshes in the architectur-
al context, where vertices, edges, and faces of meshes are often highly visible, 
and any notion of fairness must take new aspects into account. We use concepts 
from discrete differential geometry (star-shaped Gauss images) to express fair-
ness, and we also demonstrate how fairness can be incorporated into interactive 
geometric design of triangulated freeform skins.

Keywords: 
polyhedral surface, smoothness, fairness, freeform skin, triangulation, 
optimisation
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Whenever a smooth shape is realized in a discrete man-
ner, the smoothness resp. fairness of this approximation is of great importance.
Depending on the application, different aspects of fairness play a role. For some
applications like the simulation of physical processes (finite element analysis), or
computer graphics rendering, the vertices and edges of the mesh are only a means
to an end, and “fairness” mostly refers to the suitability of the mesh for the task
at hand. Typically, it involves avoiding small angles between edges, comparable
edge lengths in triangles, and avoiding vertices whose number of incident edges is
not 6.

Figure 1. Non-Smoothness from geometric constraints: The Cour Visconti roof in the Louvre
is a hybrid mesh consisting of both triangular and quadrilateral glass panels, for reasons of
efficiency and weight optimization. The triangle mesh originally intended by the architect is
achieved by placing triangular shading elements on top of each panel. Merging of two triangular
faces into a quad consumes one degree of freedom, so this mesh is not as optimally smooth as
would have been possible with a triangle mesh.

1

Figure 1. Non-smoothness from geometric constraints: The Cour Visconti roof in the Louvre is a hybrid mesh consisting 
of both triangular and quadrilateral glass panels, for reasons of efficiency and weight optimisation. The triangle mesh 
originally intended by the architect is achieved by placing triangular shading elements on top of each panel. Merging of 
two triangular faces into a quad consumes one degree of freedom, so this mesh is not as optimally smooth as would have 
been possible with a triangle mesh.
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Figure 2. Non-Smoothness from geometric constraints is exhibited by Building 16 of King
Abdullah University of Science and Technology (left) and by the BMW Welt building in Munich
(right). These meshes contain rows of faces whose vertices alternate between two straight lines
L1, L2, or at least approximately so. Center: Intersection of the mesh’s surface with a plane
parallel to both L1, L2 is a zigzag polyline whose edges are parallel to either L1 or L2. This
shows that meshes which contain straight lines in the manner described above cannot avoid a
certain degree of non-smoothness.

Smoothness of meshes in freeform architecture. In freeform architecture, the pur-
pose of meshes typically is twofold: Firstly, to make a visual statement, and sec-
ondly, to be part of the structure. The high visibility of edges and vertices makes
them a much greater part of fairness resp. smoothness than in other applications.
The human eye notices minimal zigzags in edge polylines which are entirely irrele-
vant for physical simulations or for rendering. Similarly, reflective surfaces expose
even very small kink angles between faces.
Mesh smoothness is to be distinguished from smoothness of the reference shape

which the mesh is thought to approximate. A wiggly mesh can mean that a smooth
reference surface is approximated in a bad manner, but it can also mean that there
are wiggles in the reference shape. Unfortunately the former can sometimes not
be avoided because of constraints imposed on the mesh, see examples in Figures 1
and 2.
In this paper we discuss a notion of smoothness which we believe to be con-

sistent with expectations of users in the field of freeform architecture. We can
already draw on an existing mathematical discussion by (Günther and Potmann,
2016). We further discuss the optimization of meshes towards greater smoothness.
The optimization consists of setting up hard and soft constraints, and subsequent
application of standard numerical procedures.

2.

Figure 2. Non-smoothness from geometric constraints is exhibited by Building 16 of King Abdullah University of 
Science and Technology (left) and by the BMW Welt building in Munich (right). These meshes contain rows of faces 
whose vertices alternate between two straight lines L1 , L2 , or at least approximately so. Center: Intersection of the 
mesh’s surface with a plane parallel to both L1 , L2 is a zigzag polyline whose edges are parallel to either L1 or L2 . This 
shows that meshes which contain straight lines in the manner described above cannot avoid a certain degree of non-
smoothness.
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1. Introduction and Motivation
Smoothness of meshes
Whenever a smooth shape is realised in a discrete manner, the smoothness resp. 
fairness of this approximation is of great importance. Depending on the appli-
cation, different aspects of fairness play a role. For some applications, like the 
simulation of physical processes (finite element analysis) or computer graphics 
rendering, the vertices and edges of the mesh are only a means to an end, and 
“fairness” mostly refers to the suitability of the mesh for the task at hand. Typi-
cally, it involves avoiding small angles between edges, comparable edge lengths 
in triangles, and avoiding vertices whose number of incident edges is not 6.

Smoothness of meshes in freeform architecture
In freeform architecture, the purpose of meshes typically is twofold: Firstly, to 
make a visual statement, and secondly, to be part of the structure. The high vis-
ibility of edges and vertices makes them a much greater part of fairness resp. 
smoothness than in other applications. The human eye notices minimal zigzags 
in edge polylines which are entirely irrelevant for physical simulations or for ren-
dering. Similarly, reflective surfaces expose even very small kink angles between 
faces.

Mesh smoothness is to be distinguished from smoothness of the reference 
shape which the mesh is thought to approximate. A wiggly mesh can mean that 
a smooth reference surface is approximated in a bad manner, but it can also 
mean that there are wiggles in the reference shape. Unfortunately, the former 
can sometimes not be avoided because of constraints imposed on the mesh, 
see examples in Figures 1 and 2.

In this paper we discuss a notion of smoothness, which we believe to be 
consistent with expectations of users in the field of freeform architecture. We can 
already draw on an existing mathematical discussion by Günther and Pottmann 

(2016). We further discuss the optimisation of meshes towards greater smooth-
ness. The optimisation consists of setting up hard and soft constraints, and sub-
sequent application of standard numerical procedures.

2. Measuring Smoothness
The main topic of this paper is the behaviour of meshes in the neighbourhood of 
vertices. This does not mean that in algorithms we neglect other contributions 
to visual smoothness like fairness of edge polylines (see Section 3), but these 
are the standard ones.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



28

,
have the same orientation or opposite orientations (see Figure 3).

This behaviour entirely corresponds to the behaviour of the normal vectors along
a small circle in smooth surfaces (Figure 3, right). If the original circle is denoted
by C and its Gauss image by g(C), then the ratio of signed areas of g(C) to C is
the Gauss curvature K. Zero Gauss curvature implies zero signed area and thus
self-intersections of the Gauss image.

f1
f2

f3

f4
f5

f6
v

ñv

n4

n3

n2

n1

n6

n5

g(vi)

x

C

g(C)

Figure 3. Gauss image of a vertex vi. The cycle of faces f1, . . . , f6 incident with vi defines a
cycle g(vi) of unit normal vectors n1, . . . ,n6 on the unit sphere which form the Gauss image g(v).
The kink angle between faces fk, fk+1 coincides with the spherical edge length nk,nk+1. In the
case shown here the Gauss image polygon g(v) has no self-intersections, so it is the boundary of
two spherical domains — one of them contains unit vectors like ñv which point to the outside of
the primal mesh; it is called the interior of g(v). We can observe the sign of curvature (negative,
from the fact that the two cycles have opposite orientations). Further, any interior point ñv

of the Gauss image polygon g(v) can be viewed as an auxiliary unit normal vector associated
with the vertex vi. Right: The surface with point x and normal vector illustrates the smooth
situation.

Figure 3. Gauss image of a vertex vi . The cycle of faces f1 , . . . , f6 incident with vi defines a cycle g(vi ) of unit normal 
vectors n1 , . . . , n6 on the unit sphere which form the Gauss image g(v). The kink angle between faces fk , fk+1 coincides 
with the spherical edge length nk , nk+1 . In the case shown here the Gauss image polygon g(v) has no self-intersections, 
so it is the boundary of two spherical domains – one of them contains unit vectors like ñv which point to the outside of 
the primal mesh; it is called the interior of g(v). We can observe the sign of curvature (negative, from the fact that the 
two cycles have opposite orientations). Further, any interior point ñv of the Gauss image polygon g(v)can be viewed as 
an auxiliary unit normal vector associated with the vertex vi . Right: The surface with point x and normal vector illustrates 
the smooth situation.
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←mesh 1

mesh 2→

Gauss image 1 Gauss image 2

Figure 4. Smooth and non-smooth triangle meshes. Meshes 1 and 2 represent the same refer-
ence shape. Mesh 1 fulfills Definition 1 of “smoothness”, while mesh 2 does not.
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v
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Figure 5. Local shape analysis of smooth surfaces: The intersection of a smooth surface with an
almost-tangent plane generically approaches a conic called Dupin’s indicatrix which is an ellipse
in case of positive Gauss curvature (a), and a hyperbola in case of negative Gauss curvature (b).
In the latter case, the intersection with a tangent plane yields two smooth curves whose tangents
define the asymptotic directions T1, T2 in the point under consideration (c). Right: approximate
asymptotic directions of the Cour Visconti surface (Fig. 1), computed with the jet fit method of
(Cazals and Pouget, 2003).

Coming back to the discrete case, we set aside entirely the case of developable
surfaces which have K = 0 everywhere. Apart from the rare instances where a
vertex exactly marks the boundary between K > 0 and K < 0 we have non-proper
Gauss images with self-intersections only if the geometry of the primal mesh is so
convoluted that it is hard to even define a normal vector. We therefore formulate
the main requirement for smoothness (see Figure 4):

Figure 4. Smooth and non-smooth triangle meshes. Meshes 1 and 2 represent the same reference shape. Mesh 1 fulfills 
Definition 1 of “smoothness”, while mesh 2 does not.
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2.1 The Gauss Image

We endow a mesh with a Gauss image whose vertices are the consistently 
oriented unit normal vectors of the faces; we think of them as pointing to the 
outside of the mesh. The Gauss image is part of the unit sphere. Each original 
(primal) edge separating two faces corresponds to a Gauss image edge (dual 
edge) connecting two unit normal vectors. Figure 3 illustrates the Gauss image 
g (v) of the 1-ring neighbourhood of a vertex v, while Figure 4 shows Gauss im-
ages of entire meshes.

Properties of Gauss images
There are certain obvious properties of Gauss images which correspond to visu-
al smoothness: Long edges in the Gauss image correspond to large kink angles 
between adjacent faces (see Fig. 3). Also, the shape of the Gauss image cycle of 
a vertex (again, see Fig. 3) defines the shape of the mesh’s surface in the immediate 
neighbourhood of a vertex. Therefore, we look for an even pattern of dual faces 
in the Gauss image.

If the dual Gauss image face g (vi) of a vertex vi is a proper polygon without 
self-intersections, then we might view any point in its interior as a candidate for 
a normal vector associated with the vertex vi . Further, we observe the sign of 
discrete Gauss curvature K of the mesh: We have K > 0 or K < 0 depending on 
whether the Gauss image g (vi), and the cycle of faces incident with the vertex 
vi , have the same orientation or opposite orientations (see Fig. 3).

This behaviour entirely corresponds to the behaviour of the normal vectors 
along a small circle in smooth surfaces (Fig. 3, right). If the original circle is denoted 
by C and its Gauss image by g(C ), then the ratio of signed areas of g(C ) to C is 
the Gauss curvature K . Zero Gauss curvature implies zero signed area and thus 
self-intersections of the Gauss image.

Coming back to the discrete case, we set aside entirely the case of devel-
opable surfaces which have K = 0 everywhere. Apart from the rare instances 
where a vertex exactly marks the boundary between K > 0 and K < 0 we have 
non-proper Gauss images with self-intersections only if the geometry of the 
primal mesh is so convoluted that it is hard to even define a normal vector. We 
therefore formulate the main requirement for smoothness (see Fig. 4) :

A triangle mesh is smooth if all Gauss images of vertices are free of self-intersections.
Definition 1.
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Gauss image 1 Gauss image 2

Figure 4. Smooth and non-smooth triangle meshes. Meshes 1 and 2 represent the same refer-
ence shape. Mesh 1 fulfills Definition 1 of “smoothness”, while mesh 2 does not.

(a) (b) (c)

v

T1

T2

Figure 5. Local shape analysis of smooth surfaces: The intersection of a smooth surface with an
almost-tangent plane generically approaches a conic called Dupin’s indicatrix which is an ellipse
in case of positive Gauss curvature (a), and a hyperbola in case of negative Gauss curvature (b).
In the latter case, the intersection with a tangent plane yields two smooth curves whose tangents
define the asymptotic directions T1, T2 in the point under consideration (c). Right: approximate
asymptotic directions of the Cour Visconti surface (Fig. 1), computed with the jet fit method of
(Cazals and Pouget, 2003).

Coming back to the discrete case, we set aside entirely the case of developable
surfaces which have K = 0 everywhere. Apart from the rare instances where a
vertex exactly marks the boundary between K > 0 and K < 0 we have non-proper
Gauss images with self-intersections only if the geometry of the primal mesh is so
convoluted that it is hard to even define a normal vector. We therefore formulate
the main requirement for smoothness (see Figure 4):

Definition 1. A triangle mesh is smooth, if all Gauss images of vertices are free
of self-intersections.

2.2. Relation between Gauss image and asymptotic lines. Closer study
reveals that smoothness in the sense of Definition 1 is related to local shape prop-
erties of the surface, in particular Dupin’s indicatrix and asymptotic directions,
for which the reader is referred to Figure 5 or textbooks like (do Carmo, 1976).
We state:

Figure 5. Local shape analysis of smooth surfaces: The intersection of a smooth surface with an almost-tangent plane 
generically approaches a conic called Dupin’s indicatrix which is an ellipse in case of positive Gauss curvature (a) and 
a hyperbola in case of negative Gauss curvature (b). In the latter case, the intersection with a tangent plane yields two 
smooth curves whose tangents define the asymptotic directions T1 , T2 in the point under consideration (c).  
Right: approximate asymptotic directions of the Cour Visconti surface (Fig. 1), computed with the jet fit method of (Cazals 
& Pouget, 2003).
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Figure 6. Relevance of edge orientations for smoothness. The graph of the function z = x2−y2

carries two families of straight lines which correspond to x ± y = const , and which are also the
asymptotic directions. Images (a1)–(c1) show different tilings of the xy plane by triangles, which
in (a2)–(c2) are lifted to the graph surface and generate a mesh. Their respective Gauss images
have dual faces without self-intersections in (c3), and with self-intersections in (b3). Image (a3)
illustrates a boundary case where self-intersections begin to occur, and where the edges coincide
with the surface’s asymptotic directions.

Observation 2. Assume a mesh approximates a smooth saddle-shaped surface,
and that the vertex v has face cycle f1, . . . , f6 (indices modulo 6). Then, we typi-
cally have the following properties of the Gauss image hexagon g(v):
(i) g(v) has no self-intersections, if the quadrants bounded by the asymptotic

directions do not contain faces except for a pair fk, fk+3, which are contained in
opposite quadrants.
(ii) g(v) has self-intersections, if faces f , f are both contained in the same

quadrant between asymptotic directions, and

Figure 6. Relevance of edge orientations for smoothness. The graph of the function z = x2 − y2 carries two families of 
straight lines, which correspond to x ± y = const , and which are also the asymptotic directions. Images (a1) – (c1) show 
different tilings of the xy plane by triangles, which in (a2) – (c2) are lifted to the graph surface and generate a mesh. Their 
respective Gauss images have dual faces without self-intersections in (c3) and with self-intersections in (b3). Image (a3) 
illustrates a boundary case where self-intersections begin to occur, and where the edges coincide with the surface’s 
asymptotic directions.
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2.2 Relationship Between Gauss Image  
and Asymptotic Lines 

Closer study reveals that smoothness in the sense of Definition 1 is related to 
local shape properties of the surface, in particular Dupin’s indicatrix and asymp-
totic directions, for which the reader is referred to Figure 5 or textbooks like do 
Carmo (1976). We state:

Assume a mesh approximates a smooth saddle-shaped surface, and that the 
vertex v has face cycle f1 , . . . , f6 (indices modulo 6). Then, we typically have the 
following properties of the Gauss image hexagon g(v):
(i) g(v) has no self-intersections if the quadrants bounded by the asymptotic di-
rections do not contain faces except for a pair fk , fk+3 , which are contained in 
opposite quadrants.
(ii) g(v) has self-intersections, if faces  fk ,  fk +1 are both contained in the same quad-
rant between asymptotic directions, and  fk+3 ,  fk+4  lie in the opposite quadrant.

Observation 2.

Figure 6 illustrates this phenomenon on a very simple surface. Situations (i) and (ii) 
correspond to Figure 6c and Figure 6b, respectively. Figure 7 demonstrates this obser-
vation by means of an actual freeform skin.

Observation 2 is not a mathematical statement, but it could be turned into 
one by specifying more clearly what is meant by “typically”.1

Conclusions regarding mesh design
A fundamental question is how to find a “smooth” triangulation of a given ref-
erence surface. The previous paragraphs give guidance for the combinatorially 
regular case with 6 edges per vertex: In the negatively curved regions of the 
reference surface, the positioning of edges must take the asymptotic directions 
into account. According to Observation 2, in each quadrant bounded by asymp-
totic directions we may place 1 or 2 edges, but not 3.

Thus, the layout of a “smooth” triangulation essentially experiences the same 
combinatorial restrictions as the layout of quadrilateral meshes with planar faces, 
where in the negatively curved regions of a surface, the edges cannot deviate 
much from the principal curves see Zadravec et al. (2010).²

The design of “smooth” triangulations on a reference surface is therefore 
an instance of a well-known dilemma: Choosing the surface determines much of 
the triangulation, and design freedom is limited. Further, it is generally not pos-
sible to optimise a triangle mesh towards smoothness by only slightly moving 
the vertices. Figure 7 is an instance of this, as will be shown below.
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case (i) case (ii)

Figure 7. Smooth and unsmooth meshes. The blue subfigures show two patches of the Cour
Visconti mesh, together with the asymptotic directions of the underlying reference surface within
each face. The left and right hand patches correspond to cases (i) and (ii) of Observation 2.
Consequently their respective Gauss images (green subfigures) exhibit few self-intersections in
case (i) and many self-intersections in case (ii). Thus the left hand patch is revealed as smooth,
the right hand patch as unsmooth. It must be admitted that these images are difficult to read,
since this mesh has triangle pairs which together form a flat quadrilateral, so the Gauss image
mesh has zero length edges.

Conclusions regarding mesh design. A fundamental question is to find a “smooth”
triangulation of a given reference surface. The previous paragraphs give guidance
for the combinatorially regular case with 6 edges per vertex: In the negatively
curved regions of the reference surface, the positioning of edges must take the
asymptotic directions into account. According to Observation 2, in each quadrant
bounded by asymptotic directions we may place 1 or 2 edges, but not 3.

Thus the layout of a “smooth” triangulation essentially experiences the same
combinatorial restrictions as the layout of quadrilateral meshes with planar faces,
where in the negatively curved regions of a surface, the edges cannot deviate much
from the principal curves, see (Zadravec et al., 2010).2

The design of “smooth” triangulations on a reference surface is therefore an
instance of a well known dilemma: Choosing the surface determines much of the
triangulation, and design freedom is limited. Further, it is generally not possible to
optimize a triangle mesh towards smoothness by only slightly moving the vertices.
Figure 7 is an instance of this, as will be shown below.

2.3. Star-shaped Gauss images. The constraint that Gauss image hexagons
do not self-intersect is cumbersome to handle in optimization procedures. It is
fortunate that another property, which is a bit stronger, is both easier to deal with
and has interesting implications on the local shape of meshes. We define:

2Edges of smooth planar-quad meshes must follow two families of curves which constitute
a conjugate network, see (Liu et al., 2006) and (Bobenko and Suris, 2008). Theoretically one
family can be chosen arbitrarily and determines the other. However, in practice, the requirement
of a minum angle between edges ensures that edge polylines cannot cross asymptotic curves, see
(Zadravec et al., 2010).

Figure 7. Smooth and unsmooth meshes. The blue subfigures show two patches of the Cour Visconti mesh, together with 
the asymptotic directions of the underlying reference surface within each face. The left and right hand patches correspond 
to cases (i) and (ii) of Observation 2. Consequently, their respective Gauss images (green subfigures) exhibit few self-
intersections in case (i) and many self-intersections in case (ii). Thus, the left hand patch is revealed as smooth, the right 
hand patch as unsmooth. It must be admitted that these images are difficult to read, since this mesh has triangle pairs 
which together form a flat quadrilateral, so the Gauss image mesh has zero length edges.

MEASURING AND CONTROLLING FAIRNESS OF TRIANGULATIONS 7

(a) (b) (c)

Figure 8. These images, taken from (Günther and Potmann, 2016), illustrate Proposition 5.
For a vertex v with a proper star-shaped Gauss image g(v), the discrete indicatrix is either a
discrete ellipse (i.e., a convex polygon, subfigure a) or a discrete hyperbola (i.e., it consists of two
convex arcs, subfigures b,c). The Gauss image corresponding to subfigure c is shown at right.

Definition 3. The Gauss image g(v) is star-shaped if it has no self-intersections
and there is a point ñv in its interior which can be connected to the entire circum-
ference of the Gauss image by spherical arcs contained in that interior.

Figures 8 and 9 show examples. In order to properly formulate the shape prop-
erties of meshes with star-shaped Gauss images, we recall the Dupin indicatrix of
Figure 5 and define:

Definition 4. Assume that a vertex v in a mesh with planar faces has a Gauss
image g(v) which is star-shaped with respect to ñv. Intersecting the star of v with
a plane close to v and orthogonal to ñv yields the discrete indicatrix.

The meaning of “close to v” is that the intersection shall not be disturbed
by edges which are not incident with v itself. The following result, illustrated
by Figure 8, has been shown by (Günther and Potmann, 2016). It refers to the
discrete Gauss curvature of triangle meshes, cf. (Banchoff, 1970).

Proposition 5. Consider a vertex v in a mesh with planar faces. Its Gauss
curvature is given by K(v) = 2π −

∑
f∼v αf , where

∑
αf is the sum of all angles

between successive edges incident with that vertex. Then, the following holds:
(i) If K(v) > 0 and g(v) is free of self-intersections, then g(v) is star-shaped

and any indicatrix is a discrete ellipse, i.e., a convex polygon.
(ii) If

Figure 8. These images, taken from Günther & Pottmann (2016) illustrate Proposition 5. For a vertex v with a proper 
star-shaped Gauss image g(v), the discrete indicatrix is either a discrete ellipse (i.e. a convex polygon, subfigure a) or a 
discrete hyperbola (i.e. it consists of two convex arcs, subfigures b,c). The Gauss image corresponding to subfigure c is 
shown at right.
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2.3 Star-Shaped Gauss Images 

The constraint that Gauss image hexagons do not self-intersect is cumbersome 
to handle in optimisation procedures. It is fortunate that another property, which 
is a bit stronger, is both easier to deal with and has interesting implications on 
the local shape of meshes. We define:

The Gauss image g(v) is star-shaped if it has no self-intersections and there is a 
point ñv in its interior which can be connected to the entire circumference of the 
Gauss image by spherical arcs contained in that interior.

Definition 3.

Figures 8 and 9 show examples. In order to properly formulate the shape properties 
of meshes with star-shaped Gauss images, we recall the Dupin indicatrix of Fig-

ure 5 and define:

Assume that a vertex v in a mesh with planar faces has a Gauss image g(v) which 
is star-shaped with respect to ñv Intersecting the star of v with a plane close to 
v and orthogonal to ñv yields the discrete indicatrix.

Definition4.

The meaning of “close to v” is that the intersection shall not be disturbed by 
edges that are not incident with v itself. The following result, illustrated by Figure 8, 
has been shown by Günther and Pottmann (2016). It refers to the discrete Gauss 
curvature of triangle meshes (cf. Banchoff 1970).

Consider a vertex v in a mesh with planar faces. Its Gauss curvature is given by 
K (v) = 2π − ∑ f ∼v αf , where ∑ αf is the sum of all angles between successive 
edges incident with that vertex. Then, the following holds:
(i) If K (v) > 0 and g(v) is free of self-intersections, then g(v) is star-shaped and 
any indicatrix is a discrete ellipse, i.e. a convex polygon.
(ii) If K (v) < 0 and g(v) is star-shaped with respect to some point ñv , then the 
corresponding indicatrix typically3 is a discrete hyperbola, i.e. consists of two 
convex polygonal arcs. Also, the reverse implication is true.

Proposition 5.

We conclude that star-shaped Gauss images imply that the local shape of a mesh 
in the immediate vicinity of a vertex coincides with what is expected from the 
local shape of a smooth surface (in particular the manner of up-down oscillations 
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v∗
i

vi

n∗
i

Φ

Ti

ñv

n4

n3

n2

n1

n6

n5

g(vi)

Figure 9. Constraints imposed on smooth meshes in our optimization procedure. Left: For
purposes of approximation, vertices vi of the mesh are kept close to the reference surface Φ, by
adding the constraint that vi lies in the tangent plane of Φ in the point v∗

i which was closest to vi

in the previous iteration of our optimization procedure. Right: The spherical polygon n1, . . . ,n6

is star-shaped w.r.t. the center ñv if all triangles nknk+1ñv have the same orientation and it
winds around ñv exactly once.

3. Optimization of meshes

We have implemented a procedure to optimize a mesh such that its Gauss images
become star-shaped, which makes them “smooth” as explained in detail in the
previous section. The method expresses each desired property in terms of an
energy function. The variables in the optimization are positions vi of vertices,
normal vectors nk of faces, and auxiliary normals ñi of vertices. To express the
relation between faces and normal vectors, we minimize the energy

Enormal =
∑

vivj is edge of face fk

(nk · (vi − vj))
2 +

∑
faces fk

(‖nk‖ − 1)2.

We also ensure that these normal vectors are oriented consistently, i.e., cycling the
face fk in the positive sense when looking in direction nk, and cycling the face fl in
the positive sense when looking in direction nl, must assign different orientations
to the common edge fk ∩ fl.
Secondly, if the mesh is to approximate a reference surface Φ, we should try to

minimize something like
∑

dist(vi,Φ)
2 which is highly nonlinear. However, we re-

place Φ by the tangent plane Ti in the point v∗
i of Φ which is closest to Φ. Thus the

highly nonlinear squared distance function is substituted by its quadratic Taylor
approximation without disturbing convergence of algorithms, cf. Pottmann et al.
(2006). In each round of our iterative optimization procedure, we recompute the
closest point v∗

i and the normal vector n∗
i there. The energy expressing closeness

then reads

Eclose =
∑

vertices vi

((vi − v∗
i ) · n∗

i )
2.

Figure 9. Constraints imposed on smooth meshes in our optimisation procedure. Left: For purposes of approximation, 
vertices vi of the mesh are kept close to the reference surface Φ, by adding the constraint that vi lies in the tangent plane 
of Φ in the point vi

* which was closest to vi in the previous iteration of our optimisation procedure. Right: The spherical 
polygon n1 , . . . , n6 is star-shaped w.r.t. the center ñv if all triangles nk nk+1 ñv have the same orientation and it winds 
around ñv exactly once.
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(a) (b)

Figure 10. This mesh on a minimal surface together with its Gauss image (subfigure a) under-
goes optimization. All Gauss image hexagons of vertices become star-shaped (subfigure b). These
images illustrate the fact that the non-smoothness of certain meshes (like the one in subfigure a)
may not be visible in all renderings.

Thirdly, the Gauss image polygon n1,n2, . . . of a vertex vi is star-shaped with
respect to the normal vector ñi only if all triangles ñinknk+1 have the same orien-
tation when we look at them in the direction of ñi. We therefore let

Egauss =
∑

vertices vi

∑
fk in face cycle of vi

(
det(nk+1,nk, ñi)− ω2

ik

)2
,

where ωik is a slack variable. This condition is also sufficient for star-shapedness if
the polygon winds around ñi exactly once (this is checked a posteriori, by comput-
ing angle sums). To prevent zigzag in edge polylines, we use the classical second
order differences

Epolylines =
∑

successive vertices vi,vj ,vk

‖vi − 2vj + vk‖2.

The total energy is a weighted linear combination of the individual energies:

E = w1Enormal + w2Eclose + w3Egauss + w4Epolylines.

Figure 10 shows the result of optimization on a simple surface.

Implementation details. Since the limit residual of the polyline fairness energy is
nonzero, it is used with a low weight, in the manner of an additional regularizer. We
further use units such that the typical edge lengths in the mesh are of magnitude 1.
Then we may let w1 = w2 = w3 = 1 and w4 = 0.01, but some user experimenting
is necessary for good results. For the actual minimization of the combined energy,
we use a standard Gauss-Newton method, cf. (Kelley, 1999, pp. 22–23).

Figure 10. This mesh on a minimal surface together with its Gauss image (subfigure a) undergoes optimisation. All Gauss 
image hexagons of vertices become star-shaped (subfigure b). These images illustrate the fact that the non-smoothness of 
certain meshes (like the one in subfigure a) may not be visible in all renderings.
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(a) (b) (c)

Figure 11. Partly successful optimization. The three smaller images show the Cour Visconti
mesh of Figure 1 (a) and the Gauss images of two selected patches (b,c) before optimization. The
larger figures show the situation after optimization has been performed. Since the right hand
patch corresponds to case (ii) of Observation 2, optimization can hardly be successful unless
we entirely rearrange the mesh layout. Our optimization procedure does not do that; rather it
applies small changes which may be acceptable as an augmentation of an already existing design.

(a) (b) (c) (d)

Figure 11. Partly successful optimisation. The three smaller images show the Cour Visconti mesh of Figure 1 (a) and the 
Gauss images of two selected patches (b,c) before optimisation. The larger figures show the situation after optimisation 
has been performed. Since the right-hand patch corresponds to case (ii) of Observation 2, optimisation can hardly be 
successful unless we entirely rearrange the mesh layout. Our optimisation procedure does not do that; rather, it applies 
small changes which may be acceptable as an augmentation of an already existing design.
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w.r.t. a fictitious tangent plane, and the convexity of intersections with near- 
tangent planes). This means that insisting on star-shaped Gauss images makes 
triangle meshes even more smooth than Definition 1 already does.

3. Optimisation of Meshes
We have implemented a procedure to optimise a mesh such that its Gauss im-
ages become star-shaped, which makes them “smooth” as explained in detail 
in the previous section. The method expresses each desired property in terms 
of an energy function. The variables in the optimisation are positions vi of verti-
ces, normal vectors nk of faces, and auxiliary normals ñi of vertices. To express 
the relationship between faces and normal vectors, we minimise the energy

 
Enormal =  ∑ (nk · (vi – vj))2 +  ∑ (∥nk∥ – 1)2 .
 vi vj is edge of face fk faces fk

We also ensure that these normal vectors are oriented consistently, i.e., cycling 
the face fk in the positive sense when looking in direction nk , and cycling the 
face fl in the positive sense when looking in direction nk , must assign different 
orientations to the common edge fk ∩ fl .

Secondly, if the mesh is to approximate a reference surface Φ, we should 
try to minimise something like ∑ dist (vi , Φ)2 which is highly nonlinear. However, 
we replace Φ by the tangent plane Ti in the point v*

i of Φ which is closest to Φ. 
Thus the highly nonlinear squared distance function is substituted by its qua-
dratic Taylor approximation without disturbing the convergence of algorithms (cf. 

Pottmann et al. 2006). In each round of our iterative optimisation procedure, we recom-
pute the closest point v*

i and the normal vector n*
i there. The energy expressing 

closeness then reads

 
Eclose =  ∑ ((vi – v*

i  ) · n*
i  )2 .

 vertices vi  

Thirdly, the Gauss image polygon n1, n2 , . . . of a vertex vi is star-shaped with re-
spect to the normal vector ñi only if all triangles ñi  nk nk+1 ni have the same orien-
tation when we look at them in the direction of ñi. We therefore let
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mesh of Figure 1 (a) and the Gauss images of two selected patches (b,c) before optimization. The
larger figures show the situation after optimization has been performed. Since the right hand
patch corresponds to case (ii) of Observation 2, optimization can hardly be successful unless
we entirely rearrange the mesh layout. Our optimization procedure does not do that; rather it
applies small changes which may be acceptable as an augmentation of an already existing design.

(a) (b) (c) (d)

Figure 12. Successful optimization. The mesh in (a) is inspired by the skin of the BMW
Welt building in Munich, cf. Figure 2. It is obviously unsmooth and yields mesh (b) under
optimization. Below each mesh, the respective Gauss images are shown. Another triangulation
of the same reference shape (c) is weakly smoooth because Gauss images of vertices are free
of self-intersections, but are not star-shaped. Optimization yields mesh (d). The meshes are
rendered as reflective surfaces, which allows visual inspection of smoothness.

only have to move along parallel circles a bit. In the case of Figure 11 this is not
possible without completely rearranging the mesh.
A more complex example is the Eindhoven Blob by M. Fuksas. Figure 13 il-

lustrates how close the optimized mesh is to the original one, and illustrates the
change in Gauss images.

Comparison with other smoothing methods. There is a host of smoothing methods
available in the area of geometry processing, starting with very simple methods
like Laplacian smoothing a.k.a. linear diffusion (this means moving each vertex
towards the average of its neighbours, see e.g. (Botsch et al., 2010)). However,
most methods deal with removing noise from the shape which is described by the

Figure 12. Successful optimisation. The mesh in (a) is inspired by the skin of the BMW Welt building in Munich, cf. Figure 
2. It is obviously unsmooth and yields mesh (b) under optimisation. Below each mesh, the respective Gauss images are 
shown. Another triangulation of the same reference shape (c) is weakly smooth because Gauss images of vertices are 
free of self-intersections, but are not star-shaped. Optimisation yields mesh (d). The meshes are rendered as reflective 
surfaces, which allows visual inspection of smoothness.
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(a) (b) (c)

g1 gg1 ga1 gg+a
1 g2 gg2 ga2 gg+a

2

Figure 13. Optimization using different energies. In (a) we see the triangle mesh used for the
Eindhoven Blob, together with patches No. 1 and No. 2 highlighted. The result of optimization
towards star-shaped Gauss images is shown in (b). A superimposed image of slices through
original mesh and optimized mesh (c) shows approximation quality. The detailed images in the
bottom row show Gauss images of patch No. i (i = 1, 2) before optimization (labelled gi), after

optimization using Egauss (labelled ggi ), or Eangle (labelled gai ), or both energies (labelled gg+a
i ).

mesh, and this is not our intention. Methods which seek to represent a reference
surface by a better mesh are referred to as remeshing, which usually means to
discard the previous mesh altogether. This is also not what we are doing. Actu-
ally, from the viewpoint of geometry processing, our smoothing procedure hardly
does anything at all, which is true if one forgets the important visual role which
vertices and edges play in our applications. Being aware of the different aims of
other smoothing methods, we really made only few comparisons, and we only ob-
served the behaviour of meshes as they undergo Laplacian smoothing. While for
some meshes like the

Figure 13. Optimization using different energies. In (a) we see the triangle mesh used for the Eindhoven Blob, together 
with patches No. 1 and No. 2 highlighted. The result of optimisation towards star-shaped Gauss images is shown in 
(b). A superimposed image of slices through original mesh and optimised mesh (c) shows approximation quality. The 
detailed images in the bottom row show Gauss images of patch No. i (i = 1, 2) before optimisation (labelled gi), after 
optimisation using Egauss (labelled gi

g), or Eangle (labelled gi
a), or both energies (labelled gi

g+a).
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Egauss =  ∑  ∑  (det(nk+1 , nk , ñi) – ω2

ik )2 .
 vertices vi  fk in face cycle of vi

where ωik is a slack variable. This condition is also sufficient for star-shapedness 
if the polygon winds around ñi exactly once (this is checked a posteriori, by com-
puting angle sums). To prevent zigzag in edge polylines, we use the classical 
second order differences

 
Epolylines =  ∑ ∥vi – 2vj + vk ∥2.
 successive vertices vi , vj , vk 

The total energy is a weighted linear combination of the individual energies:

E = ω1 Enormal + ω2 Eclose + ω3 Egauss + ω4 Epolylines .

Figure 10 shows the result of optimisation on a simple surface.

Implementation details
Since the limit residual of the polyline fairness energy is nonzero, it is used with a 
low weight, in the manner of an additional regularizer. We further use units such 
that the typical edge lengths in the mesh are of magnitude 1. Then we may let  
ω1 = ω2 = ω3 = 1 and ω4 = 0.01, but some user experimenting is necessary for good 
results. For the actual minimisation of the combined energy, we use a standard 
Gauss-Newton method (cf. Kelley, 1999, pp. 22–23).

Discussion of results
Figures 11 and 12 show the behaviour of two different meshes which undergo opti-
misation. In one case optimisation is not successful, as can be seen in Figure 11c. 
This is not the fault of the method, but rather the fault of the design itself, which 
places mesh polylines relative to asymptotic directions such that case (ii) of Ob-
servation 2 applies. It depends on the nature of the mesh if optimisation manag-
es to move vertices such that smoothness can be achieved or not. In the case of 
Figure 12 this works because there is not much to do: Vertices only have to move 
along parallel circles a bit. In the case of Figure 11 this is not possible without com-
pletely rearranging the mesh.
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A more complex example is the Eindhoven Blob by M. Fuksas. Figure 13 illus-
trates how close the optimised mesh is to the original one, and illustrates the 
change in Gauss images.

Comparison with other smoothing methods
There is a host of smoothing methods available in the area of geometry process-
ing, starting with very simple methods like Laplacian smoothing a.k.a. linear diffu-
sion (this means moving each vertex towards the average of its neighbours, see 
e.g. Botsch et al. (2010). However, most methods deal with removing noise from 
the shape, which is described by the mesh, and this is not our intention. Meth-
ods that seek to represent a reference surface by a better mesh are referred to 
as remeshing, which usually means to discard the previous mesh altogether. This 
is also not what we are doing. Actually, from the viewpoint of geometry process-
ing, our smoothing procedure hardly does anything at all, which is true if one 
forgets the important visual role which vertices and edges play in our applica-
tions. Being aware of the different aims of other smoothing methods, we really 
made only few comparisons, and we only observed the behaviour of meshes 
as they undergo Laplacian smoothing. While for some meshes like the Blob of 
Figure 13, this procedure produces almost acceptable results, it does not improve 
the meshes of Figure 10 and Figure 12 at all.

We might also ask a different question: What happens if we directly minimise 
the kink angles αkl between faces fk , fl ? With cos αkl = nk · nl it is easy to set up 
an energy which directly penalises large kink angles, namely,

 
Eangle = ∑ (1 – nk · nl )2.
 edges fk ∩ fl 

The result of optimisation using this energy combined with the one producing 
star-shaped Gauss images is illustrated by Figure 13. One can see that optimizing 
kink angles has an effect similar to making the Gauss image star-shaped, but 
weaker. Statistics show that between these two kinds of optimisation (or the 
combined optimisation of both) there is no substantial difference in kink angles. 
We therefore conclude that optimising Egauss can be augmented by adding Eangle 

to the total energy, but should not be replaced by it.

4. Conclusion
We have presented a two-stage definition of “smoothness” of a triangle mesh 
in terms of the Gauss image of vertices. A weaker version requires the absence 
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of self-intersections, a stronger one requires that Gauss images be star-shaped. 
We discussed the relationship between smoothness and the placement of edg-
es relative to the asymptotic directions. We conclude that, in negatively curved 
areas, we have strong combinatorial restrictions on the placement of edges if we 
want the mesh to be smooth. If the stronger smoothness condition is fulfilled, 
we can even deduce that the piecewise-flat mesh surface has local shape prop-
erties analogous to smooth surfaces (which justifies our definition of smooth-
ness). Finally, we show the optimisation of a mesh towards smoothness and 
discuss in which cases this optimisation can succeed.

Endnotes
1 We argue as follows: the observation is true for the hyperbolic paraboloid and for lifted regular triangulations (this is an easy exercise, see 

Fig. 6). It is true in the limit, for small faces, and limit-regular triangulations because of the hyperbolic paraboloid’s capability of approxima-
ting a surface up to 2nd order (thus approximating asymptotic directions and normal vectors up to 1st order). The observation thus is true 
whenever the size of triangles is small enough and the triangulation is regular enough.

2 Edges of smooth planar-quad meshes must follow two families of curves which constitute a conjugate network see Liu et al. (2006) and Bobenko 
& Suris (2008). Theoretically, one family can be chosen arbitrarily and determines the other. However, in practice, the requirement of a minimum 
angle between edges ensures that edge polylines cannot cross asymptotic curves, see Zadravec et al. (2010).

3 The exceptions are cases where both ñv and − ñv are contained in the interior of g(v).
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Abstract
Architectural designs are frequently represented digitally as plane-faced meshes, 
yet these can be challenging to translate into built structures. Offsetting opera-
tions may be used to give thickness to meshes, and are produced by offsetting 
the faces, edges, or vertices of the mesh in an appropriately defined normal di-
rection. In a previous paper, we described a face-offsetting algorithm for resolving 
the revised combinatorics of the offset mesh produced by face-offsetting (Ross & 

Hambleton 2015). That is, given an input mesh with no design constraints, the algo-
rithm computes the exact offset by determining the new geometric and com-
binatorial structure of the offset mesh. One of the design freedoms available in 
that method is the opportunity to specify different offset distances on a per-face 
basis. In the present paper we consider the implications of this freedom.
One question of particular interest is: Under what conditions does an offset 
mesh produced by variable rate face-offsetting also have a uniform distance 
edge-offset? To physically realise a mesh as a built structure usually requires 
that the mesh edges be used as the basis for structural members, with some 
structural depth. Therefore, given a mesh M it is particularly desirable to find an 
offset mesh M' in which the edges of M' are at a uniform perpendicular distance 
d from their corresponding edge in M. We present a description of meshes that 
admit uniform distance edge offsets as a consequence of a variable rate exact 
face offset, based on a graph-theoretic analysis of the underlying dual mesh. 
The potential advantage of this approach is that it can provide an opportunity to  
rationalise the physical realisation of the mesh as a constructible structure where 
all edge based members have the same depth. 

Keywords: 
offsetting polygon meshes, offset mesh, face offset, edge offset, graph theory, 
graph duality, algorithms, facade rationalisation, architectural geometry,  
multi-layer construction
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(a) The topmost mesh is the original design, and the bottom mesh is the face offset. Note that
triangular mesh faces in the original have become polygonal mesh faces in the offset. The per-
pendicular structure can be seen in the middle layer, composed of planar quadrilateral principal
members and triangular facelets.

(b) original triangular mesh (c) offset polygon mesh

Figure 1: A sample mesh offset with the exact face-offsetting algorithm.

4

Figure 1. A sample mesh offset with the exact face-offsetting algorithm.
(top) The topmost mesh is the original design, and the bottom mesh is the face offset. Note that triangular mesh faces in 
the original have become polygonal mesh faces in the offset. The perpendicular structure can be seen in the middle layer, 
composed of planar quadrilateral principal members and triangular facelets.
(bottom left) Original triangular mesh.
(bottom right) Offset polygon mesh.
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1. Introduction
Architectural geometry is a useful transitional system between the expressive 
intentions of the architect and the practical constraints involved in realising these 
intentions as a physically constructible building. Different types of geometry of-
fer different design freedoms, but not all geometry is constructible; therefore it 
is also essential that geometric design tools be developed that present these 
freedoms and the limits to these freedoms. This is particularly important when 
dealing with doubly-curved surfaces which are fundamentally at odds with most 
standardised manufacturing processes, such as sheet metal fabrication, extru-
sions, and glass panel manufacturing. While it is certainly possible to employ spe-
cialised construction techniques for such surfaces, there is considerable value in 
developing design technology that approximate continuously curving surfaces 
with collections of planar elements. This discretisation process is of interest not 
just in architectural geometry, but also in computer graphics, discrete differential 
geometry, physical simulations, and more.

In architecture, however, it is not enough to consider only the discretisation 
of surface geometry. All physical objects have thickness, which is most often real-
ised in the design phase by applying various offsetting techniques to the elements 
of the design. For surface geometry, and even planar discretisations of surface 
geometry, the offsetting operation is not fully understood. Of particular interest 
are face- and edge-offsetting techniques, which give layers or thickness to facial 
or edge elements, respectively. Offsetting the vertices of a mesh is also possi-
ble, although it typically introduces a ‘twist’ in the structural support members 
connecting the original mesh with the offset mesh, which may present addition-
al fabrication challenges (Aish, Verboon, & Fagerström 2014). Some significant approaches 
to the face- and edge-offsetting problem have focussed on characterising the 
mesh geometry that produces ‘well-behaved’ offset outcomes (Pottmann et al. 2007; 

Pottmann & Wallner 2008; Wang and Liu 2010). Recently, we presented a general algorithm 
for face-offsetting meshes which focussed on analytically describing the offset 
node details for any geometry, without constraint on the input or output mesh-
es, or any overlay of aesthetic criteria (Ross & Hambleton 2015). Each method appears 
to offer some advantages but may also present disadvantages.

In Section 2 we give a more detailed introduction to the face-offsetting al-
gorithm presented in Ross and Hambleton (2015), and discuss the design consid-
erations that arise in the context of face- and edge-offsetting. In the subsequent 
section, we provide several examples of one of the design freedoms of this 
method, specifically the ability to specify a different offset distance for each face 
member of the mesh. Section 4 introduces the idea of a face-edge offset mesh: a 
mesh that admits a variable rate face offset such that edge-edge distances are 
uniform. In that section we prove our main result, namely, the characterisation 
of a class of face-edge offset meshes of particular interest in an architectural 
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Figure 2. The perpendicular structure of the mesh shown in Figure 1.

facelets

principal members

Figure 3. Unrolled perpendicular structure, with uniform edge offset height. Each row corresponds to a single face in an 
offset triangular mesh, and correspondingly has three principal members. The number of facelets depends on the offset 
geometry.
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setting, using ideas from algebraic graph theory applied to the dual graph of the 
mesh. This is followed in Section 5 with a discussion about how face-edge offset 
meshes may be used in a design setting.

2. Exact Face Offsetting
A general algorithm for exact face-offsetting of polygon meshes was described 
in a previous paper by two of the authors (Ross & Hambleton 2015). Given any plane-
faced polygon mesh M and an offset distance d ∈ ℝ, the algorithm finds the new 
polygon mesh resulting from offsetting each face of M in its normal direction by 
distance d (if d < 0, the offset will be inward). Unlike other approaches to face 
offsetting (Pottmann et al. 2007; Pottmann & Wallner 2008; Wang & Liu 2010), which aim to find a 
parallel mesh M' that is combinatorially equivalent to M, our approach does not 
require that the combinatorics of the new mesh to match those of the original. In 
particular, the offset mesh will possess new mesh vertices and edges, although 
it will not possess new mesh faces (see Fig. 1). This introduces a significant relax-
ation of the constraints on the offsetting problem and allows us to treat all mesh 
combinatorics (triangular, quadrilateral, hexagon, or mixed polygon), and all un-
derlying mesh geometry (e.g. concave, convex, hyperbolic, etc.) using a single 
algorithm that permits both inward and outward offsetting. Several examples of 
the usage of this algorithm are provided in Section 3.

2.1 The Perpendicular Structure
One advantage of any method of face offsetting is that it produces a planar 
perpendicular structure joining the original mesh with the offset mesh (Fig. 1 and 2). 
That is, given a mesh edge e connecting two faces Fi and Fj , the corresponding 
edge e' connecting the offset faces F'i and F'j will be parallel to e.1 Joining the 
mesh edge e to the offset mesh edge e' at their respective end points therefore 
creates a planar quadrilateral, which we call a principal member of the perpen-
dicular structure. New edges in the offset mesh that emerge as artifacts of our 
general method may be connected to their originating vertex to form a triangle, 
which we call facelets² (Fig. 3). In this way, our offsetting method produces a per-
pendicular structure between the original mesh and its offset consisting only of 
planar quadrilateral principal members and triangular facelets. This is in contrast 
to other approaches to offsetting meshes which introduce a ‘twist’ and therefore 
a non-planarity in the perpendicular structure. In the work of Aish, Verboon, and 
Fagerström (2014), the edges of the offset mesh were used to create the prima-
ry support structure, while the edges of the original mesh were used to create 
a secondary ‘carrier’ frame for each of the glazing panels (based on the faces of 
the original mesh). However, connecting the primary structure to carrier frames 
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Figure 4. A filleting technique applied to the perpendicular structure. (bottom: detail view).
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required additional elements. This significantly added to the physical and visual 
complexity of the resulting architecture.

A question of interest in the context of the exact face offsetting algorithm is 
therefore: When do the principal members of the perpendicular structure have 
a uniform height? That is, when is it possible that a physical realisation of the 
mesh as a constructible structure would have all edge-based members with the 
same cross-section? We answer this question in Section 4.

2.2 Design Considerations  
in the Perpendicular Structure

While at first glance, the appearance of facelets may seem undesirable from a 
construction point of view, there is substantial design potential within this ap-
proach. For instance, it is certainly true that facelets which create crease angles 
or edge lengths that fall below manufacturing tolerances need to be eliminated 
from the design in order for the structure to be realised. However, by using the 
proposed polygonal mesh as basis, such conditions may be resolved using stan-
dard modelling operations such as filleting and chamfering (see Fig. 4). Note that the 
planarity of the offset surface (which is guaranteed by our algorithm) becomes 
particularly important, since processing the planar offset faces is vastly simpler 
and more robust than processing more general surface geometry.

3. Offsetting with Variable Rates
One of the advantages of the face-offsetting method previously described (Ross 

& Hambleton 2015) is the ability to specify different offset distances on a per-face ba-
sis. That is, rather than specifying a single offset distance d ∈ ℝ to be applied to 
all faces of a mesh M, we may instead specify an offset vector d

→
 = (d1 , . . . , d| F |) 

of distances, with one distance di for each face Fi . We call the vector of offset 
distances the variable offset rates.

A goal of this research is to explore how different ‘design freedoms’ or op-
tions might be offered to the architectural design team. In the remainder of this 
section we highlight the implications of the ability to specify different offset rates 
with several basic examples. Beyond these, one could also imagine offsetting 
a mesh surfaces with d

→
 determined parametrically, for example, with a trigono-

metric function.

3.1 Example: Offsetting a Single Face
In an extreme usage of variable rates, we set the offset rates of all faces to be 
zero, except one distinguished face which receives a positive offset rate. The 
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(a) original (b) (c) (d) final

Figure 5: Example of offsetting a single face only. The topmost face of the
original mesh (a) will be extruded out of the mesh, leaving the final mesh (d)
with one fewer face.

Figure 6: Example of offsetting with some fixed faces. Original mesh is shown at
left, with the topmost faces fixed. Face-offsetting the other faces yields images
at centre and right.

8

Figure 6. Example of offsetting with some fixed faces. Original mesh is shown at left, with the topmost faces fixed.  
Face-offsetting the other faces yields images at centre and right.

(a) original (b) (c) (d) final

Figure 5: Example of offsetting a single face only. The topmost face of the
original mesh (a) will be extruded out of the mesh, leaving the final mesh (d)
with one fewer face.

Figure 6: Example of offsetting with some fixed faces. Original mesh is shown at
left, with the topmost faces fixed. Face-offsetting the other faces yields images
at centre and right.

Figure 5. Example of offsetting a single face only. The topmost face of the original mesh (a) will be extruded out of the 
mesh, leaving the final mesh (d) with one fewer face.
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result of the offset procedure is to completely ‘extrude’ that distinguished face 
out of the mesh (Fig. 5).

3.2 Example: Fixing Multiple Faces
A second usage of variable rates might be to fix a section of a mesh, while off-
setting the remainder (see Fig. 6).

3.3 Example:  
Rates Determined by Structural Performance

In this final example, we consider a scenario in which it might be considered 
important that all faces be offset uniformly. The consequence of this ‘simplified’ 
strategy is that some members will be over sized, therefore over weight, and 
therefore require an increase in the size of the other members. However, be-
cause all members should have the same cross-section, the whole structure may 
become less efficient and materially and visually heavy.

An alternative option might be to structurally optimise each member so 
as to reduce the face-face offset (and hence weight) of those members with 
less demanding role within the overall structure. Structural optimisation visually 
‘lightens’ the architecture but may actually increases fabrication complexity. The 
approach of variable rate offsetting offers the architectural team both options. 
It does not constrain the architectural decision making, but rather defers to the 
team to make appropriate decision as to how to realise the mesh as a viable and 
efficient structure.

4. Edge Offsetting as a Consequence of 
Face Offsetting

In this section we outline a general theory for finding variable rate face offsets 
such that the resulting perpendicular structure has a uniform height on its prin-
cipal members. More precisely, we say a mesh M = (V, F) is a face-edge-offset 
mesh, or FEO mesh if there exists a set of rates d

→
 = (d1 , . . . , d| F | ) ∈ ℝ| F | such 

that face-offsetting M with rates d
→

produces a mesh M' whose edges are at a 
uniform distance to the corresponding non-trivial edges of M. This ensures that 
the principal members of the perpendicular structure have a uniform height. Note 
that this definition does not require that the facelets have uniform height from 
their originating vertex to the new edge.
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(a) Plane generated by normals of F0, F1
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Figure 7: The plane P generated by the normals to faces F0 and F1 is shown
in (a). The images in (b) – (d) are assumed to be in this plane P . The faces
are lines in P , and the edge offset distance corresponds to the distance from the
pairs of line intersections (shown in red). If the interior angle α0,1 between the
faces F0 and F1 is less than π, then θ0+θ1 = α0,1, otherwise θ0+θ1 = 2π−α0,1.
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Figure 7. The plane P generated by the normals to faces F0 and F1 is shown in (a). The images in (b) – (d) are  
assumed to be in this plane P. The faces are lines in P, and the edge offset distance corresponds to the distance from  
the pairs of line intersections (shown in red). If the interior angle α0,1 between the faces F0 and F1 is less than π,  
then θ0 + θ1 = α0,1 , otherwise θ0 + θ1 = 2π − α0,1 .
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4.1 A System of Linear Equations

Let M = (V, E) be a mesh. Let ei j be the edge connecting face Fi with Fj . Let α i j 
be the interior angle between the faces. Viewed in the plane spanned by the 
normals of the faces, the planes Fi , Fj and their offsets generate a parallelo-
gram (see Fig. 7). The diagonal that divides the angle α i j corresponds to the edge 
offset distance (shown in red), and here we normalise the edge offset distance 
to length d = 1. Let θi be the angle opposite the perpendicular distance di , which 
is the offset distance of face Fi .

Then for each interior mesh edge ei j we have

In this section we outline a general theory for finding variable rate face offsets
such that the resulting perpendicular structure has a uniform height on its
principal members. More precisely, we say a mesh M = (V, F ) is a face-edge-

offset mesh, or FEO mesh if there exists a set of rates �d = (d1, . . . , d|F |) ∈ R|F |

such that face-offsetting M with rates �d produces a mesh M ′ whose edges are
at a uniform distance to the corresponding non-trivial edges of M . This will
ensure that the principal members of the perpendicular structure have a uniform
height. Note that this definition does not require that the facelets have uniform
height from their originating vertex to the new edge.

4.1 A system of linear equations

= (V,E) be a mesh. Let eij be the edge connecting face Fi with Fj . Let
be the interior angle between the faces. Viewed in the plane spanned by the

normals of the faces, the planes Fi, Fj and their offsets generate a parallelogram
(see Figure 7). The diagonal that divides the angle αij corresponds to the edge
offset distance (shown in red), and here we normalize the edge offset distance to
length = 1. Let θi be the angle opposite the perpendicular distance di, which
is the offset distance of face Fi.

Then for each interior mesh edge eij we have

θi + θj =

{
αij if 0 ≤ αij < π,

2π − αij if π ≤ αij < 2π.
(1)

resulting in a system of linear equations.

9

(1)

resulting in a system of linear equations.

If this system of equations has a solution, then we may recover the offset dis-
tances di by the formula di = sin(θi ). Note that for π < θi < 2 π, this value will be 
negative, indicating an inward offsetting plane.

Let
If this system of equations has a solution, then we may recover the offset

distances by the formula di = sin(θi). Note that for π < θi < 2π, this value
will be negative, indicating an inward offsetting plane.

Let

βij =

{
αij 0 ≤ αij < π,

2π − αij π ≤ αij < 2π.
(2)

Then we may record the system of linear equations:




Fi Fj

...
0 · · · 0 1 0 · · · 0 1 0 · · · 0

...







θ1
...

θ|F |


 =




...
βij
...


 , (3)

where θ1 · · · θ|F | ) is a vector of length |F |, and �β = ( · · · βij · · · )
is a vector of length corresponding to the number of interior edges of M . For
convenience we denote by A the matrix of the linear system (3).

To summarize, a mesh M is a FEO mesh if and only if there exists �θ ∈ R|F |

A�θ = �β. If such a solution exists, we recover the vector �d of offset
rates on the mesh by di = sin(θi), for each face Fi ∈ F (M).

4.2 Graph theory notation

Several immediate observations about FEO meshes are available from the prob-
lem set up. We first introduce some notation and vocabulary from graph theory
(See e.g. Diestel 2010 or West 2001). Let M = (V (M), F (M)) be a polygon
mesh. The

(2)

Then we may record the system of linear equations:

If this system of equations has a solution, then we may recover the offset
distances di by the formula di = sin(θi). Note that for π < θi < 2π, this value
will be negative, indicating an inward offsetting plane.

Let

βij =

{
αij 0 ≤ αij < π,

2π − αij π ≤ αij < 2π.
(2)

Then we may record the system of linear equations:




Fi Fj

...
eij 0 · · · 0 1 0 · · · 0 1 0 · · · 0

...







θ1
...

θ|F |


 =




...
βij
...


 , (3)

where �θ = ( θ1 · · · θ|F | ) is a vector of length |F |, and �β = ( · · · βij · · · )
is a vector of length corresponding to the number of interior edges of M . For
convenience we denote by A the matrix of the linear system (3).

To summarize, a mesh M is a FEO mesh if and only if there exists �θ ∈ R|F |

satisfying A�θ = �β. If such a solution exists, we recover the vector �d of offset
rates on the mesh by di = sin(θi), for each face Fi ∈ F (M).

4.2 Graph theory notation

Several immediate observations about FEO meshes are available from the prob-
lem set up. We first introduce some notation and vocabulary from graph theory
(See e.g. Diestel 2010 or West 2001). Let

(3)

where θ
→

 = ( θ1 · · · θ| F | ) is a vector of length | F |, and β
→

 = ( · · · βi j · · · ) is a vector 
of length corresponding to the number of interior edges of M. For convenience 
we denote by A the matrix of the linear system (3).
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Figure 9: Schematic representation of the original mesh in Figure 1. The red
edges form a spanning tree in the dual graph. Note that the red edges cross over
every ‘vertical’ line of the mesh, indicated by the arrows. In this way, we can
guarantee that the principal members of the perpendicular structure on these
‘vertical beams’ have a uniform height.

deviation among the offset distances for the faces of the mesh. If two adjacent
faces Fi, Fj are offset to the same distance, then θi = θj = αij/2. Therefore, to
find the set of face offset rates which most closely emulate this, we find γ such
that the adjusted angle vector θ′ minimizes the sum

∑
α

|αij/2− θ′i|.

5 Designing with variable rate face offsetting

Figure 9. Schematic representation of the original mesh in Figure 1. The red edges form a spanning tree in the dual 
graph. Note that the red edges cross over every ‘vertical’ line of the mesh, indicated by the arrows. In this way, we can 
guarantee that the principal members of the perpendicular structure on these ‘vertical beams’ have a uniform height.
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(a) M6
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(b) angle-labeled dual of M6

Figure 8: A six-valent “fully-clothed” vertex mesh M6 (a), and its hexagonal
dual graph (b) with vertices corresponding to the faces of M6, and edges labeled
by the corresponding interior angles of M6.

The incidence matrix of a graph G = (V,E) is the |E| × |V | matrix A(G)
in which entry Ak,� is 1 if vertex v� ∈ V is incident to edge ek ∈ E, and
0 otherwise. Hence we may study the properties of M via the incidence
matrix of its dual.

2. Each interior edge e of the meshM corresponds to an entry of �β containing
the interior angle of the faces meeting at e. Because each interior edge of
the mesh corresponds with an edge of the dual, the interior angles of the
mesh M can be viewed as labels or weights on the (undirected) edges of
DM . In this way, the combinatorial and geometric information we require
from M is stored in its edge-labeled dual graph DM . See Figure 8 for a
simple example. A solution to (3) can be interpreted as an assignment of
an angle θi to each vertex vi of the dual graph.

3. Unless the dual graph is a tree (a connected graph containing no cycles) or
a connected map-graph (a connected graph containing exactly one cycle),
the matrix A will have more rows than columns, and (3) is therefore an
over-constrained system of equations. In other words, no solution to the
linear system should be expected to exist in general. We shall see in the
Section 4.5 exactly when a solution does exist.

4. Even if a solution to (3) does exist, it need not be a positive solution.
That is, it may contain a combination of positive and negative offset rates
(i.e. faces moving both inside and outside the mesh), which we assume
to be undesirable in an architectural context. A question of interest is
to determine under what conditions we can guarantee a solution with all
positive rates.

Figure 8. A six-valent ‘fully-clothed’ vertex mesh M6 (a) and its hexagonal dual graph (b) with vertices corresponding to 
the faces of M6 and edges labeled by the corresponding interior angles of M6 .
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To summarise, a mesh M is a FEO mesh if and only if there exists θ
→

 ∈ ℝ| F | sat-
isfying Aθ

→
 = β

→
 . If such a solution exists, we recover the vector d

→
 of offset rates 

on the mesh by di = sin(θi ), for each face Fi ∈ F(M).

4.2 Graph Theory Notation
Several immediate observations about FEO meshes are available from the prob-
lem set up. We first introduce some notation and vocabulary from graph theory 
(see e.g. Diestel 2010 or West 2001). Let M = (V (M), F(M)) be a polygon mesh. The dual 
graph of M is the graph DM = (V (D), E(D)) formed from M by introducing a ver-
tex vi in V (D) for every face of M. Two vertices vi , vj of DM are connected by an 
edge if the corresponding faces Fi , Fj are both incident to the same edge. For 
an open mesh M, the edges E(D) of the dual D will be in one-to-one correspon-
dence with the interior (non-boundary) edges of M, and the vertices V (D) will be 
in one-to-one correspondence with the faces of M. Two vertices of a graph are 
adjacent if they are connected by an edge. A cycle is a graph with an equal num-
ber of vertices and edges, whose vertices can be placed around a circle so that 
vertices appear consecutively around the circle if and only if they are adjacent.

4.3 Observations about FEO Meshes
We observe:

1. The matrix A is the incidence matrix of the dual graph DM of the mesh M. The 
rows of A are indexed by the interior edges of M, which correspond exactly 
to the edges E(D) of the dual DM . The columns of A are indexed by the faces 
of M, which correspond to the vertices V (D) of the dual. The incidence ma-
trix of a graph G = (V, E) is the | E | × | V | matrix A(G) in which entry Ak,𝓁 is 1 if 
vertex v𝓁 ∈ V is incident to edge ek ∈ E, and 0 otherwise. Hence we may study 
the properties of M via the incidence matrix of its dual.

2. Each interior edge e of the mesh M corresponds to an entry of β
→

 containing 
the interior angle of the faces meeting at e. Because each interior edge of the 
mesh corresponds with an edge of the dual, the interior angles of the mesh 
M can be viewed as labels or weights on the (undirected) edges of DM . In 
this way, the combinatorial and geometric information we require from M is 
stored in its edge-labeled dual graph DM . See Figure 8 for a simple example. A 
solution to (3) can be interpreted as an assignment of an angle θi to each ver-
tex vi of the dual graph.

3. Unless the dual graph is a tree (a connected graph containing no cycles) or a 
connected map-graph (a connected graph containing exactly one cycle), the 
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matrix A will have more rows than columns and (3) is therefore an over-con-
strained system of equations. In other words, no solution to the linear system 
should be expected to exist in general. We shall see in the Section 4.5 exactly 
when a solution does exist.

4. Even if a solution to (3) does exist, it need not be a positive solution. That is, 
it may contain a combination of positive and negative offset rates (i.e. faces 
moving both inside and outside the mesh), which we assume to be undesir-
able in an architectural context. A question of interest is to determine under 
what conditions we can guarantee a solution with all positive rates.

4.4 Small Examples
The meshes consisting of a single ‘fully-clothed’ vertex form an interesting 
class of examples. Consider a mesh M5 with one central vertex, and five inci-
dent faces. Similarly, let M6 be the mesh consisting of one central vertex and 
six incident faces (see Fig. 8a). The dual graphs corresponding to these meshes are 
a pentagon and hexagon respectively (see Fig. 8b). The augmented matrices for the 
linear system (3) are:

4.4 Small examples

The meshes consisting of a single “fully-clothed” vertices form an interesting
class of examples. Consider a mesh M5 with one central vertex, and five incident
faces. Similarly, let M6 be the mesh consisting of one central vertex and six
incident faces (see Figure 8(a)). The dual graphs corresponding to these meshes
are a pentagon and hexagon respectively (8(b)). The augmented matrices for
the linear system (3) are:




1 1 0 0 0 β0,1

0 1 1 0 0 β1,2

0 0 1 1 0 β2,3

0 0 0 1 1 β3,4

1 0 0 0 1 β4,0




and




1 1 0 0 0 0 β0,1

0 1 1 0 0 0 β1,2

0 0 1 1 0 0 β2,3

0 0 0 1 1 0 β3,4

0 0 0 0 1 1 β4,5

1 0 0 0 0 1 β5,0



.

Row reduction to row-reduced echelon form already hints at some subtlety
present in the problem. The incidence matrix A5 of the 5-cycle row-reduces
to the identity matrix I5, which yields an exact solution to the system (3). In
other words, for any combination of interior angles, a set of rates determining
an edge offset always exists, and hence M5 is always an FEO mesh.

On the other hand, row reduction of the matrix A6 produces a dependent
row. Therefore, for a solution to (3) to exist, we have additional conditions on
�β to ensure that it is in the column space of A6. The row operations on the
vector �β yield the following condition on the adjusted interior angles:

β0,1 − β1,2 + β2,3 − β3,4 + β4,5 − β5,0 = 0.

In fact, this is true more generally for a vertex mesh Mn with a single central
vertex of valence n: if n is odd, Mn will always be an FEO mesh. If n is even,
then Mn will be an FEO mesh if and only if it satisfies the alternating angle
condition:

n−1∑
k=0

(−1)kβk = 0, (4)

where βk are the adjusted interior angles defined in (2) taken in cyclic order
around the central vertex of Mn.
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In fact, this is true more generally for a vertex mesh Mn with a single central ver-
tex of valence n: if n is odd, Mn will always be an FEO mesh. If n is even, then 
Mn will be an FEO mesh if and only if it satisfies the alternating angle condition:

(4)

, which yields an exact solution to the system (3). In
other words, for any combination of interior angles, a set of rates determining
an edge offset always exists, and hence M5 is always an FEO mesh.
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n−1∑
k=0

(−1)kβk = 0, (4)

where are the adjusted interior angles defined in (2) taken in cyclic order
around the central vertex of Mn.

3

4.5 Main result

The examples of the previous section highlight the fact that the properties of
the underlying dual graph of the mesh play a role in determining the solution to
the system (3). Before stating our main result, we first add to our vocabulary
of graph theory terminology. A graph G = (V,E) is bipartite if its vertices

= 4, this is equivalent to the condition found for conical mesh vertices in Wang,
Wallner, and Liu 2007. For n > 4, a mesh vertex is not guaranteed to be conical even when
it satisfies the alternating angle condition.

13

where βk are the adjusted interior angles defined in (2) taken in cyclic order around 
the central vertex of Mn .3

4.5 Main Result
The examples of the previous section highlight the fact that the properties of 
the underlying dual graph of the mesh play a role in determining the solution to 
the system (3). Before stating our main result, we first add to our vocabulary of 
graph theory terminology. A graph G = (V, E) is bipartite if its vertices can be par-
titioned into two sets, such that a vertex in one set is connected only to vertices 
of the other set. We can think of this as a colouring of the vertices of the graph 
into two colours, so that no two adjacent vertices have the same colour. It is not 
hard to see that no odd cycle (e.g. a triangle) is bipartite, but every even cycle is 
bipartite. In fact, the absence of odd cycles characterises bipartite graphs. Ex-
amples of meshes with bipartite duals are the planar quadrilateral meshes, and 
triangle meshes in which all vertices have even degree. It is straightforward to 
check whether a given graph is bipartite using a breadth-first search. We say a 
mesh is simply-connected if it does not have any holes.

Let M be a simply-connected mesh with a bipartite dual graph DM . Then M is an 
FEO mesh if and only if the alternating angle condition is satisfied at every inte-
rior vertex of M.

Theorem 4.1

Before we prove this result, we require a few additional ideas from algebraic graph 
theory, which are adapted from the work of Grossman, Kulkarni, and Schochetman 
(1994). Let G = (V, E) be a graph. A circulation f on E is a real-valued function on the 
edge set of G such that, for each vertex v, the sum of f (e) taken over all edges 
incident to v is zero. In particular, we may define the circulation fC induced by a 
cycle C = {ej 0 , ej 1 , . . . , ej r } to be
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Before we prove this result, we require a few additional ideas from algebraic
graph theory, which are adapted from the work of Grossman, Kulkarni, and
Schochetman 1994. Let G = (V,E) be a graph. A circulation f on E is a
real-valued function on the edge set of G such that, for each vertex v, the sum
of f(e) taken over all edges incident to v is zero. In particular, we may define
the circulation fC induced by a cycle C = {ej0 , ej1 , . . . , ejr} to be

f(e) =




0 e /∈ C,

1 if e appears in C as ejk , k odd,

−1 if e appears in C as ejk , k even.

It is not hard to show that the set of all circulations on a graph is a vector space,
and we call this the circulant space, denoted by C0. We summarize some useful
facts about this vector space in the following statement, although it should be
noted that the original statements in Grossman, Kulkarni, and Schochetman
1994 are far more general (see also Remark 4.3 in this paper).

Theorem 4.2 ((Grossman, Kulkarni, and Schochetman 1994), Theorems 4.1
and 5.5). For a graph G, the circulant space C0 is equal to the nullspace of the
transpose of the incidence matrix of G. If G is bipartite, then a basis for C0 is
induced by a basis of the cycle space of G (which, because G is bipartite, consists
exclusively of even cycles).

We are now able to prove our main result.

Proof of Theorem 4.1. Let M be a mesh with bipartite dual DM . If M is an
FEO mesh, then a solution �θ exists for the linear system A�θ = �β (3) where A

is the incidence matrix of DM and �β is the vector of adjusted interior angles
of the mesh M . Then �β is in the column space of A. The column space of A
is the orthogonal complement of the null space of AT (see e.g. Strang 2009).

Therefore �β is orthogonal to every basis vector of ker(AT ). By Theorem 4.2,
ker(AT ) is the circulant space C0 of DM , which has a basis induced by the even
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→
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→

 (3), where A is the incidence matrix of DM 
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→
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→
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column space of A. The column space of A is the orthogonal complement of the 
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→
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of ker (AT ). By Theorem 4.2, ker (AT ) is the circulant space C0 of DM , which has a 
basis induced by the even cycle space of DM . Because DM is bipartite, the even 
cycle space is equivalent to the cycle space of DM . Because DM is the dual of a 
simply-connected mesh, it is planar. Therefore, a basis for the cycle space of DM 
is provided by the facial cycles around vertices (see e.g. Diestel 2010, 101). The circula-
tion induced by a facial cycle is equivalent to the alternating angle condition at 
that interior vertex. The vector β

→
 of interior angles is orthogonal to a basis vec-

tor of C0 if and only if the alternating angle condition is satisfied at every interior 
vertex. The argument reverse for the converse.

Remark 4.3
Extensions for the non-bipartite case and the case of meshes that are not sim-
ply connected are easily available using the results of Grossman, Kulkarni, and 
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Schochetman (1994): In the case of a mesh with dual graph that is not bipartite, 
a basis for the circulant space C0 is generated by the even cycles and bow-ties, 
which consist of two odd cycles joined by a path. In the case of a mesh that is 
not simply connected (i.e. it has holes), the circulant space can no longer be said 
to be generated by the facial cycles around vertices, but there is an equivalent 
condition on the even cycles and bow-ties. In these broader settings Theorem 4.1 
can be adapted to characterise FEO meshes using the same basic proof. In all 
cases, the characterisation of FEO meshes depends on an analysis of the even 
cycle space. Furthermore, the even cycle space of a graph G can be identified 
using a greedy algorithm, due to the underlying matroidal structure of this space 
(Grossman, Kulkarni, & Schochetman 1994, 295–296).

It is known that the rank of the incidence matrix of a connected bipartite 
graph is (|V | − 1) (Grossman, Kulkarni, & Schochetman 1994). That is, the columns of the in-
cidence matrix of a bipartite graph are always dependent. This implies that, for 
meshes with a bipartite dual, the system of equations (3) has either no solutions 
or it has a one-parameter family of solutions. Provided a solution does exist, the 
following lemma provides us with a method for traversing the solution space of (3).

Let M be a simply-connected mesh, with bipartite dual graph DM . Suppose θ
→

 is 
a solution to (3), and let γ ∈ (0, 2π). Let θ

→
' be the vector generated from θ

→
 by add-

ing γ to the entries corresponding to the vertices v ∈ V (D) of one partition and 
subtracting γ to the entries corresponding to the vertices of the other partition. 
Then θ

→
' is also a solution to (3).

Lemma 4.4

Proof.
The row of the matrix A of (3) corresponding to the edge ei, j = (vi , vj ) is:

. Because DM is bipartite, the even cycle space is equivalent
to the cycle space of DM . Because DM is the dual of a simply-connected mesh,
it is planar. Therefore, a basis for the cycle space ofDM is provided by the facial
cycles around vertices (see e.g. Diestel 2010, 101). The circulation induced by
a facial cycle is equivalent to the alternating angle condition at that interior
vertex. The vector �β of interior angles is orthogonal to a basis vector of C0 if
and only if the alternating angle condition is satisfied at every interior vertex.
The argument reverse for the converse.

Extensions for the non-bipartite case, and the case of meshes that
are not simply connected are easily available using the results of Grossman,
Kulkarni, and Schochetman 1994: In the case of a mesh with dual graph that is
not bipartite, a basis for the circulant space C0 is generated by the even cycles
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mesh that is not simply connected (i.e. it has holes), the circulant space can no
longer be said to be generated by the facial cycles around vertices, but there is an
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of the even cycle space. Furthermore, the even cycle space of a graph G can be
identified using a greedy algorithm, due to the underlying matroidal structure
of this space (Grossman, Kulkarni, and Schochetman 1994, 295–296).

It is known that the rank of the incidence matrix of a connected bipartite
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be a simply-connected mesh, with bipartite dual graph DM .
Suppose is a solution to (3), and let γ ∈ [0, 2π). Let �θ′ be the vector generated

from to the entries corresponding to the vertices v ∈ V (D) of one
partition and subtracting γ to the entries corresponding to the vertices of the
other partition. Then �θ′ is also a solution to (3).

Proof. The row of the matrix A of (3) corresponding to the edge ei,j = (vi, vj)
is:

θi + θj = αij .

are adjacent vertices in DM , they must be in different partitions.
Then

(θi + γ) + (θj − γ) = αij .

From a design perspective, we wish to find the “best” set of rates in this
solution space. In most cases, this will be the set of rates that will minimize the
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From a design perspective, we wish to find the ‘best’ set of rates in this solution 
space. In most cases, this will be the set of rates that will minimise the devia-
tion among the offset distances for the faces of the mesh. If two adjacent faces 
Fi , Fj are offset to the same distance, then θi = θj = αi j /2. Therefore, to find the 
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original v0

evolved v0

(a) Overlapped meshes. The facial cycle around the
evolved vertex v0 satisfies the alternating angle condition.
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10.009
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(hidden)

(b) Perpendicular structure, original mesh

10.000
all perpendiculars

(c) Perpendicular structure, evolved mesh

Figure 10: An original mesh vertex is moved to satisfy the alternate angle
condition (a). The perpendicular structures of the original mesh and the evolved
mesh are shown in (b) and (c).

Figure 10. An original mesh vertex is moved to satisfy the alternate angle condition (a). The perpendicular structures of 
the original mesh and the evolved mesh are shown in (b) and (c).
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set of face offset rates which most closely emulate this, we find γ such that the 
adjusted angle vector θ' minimises the sum

Figure 9: Schematic representation of the original mesh in Figure 1. The red
edges form a spanning tree in the dual graph. Note that the red edges cross over
every ‘vertical’ line of the mesh, indicated by the arrows. In this way, we can
guarantee that the principal members of the perpendicular structure on these
‘vertical beams’ have a uniform height.

deviation among the offset distances for the faces of the mesh. If two adjacent
faces are offset to the same distance, then θi = θj = αij/2. Therefore, to
find the set of face offset rates which most closely emulate this, we find γ such
that the adjusted angle vector θ′ minimizes the sum

∑
α

|αij/2− θ′i|.

5 Designing with variable rate face offsetting

In this section we consider several additional ways of designing using variable
rate face offsetting beyond those outlined in Section 3. In particular, we consider
two ways of working with FEO meshes, one which works on any mesh, and one
which involves moving an original design toward an optimal solution.

5.1 Specifying a spanning tree of uniform edge offsets

F (M)| faces, we can always ensure that |F (M)| − 1 edges
of the mesh have a uniform edge offset. In particular, we are free to chose a
spanning tree (or spanning forest) in the dual mesh that captures the edges of
interest (Figure 9). A spanning tree is a subgraph T ⊂ DM that contains no
cycles and satisfies V (T ) = V (DM ). We then record only the edges of interest in
(3), and solve to find the appropriate offset rates. In this way we could specify
lines of ‘beams’ to offset with uniform edge distance, as indicated in Figure 9.
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In this section we consider several additional ways of designing using variable 
rate face offsetting beyond those outlined in Section 3. In particular, we consider 
two ways of working with FEO meshes, one which works on any mesh, and one 
which involves moving an original design toward an optimal solution.

5.1 Specifying a Spanning Tree  
of Uniform Edge Offsets

For any mesh with | F(M) | faces, we can always ensure that | F(M) | − 1 edges 
of the mesh have a uniform edge offset. In particular, we are free to choose a 
spanning tree (or spanning forest) in the dual mesh that captures the edges of 
interest (Fig. 9). A spanning tree is a subgraph T ⊂ DM that contains no cycles and 
satisfies V (T) =  V (DM ). We then record only the edges of interest in (3), and solve 
to find the appropriate offset rates. In this way we could specify lines of ‘beams’ 
to offset with uniform edge distance, as indicated in Figure 9.

5.2 Evolving the Mesh Toward an FEO Mesh
A second way to design with FEO meshes is to evolve an original design toward 
an FEO mesh. This work is still in a preliminary state, but our initial explorations 
indicate that the alternating angle condition is quite forgiving, and that a wide 
range of geometries satisfying this condition are possible.

To illustrate the general idea, consider a small example mesh M = M6 , a single 
‘fully-clothed’ vertex v0 with six incident faces, as in Section 4.4. The dual graph 
is bipartite, consisting of a single hexagon cycle, and therefore by Theorem 4.1 
this is an FEO mesh if and only if the alternating angle condition is satisfied on 
the facial cycle corresponding to the single interior vertex v0 of M.

To find the closest FEO mesh, we fix the positions of the neighbouring verti-
ces, and use gradient descent on the position of v0 to evolve the mesh M toward 
a new mesh M' satisfying the alternating angle condition. The resulting mesh is 
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overlaid on the original mesh in Figure 10a. Note that this movement is ‘small’ in 
the sense that the basic geometric shape (which is hyperbolic) of the underlying 
mesh at that vertex is preserved.

The solution θ
→

 to the linear system corresponding to M' is a one-parameter 
family, and using Lemma 4.4 we add a correction vector to the solution to find 
a new solution θ

→
' of angles such that 0 ≤ θi' < π. We recover the offset rates by 

taking the sine of the vector θ
→
' , and finally offset the mesh using these rates4. 

The perpendicular structures of the original mesh and the evolved versions are 
shown in Figure 10b and 10c.

In a more complex example, such as an architectural shell, the neighbouring 
vertices would not be fixed, but rather would be moving according to their own 
angle optimisations. In this sense, the optimisation becomes highly nonlinear. It 
is possible to use the gradient descent method mentioned above on any input 
mesh. However, the result may not satisfy the same design criteria as the original. 
Therefore, a more holistic approach to the optimisation would incorporate other 
constraints, for example, edge length, approximate position, equal area mesh 
faces, planarity for non-triangular faces, etc. The development of a full-featured 
optimisation tool with design-based constraints is a topic for further research.

6. Conclusion and Further Work
Exact face offsetting with variable rates is a tool which offers a wide range of de-
sign possibilities, as illustrated through the examples in Section 3. Through the 
additional theory of FEO meshes, Section 5 offers several more techniques for 
ensuring that a mesh is not only a face offset, but is also a uniform edge offset 
on its principal members.

The work on FEO meshes remains in a preliminary state, and there are sev-
eral questions of interest to address. Specifically, under what conditions can we 
guarantee that a solution to the linear system (3) corresponds to a positive set of 
offset rates? Based on our explorations, we conjecture that the answer may be 
‘always’ or ‘almost always’, at least in the cases of primary interest in an archi-
tectural setting. A second task is to determine the best methods for optimising 
an original mesh toward a similar mesh that is an FEO mesh.

A common theme throughout research on offsets is the requirement of design 
trade-offs. Whether it is a restriction of the input geometry (Pottmann & Wallner 2008; 

Pottmann et al. 2007; Wang & Liu 2010), increased support structures to cover undesirable 
node collisions (Sevtsuk & Kalvo 2015) or the emergence of facelets as in the present 
work, all methods have their limitations. In turn this highlights the fact that the 
characterisation of the space of ‘constructible’ doubly- curved discrete surfaces 
is still an open problem. The offsetting techniques in the current paper provide 
the designer with the unmodified implications of their surface with respect to 
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material thickness, support structure, and node resolution. From this data, it is 
then possible to proceed with project specific processing, such as input surface 
optimisation, complex node design, or other techniques, thereby adding to the 
scope of the design freedoms available to the architectural design team.

Endnotes
1. Provided that this offset edge e' exists. One of the main ideas in our previous paper (Ross & Hambleton 2015) is the notion of global combi-

natorial change under offsetting. Specifically, after a sufficiently large offset step, some edges may shrink to a vertex, and faces may split 
into two or vanish completely. For the consideration of the perpendicular structure in the present paper, we assume no such global combi-
natorial change has occurred.

2. Thanks to Al Fisher for this name.
3. When n = 4, this is equivalent to the condition found for conical mesh vertices in Wang, Wallner, and Liu 2007. For n > 4, a mesh vertex is not 

guaranteed to be conical even when it satisfies the alternating angle condition.

4. d
→

 = (0:883; 0:753; 0:896; 0:905; 0:925; 0:987)
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Abstract
This paper introduces an intuitive method for the modelling of free-form architec-
ture with planar facets. The method, called Marionette by the authors, takes its 
inspiration from descriptive geometry and allows one to design complex shapes 
with one projection and the control of elevation curves. The proposed framework 
only deals with linear equations and therefore achieves exact planarity, for quad-
rilateral, Kagome, and dual Kagome meshes in real-time. Remarks on how this 
framework relates to continuous shape parameterisation and on possible appli-
cations to engineering problems are made.

Keywords: 
structural morphology, descriptive geometry, fabrication-aware design

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



64

with a plane view, displayed with some elevations. The curve network corresponds to the

horizontal projection of lines of curvature (Leroy, 1857).

Figure 1: Lines of curvatures of an ellipsoid with descriptive geometry (Leroy, 1857).

Because architectural objects have to deal mainly with gravity and vertical forces, it

makes naturally sense to separate projections in vertical and horizontal planes. The idea to

use these projections to guide structural design was used recently in the framework of the

Thrust Network Analysis where compression-only structures are found from a planar network

at equilibrium (Rippmann et al., 2012; Miki et al., 2015). The objective of this paper is to

show that descriptive geometry can be turned into a general tool for the design of PQ meshes

and their structural optimisation. The method, called Marionette method is presented in

Section 2, where the relation between smooth and discrete geometry for PQ-meshes. Section

3 explores then some applications in architecture. Section 4 shows finally the generality of

the proposed method, which can be extended to meshes other than the regular quadrilateral

meshes and therefore constitute a promising versatile tool to integrate intuitively fabrication

constraints into architectural design.

3

Figure 1. Lines of curvatures of an ellipsoid with descriptive geometry (Leroy 1857). 
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1. Introduction
The design of complex architectural shapes has benefited from great advances 
within the computer graphics community in the last decade. For instance, sig-
nificant efforts were made to develop numerical methods for the covering of 
free-form surfaces with planar panels. These methods differ from the common 
knowledge of architects and engineers, making them hard use for non-specialists 
to use. The technique proposed in the present article aims thus at bridging this 
gap with a method that takes inspiration from descriptive geometry, a tool used 
by architects for centuries, and turns it into a real-time design tool for PQ-meshes.

1.1 Prior Works
Geometrically-Constrained Approach
Planar quadrilaterals have been identified by practicians as an important optimi-
sation target for the construction of double-curved surfaces, as they avoid using 
curved panels (Glymph et al. 2004). Previous research identified the need for integra-
tion of geometrical constraints within the design tools themselves and proposed 
methods for shape generation of PQ-meshes (Schmiedhofer 2010). Several techniques 
for generating exact planar quadrilateral meshes were proposed, mostly rely-
ing on affine transformations, which preserve planarity, a notion illustrated in 
Pottmann et al. (2007). For example, scale-trans surfaces, introduced in Glymph et 
al. (2004) use composition of two affine transformations: translation and homo-
thetic transformations. The designer control the shape with two curves, making 
the process highly intuitive. Despite formal limitations, these shapes have been 
used in many projects.

Constrained geometric approaches use shapes that are well known and 
can be rationalised efficiently, for example, towards a high repetition of nodes 
or panels (Mesnil et al. 2015). They suffer however from a lack of flexibility and form a 
restricted design space. This led to the introduction of post-rationalisation strat-
egies in order to cover arbitrary shapes with planar quadrilaterals (Liu et al. 2006).

Optimisation-Based Shape Exploration
Most recent methods propose hence to explore design space of feasible solu-
tions for a given mesh topology with the help of optimisation techniques (Deng et 

al. 2015; Yang et al. 2011). The mesh is interactively deformed by the user with the help 
of control handles. The overall smoothness is checked with discrete functions 
of the vertices. To go further, an efficient solver handling quadratic constraints 
was presented in Tang et al. (2014) and used in Jiang et al. (2014). Projections and 
subspace exploration are efficiently used for constrained-based optimisation in 
Bouaziz et al. (2012), Deng et al. (2013, 2015). These methods provide great design 
freedom, but illustrations shown in the cited references are local deformations 
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of meshes. Design space exploration with exact PQ-meshes was also proposed 
by composition of compatible affine maps assigned to each mesh face and al-
lowed for handle-driven shape exploration (Vaxman 2012). This strategy was extend-
ed to other maps that preserve facet planarity by construction in Vaxman (2014).

The idea of this paper is to use the notion of projection, which is commonly 
used in architecture, especially with plane view and elevations, and to link sub-
space exploration techniques with representation techniques based on projec-
tions in architecture.

Descriptive Geometry
Descriptive geometry is a technique of shape representation invented by the 
French mathematician Gaspard Monge (Monge 1798; Javary, 1881). It is based on planar 
orthogonal projections of a solid. The planes in which the projections are done 
are usually the horizontal and vertical planes. Figure 1 is a typical drawing of de-
scriptive geometry: It describes an ellipsoid with a plane view, displayed with 
some elevations. The curve network corresponds to the horizontal projection of 
lines of curvature (Leroy 1857).

Because architectural objects have to deal mainly with gravity and vertical 
forces, it makes naturally sense to separate projections in vertical and horizontal 
planes. The idea to use these projections to guide structural design was used re-
cently in the framework of the thrust network analysis, where compression-only 
structures are found from a planar network at equilibrium (Rippmann et al. 2012; Miki et 

al. 2015). The objective of this paper is to show that descriptive geometry can be 
turned into a general tool for the design of PQ meshes and their structural opti-
misation. The method, called the Marionette method, is presented in Section 2, 
where the relationship between smooth and discrete geometry for PQ-meshes 
is explained. Section 3 explores then some applications in architecture. Section 4 
shows finally the generality of the proposed method, which can be extended to 
meshes other than the regular quadrilateral meshes and therefore constitute a 
promising versatile tool to integrate intuitively fabrication constraints into archi-
tectural design.
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2. Marionette Meshes
2.1 Marionette Quad

The principles of descriptive geometry can be transposed to architectural shape 
modelling. The use of appropriate projections provides a simple interpretation of 
the problem of meshing with flat quadrilaterals. For simplification, we discuss 
the case of a projection in the (X Y ) plane in this section; the generalisation to 
other projections is illustrated in Section 4.

Consider first Figure 2: four points have a prescribed plane view A B C D in the 
horizontal plane (P1). Three points A', B', and D' have prescribed altitudes zA , zB , 
and zD . In general, there is only one point C' with the imposed projection C so 
that A', B', C', D' is planar.

The planarity constraint reads:

The principles of descriptive geometry can be transposed to architectural shape modelling.
The use of appropriate projections provides a simple interpretation of the problem of meshing
with flat quadrilaterals. For simplification, we discuss the case of a projection in the (XY )
plane in this section: the generalisation to other projections is illustrated in Section 4.

Consider first Figure 2: four points have a prescribed plane viewABCD in the horizontal
plane ( ). Three points A′, B′ and D′ have prescribed altitudes zA, zB and zD. In general,
there is only one point C′ with the imposed projection C so that A′B′C′D′ is planar.
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Figure 2: Creation of a Marionette Quad with a plane view and two elevations.

The planarity constraint reads:

det (A′B′,A′C′,A′D′) = 0 (1)

Expressing coordinates in a cartesian frame of (P1), and writing dBC = det (AB,AC),
) and dDC = det (AD,AC), if the points A, B and D are not aligned,

then, one gets:

( − zA) =

(
dBC

dBD

)
· (zD − zA) +

(
dDC

dBD

)
· (zB − zA) (2)

Figure shows vertical lines used for construction, recalling the strings of a marionette,
which gives the name marionette quad. Note that the system is under-constrained if the
points are aligned, which corresponds to vertical a quad. A projection in the
horizontal plane thus allows only for the modelling of height fields. This limitation can be
overcome by using other projections, (see Section 4).

2.2 Regular Marionette Meshes

Consider now a quadrangular mesh without singularity as depicted in Figure 3. The plane
view in the horizontal plane is fixed, and the altitude of two intersecting curves is prescribed.

4

(1)

Expressing coordinates in a cartesian frame of (P1), and writing dBC = det (AB, 
AC), dBD = det (AB, AD) and dDC = det (AD, AC), if the points A, B, and D are not 
aligned, then, one gets:

The principles of descriptive geometry can be transposed to architectural shape modelling.
The use of appropriate projections provides a simple interpretation of the problem of meshing
with flat quadrilaterals. For simplification, we discuss the case of a projection in the (XY )
plane in this section: the generalisation to other projections is illustrated in Section 4.

Consider first Figure 2: four points have a prescribed plane viewABCD in the horizontal
plane ( ). Three points A′, B′ and D′ have prescribed altitudes zA, zB and zD. In general,
there is only one point C′ with the imposed projection C so that A′B′C′D′ is planar.
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Figure 2: Creation of a Marionette Quad with a plane view and two elevations.

The planarity constraint reads:

det (A′B′,A′C′,A′D′) = 0 (1)

Expressing coordinates in a cartesian frame of (P1), and writing dBC = det (AB,AC),
det (AB,AD) and dDC = det (AD,AC), if the points A, B and D are not aligned,

then, one gets:

(zC − zA) =

(
dBC

dBD

)
· (zD − zA) +

(
dDC

dBD

)
· (zB − zA) (2)

Figure 2 shows vertical lines used for construction, recalling the strings of a marionette,
which gives the name marionette quad. Note that the system is under-constrained if the
points B and D are aligned, which corresponds to vertical a quad. A projection in the
horizontal plane thus allows only for the modelling of height fields. This limitation can be
overcome by using other projections, (see Section 4).

2.2 Regular Marionette Meshes

Consider now a quadrangular mesh without singularity as depicted in Figure 3. The plane
view in the horizontal plane is fixed, and the altitude of two intersecting curves is prescribed.

4

(2)

Figure 2 shows vertical lines used for construction, recalling the strings of a mar-
ionette, which gives the name marionette quad. Note that the system is under- 
constrained if the points A, B, and D are aligned, which corresponds to vertical a 
quad. A projection in the horizontal plane thus allows only for the modelling of height 
fields. This limitation can be overcome by using other projections (see Section 4).

2.2 Regular Marionette Meshes
Consider now a quadrangular mesh without singularity as depicted in Figure 3. The 
plane view in the horizontal plane is fixed, and the altitude of two intersecting 
curves is prescribed. Then, provided that the planar view admits no ’flat’ quad 
(i.e. quad where three points are aligned), equation (2) can be propagated through 
a strip, and by there through the whole mesh. Indeed, on the highlighted strip 
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Figure 2. Creation of a Marionette Quad with a plane view and two elevations.
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Figure 3. Two elevations and a planar view define a unique Marionette Mesh.
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of Figure 3, the first quad (top left) has three prescribed altitudes, and equation (2) 
can be used. The same applies for all the quads of the strip.

For a N × M mesh, the propagation requires N M applications of equation (2), 
the memory is 3N M. The marionette technique guarantees hence that the num-
ber of operations varies linearly with the number of nodes within a structure. The 
method performs thus in real time even for meshes with thousands of nodes, 
as discussed in Section 3.1.

2.3 Link with Smooth Geometry
The proposed method has some interesting relations with smooth geometry. 
The problem of covering curved shapes with planar panels is linked with the in-
tegration of conjugate curves networks (Liu et al. 2006; Bobenko & Suris 2008). Conjugate net-
works correspond to parameterisations (u, v) satisfying the following equation 
(Bobenko & Suris 2008):

P1P2

Figure 3: Two elevations and a planar view define a unique Marionette Mesh.

For a mesh, the propagation requiresNM applications of equation (2), the memory
is 3 . The marionette technique guarantees hence that the number of operations varies
linearly with the number of nodes within a structure. The method performs thus in real
time even for meshes with thousands of nodes, as discussed in Section 3.1.

2.3 Link with smooth geometry

The proposed method has some interesting relations with smooth geometry. The problem of
covering curved shapes with planar panels is linked with the integration of conjugate curves
networks (Liu et al., 2006; Bobenko and Suris, 2008). Conjugate networks correspond to
parameterisations ( ) satisfying the following equation (Bobenko and Suris, 2008):

det
(
∂uf , ∂vf , ∂

2
uvf

)
= 0 (3)

Consider now that the components in x and y are fixed, like in the problem solved by the
Marionette technique. We are looking for the height functions f z satisfying equation 3.
Adopting the notation fu to denote differentiation of f with respect to u, equation (3) is
reformulated into:

det



fx
u fx

v fx
uv

f y
u f y

v f y
uv

f z
u f z

v f z
uv


 = 0 (4)

Equation ( ) is defined if the parameterisation in the plane (XY ) is regular, which means
if the study is restricted to height fields. An expansion of the determinant shows that the
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Consider now that the components in x and y are fixed, as in the problem solved 
by the Marionette technique. We are looking for the height functions f z satisfying 
equation 3. Adopting the notation fu to denote differentiation of f  with respect to 
u, equation (3) is reformulated into:
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Figure 3: Two elevations and a planar view define a unique Marionette Mesh.

For a mesh, the propagation requiresNM applications of equation (2), the memory
is 3 . The marionette technique guarantees hence that the number of operations varies
linearly with the number of nodes within a structure. The method performs thus in real
time even for meshes with thousands of nodes, as discussed in Section 3.1.

2.3 Link with smooth geometry

The proposed method has some interesting relations with smooth geometry. The problem of
covering curved shapes with planar panels is linked with the integration of conjugate curves
networks (Liu et al., 2006; Bobenko and Suris, 2008). Conjugate networks correspond to
parameterisations ( ) satisfying the following equation (Bobenko and Suris, 2008):

det
(
∂uf , ∂vf , ∂

2
uvf

)
= 0 (3)

Consider now that the components in x and y are fixed, like in the problem solved by the
Marionette technique. We are looking for the height functions f z satisfying equation 3.
Adopting the notation fu to denote differentiation of f with respect to u, equation (3) is
reformulated into:

det



fx
u fx

v fx
uv

f y
u f y

v f y
uv

f z
u f z

v f z
uv


 = 0 (4)

Equation ( ) is defined if the parameterisation in the plane (XY ) is regular, which means
if the study is restricted to height fields. An expansion of the determinant shows that the

5

(4)

Equation (4) is defined if the parameterisation in the plane (X Y ) is regular, which 
means if the study is restricted to height fields. An expansion of the determinant 
shows that the equation is a second-order linear equation in f z (u, v). The only 
term of second order is f zu v : the equation is thus hyperbolic.

Hyperbolic equations often correspond to the propagation of information 
in a system (think of the wave equation). It is thus no surprise that the mari-
onette method corresponds to a propagation algorithm. Loosely speaking, it 
can be shown that solutions of hyperbolic equations retain discontinuities of 
initial conditions. The smoothness of the shape obtained by the marionette 
method is thus dependent on the smoothness of the input data (plane view 
and elevation curves).
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has
one singularity: the central node has a valence of six. The mesh can be subdivided into
six patches with no inner singularity (in blue and white). This kind of procedure can be
applied to any quad-mesh. Each patch is a regular mesh, and the Marionette technique
can be applied. There are however restrictions on the curves used as guide curves due to
compatibility between patches. For example, in Figure 4a, it is clear that the six curves
attached to the singularity can be used as guides for the six patches, whereas choosing the
12 curves on the perimeter over-constrain the problem.

P1

P2

(a) Decomposition of a complex mesh into
simple patches.

(b) The corresponding lifted mesh

Figure 4: A Marionette Mesh with a singularity.

For an arbitrary quad-mesh, it is possible to compute the number of guide curves that
can be used to generate a Marionette Mesh. The mesh can be decomposed into simple quad
domains without any singularity, for example by using the methods described in Tarini et al.
(2011) or Takayama et al. (2013). For example, Figure 4a has six domains, the mesh in Figure
5a has nine domains. These domains are four sided, and it is possible to extract independent
families of strip-domains, like displayed in Figure 5. Depending on the n-colorability of the
mesh, the number of families varies. The example showed is two-colorable. As a result, two

6

Figure 4. A Marionette Mesh with a singularity.

families of strips can be found and are shown in Figure 5b and 5c. Exactly one curve can
be chosen across each strip-domain. Since strips are independent, the height of these nine
curves can be chosen independently and will not over-constrain the problem.

(a) Initial mesh (b) Family of four strip-domains (c) Family of five strip-domains

Figure 5: Decomposition of a mesh into 2 families of strip-domains. Marionette Meshes can
be generated by choosing one guide curve across each strip-domain.

2.5 Closed Marionette Meshes

Closed strips

Marionette Meshes create PQ-meshes by propagation of a planarity constraint along strips.
One can easily figure that if the strip is closed, the problem becomes over-constrained.
Indeed, consider Figure 6: the plane view of a closed strip and the altitude of the points (Pi)
of one polyline are prescribed. If the altitude of the first point used for the propagation P ∗

0 is
chosen, the planarity constraint can be propagated along the strip. The points of the outer
line are therefore imposed by the method, and the designer has no control on them. The last
point P ∗

N is therefore generally different from the initial point P ∗
0 , leading to a geometrical

incompatibility of PQ-meshes.

P0*

PN*

P0=PN

Figure 5. Decomposition of a mesh into 2 families of strip-domains. Marionette Meshes can be generated by choosing 
one guide curve across each strip-domain.

P0*

PN*

P0=PN

Figure 6. Closed Marionette Strip with incompatible closing condition induced by the prescription of the plane view of 
the whole strip (orange) and the altitudes of the inner curve (blue).
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2.4 Marionette Meshes with Singularities

The modelling of complex shapes requires the introduction of vertices with a dif-
ferent valence, called singularities in the following. For example, the mesh dis-
played in Figure 4a has one singularity: the central node has a valence of six. The 
mesh can be subdivided into six patches with no inner singularity (in blue and 
white). This kind of procedure can be applied to any quad mesh. Each patch is a 
regular mesh, and the Marionette technique can be applied. There are, however 
restrictions on the curves used as guide curves due to compatibility between 
patches. For example, in Figure 4a, it is clear that the six curves attached to the 
singularity can be used as guides for the six patches, whereas choosing the 12 
curves on the perimeter over-constrain the problem.

For an arbitrary quad mesh, it is possible to compute the number of guide 
curves that can be used to generate a Marionette Mesh. The mesh can be de-
composed into simple quad domains without any singularity, for example, by 
using the methods described in Tarini et al. (2011) or Takayama et al. (2013). For ex-
ample, Figure 4a has six domains and the mesh in Figure 5a has nine domains. These 
domains are four sided, and it is possible to extract independent families of strip 
domains, like displayed in Figure 5. Depending on the n-colourability of the mesh, 
the number of families varies. The example showed is two-colourable. As a re-
sult, two families of strips can be found and are shown in Figure 5b and 5c. Exactly 
one curve can be chosen across each strip-domain. Since strips are indepen-
dent, the height of these nine curves can be chosen independently and will not 
over-constrain the problem.

2.5 Closed Marionette Meshes
Closed Strips
Marionette Meshes create PQ-meshes by propagation of a planarity constraint 
along strips. One can easily figure that if the strip is closed, the problem be-
comes over-constrained. Indeed, consider Figure 6: The plane view of a closed strip 
and the altitude of the points (Pi ) of one polyline are prescribed. If the altitude 
of the first point used for the propagation P ∗0 is chosen, the planarity constraint 
can be propagated along the strip. The points of the outer line are therefore im-
posed by the method, and the designer has no control on them. The last point 
P ∗0 is therefore generally different from the initial point P ∗0, leading to a geomet-
rical incompatibility of PQ-meshes.

In the following, we develop a strategy to deal with the geometrical com-
patibility of closed strips. The results, however, can then be extended to general 
Marionette Mesh with closed strips. Suppose that the two prescribed curves 
are defined as the inner closed curve and one radial curve (see Figure 6). By propa-
gation of equation (2), we easily see that the altitude of the last point z*

N depends 
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Figure 7. Architectural design with a closed Marionette Mesh, the altitude of the inner curve is prescribed, the designer 
does not have control on the outer curve.

Figure 8. Some shapes with planar faces and a closed mesh generated with the method proposed in this paper.
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linearly on the altitude of the first point z ∗0 and on the altitudes of the points on 
the inner curve Z. It also depends on the in-plane projection of the strip. Formally, 
there exists a vector V and a scalar a, both functions of the plane view so that:

In the following, we develop a strategy to deal with the geometrical compatibility of
closed strips. The results however can then be extended to general Marionette Mesh with
closed strips. Suppose that the two prescribed curves are defined as the inner closed curve
and one radial curve (see Figure 6). By propagation of equation (2), we easily see that the
altitude of the last point ∗

N depends linearly on the altitude of the first point z∗0 and on the
altitudes of the points on the inner curve Z. It also depends on the in-plane projection of
the strip. Formally, there exists a vector V and a scalar a, both functions of the plane view
so that:

V · Z+ a · z∗0 = z∗N (5)

We are interested in the case where z∗0 = z∗N . There are two possibilities:

1. = 1, in this case, the condition restricts to V · Z = 0 and does not depend on z∗0 .
The vector is in the hyperplane of V, which leaves N − 1 degrees of freedom.

2. = 1: there is only one solution for z∗0 . This is the most constrained case: the designer
can only control the inner curve of the strip.

The meshes with one solution are less flexible, but they can still generate interesting shapes,
like the one displayed on Figure 7, which recalls the examples of Figure 6. The designer has
a total control on the altitude of the inner curve and the plane view, but cannot manipulate
freely the outer curve. Note that the strings of the marionette are here materialised as
columns in the rendering, illustrating the geometrical interpretation of the method.

Figure 7: Architectural design with a closed Marionette Mesh, the altitude of the inner curve
is prescribed, the designer does not have control on the outer curve.

The most interesting case occurs when the designer has potentially the control of two
curves. It relies on a condition on the planar view explained above. A simple case where this

8

(5)

We are interested in the case where z ∗0 = z*
N . There are two possibilities:

1. a = 1, in this case, the condition restricts to V · Z = 0 and does not depend 
on z ∗0. The vector z is in the hyperplane of V, which leaves N − 1 degrees of 
freedom.

2. a ≠ 1: there is only one solution for z ∗0. This is the most constrained case: the 
designer can only control the inner curve of the strip.

Closed Meshes
The meshes with one solution are less flexible, but they can still generate inter-
esting shapes, like the one displayed on Figure 7, which recalls the examples of 
Figure 6. The designer has a total control on the altitude of the inner curve and the 
plane view, but cannot manipulate freely the outer curve. Note that the strings 
of the marionette are here materialised as columns in the rendering, illustrating 
the geometrical interpretation of the method.

The most interesting case occurs when the designer has potentially the con-
trol of two curves. This relies on a condition on the planar view explained above. 
A simple case where this condition is fulfilled is when it has a symmetry. In this 
case, there is a N −1 parameters family of solutions for the altitude of the inner 
curve. The elevation of a closed guide curve can be chosen arbitrarily and pro-
jected into the hyperplane of normal V, keeping the notations of equation (5). This 
operation is straightforward and allows one to control the elevation of a second 
curve, like for open meshes. An example of this strategy is displayed in Figure 8, 
where all the meshes have the same planar view.
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Figure 9. A non-smooth mesh with planar facets generated with the Marionette method.

Figure 10. A plane view (thin lines) with a prescribed boundary (thick blue lines).

Figure 11. A result of an optimisation procedure: the shell structure is a Marionette Mesh (top view and prescribed 
curves on the middle) minimising total elastic energy. On the right: red areas indicate compression.
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3. Architectural Design with  
Marionette Meshes

3.1 Computational Set-up

The algorithms described in this paper have been implemented in the visual-scripting 
plug-in GrasshopperTM for the modelling software RhinoTM. This allows inter-
action with other numerical tools necessary for architectural design, like finite- 
element analysis software. An example of interaction between fabrication-aware 
shape generation and structural analysis is shown in Section 3.3.

Marionette Meshes only require the solution of a linear system. The com-
putation time is thus low; typically, it takes 3 ms to lift a mesh of 10,000 faces, 
with no pre-factorisation involved. Real-time computation provides great design 
flexibility, even for large meshes.

In our framework, the planar views are generated with NURBS patches, and 
the elevation curves are drawn as Bézier curves. The smoothness of the final 
mesh depends thus on the smoothness of the in-plane parameterisation. A C 0 
projection yields a C 0 solution to the hyperbolic equation (4), so that shape func-
tions with creases can easily be propagated through the mesh. Figure 9 shows a 
corrugated shape generated from a C 0 planar view and smooth guide curves. 
Such corrugations can be used in folded plate structures, and could extend the 
formal possibilities of methods developed in Robeller et al. (2015).

3.2 Shape Exploration with Marionette Meshes
The framework introduced here intrinsically accounts for the planarity of panels. 
Its mathematical formulation is, however, suited for many architectural constraints. 
Hard constraints must be fulfilled exactly, whereas soft constraints are included 
into the function to minimize (Nocedal & Wright, 2006). Since the planarity constraint is 
linear, soft constraints expressed as linear or quadratic functions can easily be 
included in the objective function. In this case, the optimisation problem will be 
similar to a classical least square problem and can be solved efficiently.

Hard constraints defined by linear equations are treated effectively within the 
proposed framework. Examples of linear constraints are prescribed volume or a 
maximal allowable altitude. The marionette method imposes N M − (N + M − 1) 
out of N M parameters, this means that another N + M − 1 linear constraints can 
be applied without over-constraining the optimisation problem.

Perhaps the most common application of hard constraint in architecture is the 
prescription of a boundary, as depicted in Figure 10. In this figure, the planar view is 
imposed and the user prescribes the altitude of some points of the mesh along a 
curve (white circles). In this case, the number of prescribed points is superior to 
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the number of degrees of freedom, and the problem might be over constrained. 
It might hence be preferable to turn this problem into a soft constrained prob-
lem with a quadratic function to minimize. In the same way, for really complex 
shapes with many singularities or highly constrained boundary, other methods 
will probably be more efficient, more relevant, and maybe more intuitive, like for 
example Jiang et al (2014).

3.3 Case Study: Fabrication-Aware Structural  
Optimisation

The formal possibilities offered by Marionette Meshes are broad enough to offer 
an interesting design space for engineering problems. Among them, structural 
optimisation is a particularly relevant. The quick generation of a parameterised 
design space and the coupling with advanced analysis software seems particu-
larly promising (Preisinger & Heimrath, 2014). Indeed, non-linear criteria, like the buckling 
capacity, are of high importance for practical design of thin shell or grid shells 
(Firl & Bletzinger, 2012).

An illustration of the potential of Marionette Meshes for a structurally in-
formed architectural design is proposed in Figure 11: The shell is a Marionette mesh 
spanning over an ellipse. The plane view is inspired by Figure 1. The mesh is consti-
tuted of six NURBS patches and has two singularities (white dots in the image); 
guide curves are found with the method proposed in this paper. The boundary 
curve is constrained in the horizontal plane (blue curve on Figure 11). One curve 
in the other direction (orange curve in Figure 11) defines the whole elevation of 
the dome. The shell is submitted to gravity load. All the translations at the outer 
boundary are restricted, and rotations at the supports are allowed (hinges). The 
model is computed with Finite Element software Karamba3D™. The shape gen-
eration of a 1000 faces mesh requires less than 1 ms with the Marionette tech-
nique, far less than the assembly and computation of a shell model with FEM.

The structure is optimised towards a minimum of the total elastic energy 
by means of genetic algorithms. The design parameters are the four altitudes 
of the control points controlling the shape of the guide curve. It is noticed that 
tension areas, depicted in blue in Figure 11, are almost non-existent on the inner 
and upper face of the shell. Hence, if defined properly with an accurate number 
of singularities, the design space offered by Marionette Meshes is wide enough 
to find compression-dominant shapes by the means of structural optimisation.
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4. Generalisation of the Method
4.1 General Projections

It appeared that prescribing a horizontal view and applying the propagation 
technique presented here only allows for the modelling of height fields. This is 
a limitation of this method, although height fields surfaces are commonly used 
for roof covering. Other projections can be used for more shape flexibility. The 
planarity constraint for a quad can be extended to the case of non-parallel pro-
jections, like in Figure 12.

Some projections are of practical interest for archetypal projects. Towers and 
facades can be modelled with cylindrical projections. Stadia can be designed 
using projections on torus or on moulding surfaces, the offset directions cor-
responding to the normals of the smooth surface. Moulding surfaces fit natu-
rally the geometry of stadia (see Figure 13a) and have some interesting features, 
discussed in Mesnil et al. (2015) :

• Their natural mesh contains planar curves, which are geodesics of the 
surface: The planarity is preserved by the marionette transformation.

• They are naturally meshed by their lines of curvatures, which gives a 
torsion-free beam layout on the initial surface, and on the final shape.

4.2 Extension to Other Patterns
The method proposed in this paper can be extended to other polyhedral patterns. 
As noticed by Deng et al. (2013), tri-hex meshes (also known as Kagom lattices) 
have the same number of degrees of freedom as quad meshes. There is there-
fore a straight forward way to lift Kagome lattices with the marionette technique. 
Figure 14a shows the guide curves for the Kagome pattern. Other isolated points 
are required to lift the mesh. The altitude of these points can be chosen in or-
der to minimise the fairness energy introduced in Jiang et al. (2014), which is not 
difficult under linear constraints. Figure 14c shows a pattern introduced in Jiang et 

Aʹ

Bʹ

Cʹ

Dʹ

Figure 12. A Marionette quad with non-parallel guide lines.
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(a) Reference moulding surfaces (b) Non-symmetrical design (c) Symmetrical design

Figure 13: Design of stadia obtained from a projection on a moulding surface: the prescribed
curves are the inner ring and a section curve.

4.2 Extension to other patterns

The method proposed in this paper can be extended to other polyhedral patterns. As noticed
by (Deng et al., 2013), tri-hex meshes (also known as Kagom lattices) have the same number
of degrees of freedom as quad meshes. There is therefore a straight forward way to lift
Kagome lattices with the marionette technique. Figure 14a shows the guide curves for the
Kagome pattern. Other isolated points are required to lift the mesh. The altitude of these
points can be chosen in order to minimise the fairness energy introduced in (Jiang et al.,
2014), which is not difficult under linear constraints.. Figure 14c shows a pattern introduced
in (Jiang et al., 2014): the mesh is derived from an hexagonal pattern and three guide curves
can be used to lift the mesh.

(a) Kagome lattice (b) Dual Kagome lattice (c) Hex pattern

Figure 14: Marionette method applied to several patterns, white dots correspond to pre-
scribed altitudes.

For example, Figure 15 shows a Kagome lattice covered with planar facets generated with
the marionette method. The design started from a planar view generated with a NURBS

13

Figure 13. Design of stadia obtained from a projection on a moulding surface: the prescribed curves are the inner ring and 
a section curve.

(a) Reference moulding surfaces (b) Non-symmetrical design (c) Symmetrical design

Figure 13: Design of stadia obtained from a projection on a moulding surface: the prescribed
curves are the inner ring and a section curve.

4.2 Extension to other patterns

The method proposed in this paper can be extended to other polyhedral patterns. As noticed
by (Deng et al., 2013), tri-hex meshes (also known as Kagom lattices) have the same number
of degrees of freedom as quad meshes. There is therefore a straight forward way to lift
Kagome lattices with the marionette technique. Figure 14a shows the guide curves for the
Kagome pattern. Other isolated points are required to lift the mesh. The altitude of these
points can be chosen in order to minimise the fairness energy introduced in (Jiang et al.,
2014), which is not difficult under linear constraints.. Figure 14c shows a pattern introduced
in (Jiang et al., 2014): the mesh is derived from an hexagonal pattern and three guide curves
can be used to lift the mesh.

(a) Kagome lattice (b) Dual Kagome lattice (c) Hex pattern

Figure 14: Marionette method applied to several patterns, white dots correspond to pre-
scribed altitudes.

For example, Figure 15 shows a Kagome lattice covered with planar facets generated with
the marionette method. The design started from a planar view generated with a NURBS

13

Figure 14. Marionette method applied to several patterns, white dots correspond to prescribed altitudes.

Figure 15. Free-form design covered by planar Kagome lattice.
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al. (2014): The mesh is derived from an hexagonal pattern and three guide curves 
can be used to lift the mesh.

For example, Figure 15 shows a Kagome lattice covered with planar facets 
generated with the marionette method. The design started from a planar view 
generated with a NURBS patch, a Kagome was then generated following the 
isoparametric lines and lifted with the marionette technique. One of the guide 
curve is the parabolic arch of the entrance, the other is an undulating curve fol-
lowing the tunnel. Like for PQ-meshes, the computation is done in real time.

5. Conclusion
We have introduced an intuitive technique for interactive shape modelling with 
planar facets. It is based on descriptive geometry, which is used by architects and 
engineers. The concept has many applications, in particular the modelling of PQ 
meshes with or without singularity. Some examples show the formal potential 
of our method. The framework was also extended to Kagome and dual-Kagome 
lattices. It is likely that other polyhedral patterns can be treated with the Mario-
nette technique. The generality of the method has also been demonstrated by 
changing the projection direction, a method with large potential if used on mesh 
with remarkable offset properties. The choice of appropriate projections, while 
obvious for many shapes of relatively low complexity, is a limitation to the gen-
erality of the method compared to previous methods developed in the field of 
computer graphics. The Marionette technique should be seen as an intuitive way 
to model shapes, and is complementary with other less-intuitive methods that 
perform well on surface-fitting or local exploration problems.

We made a comment on the smooth problem solved by the method, which 
gives indications on the smoothness of the shapes arising from this framework. 
We have seen that this smoothness depends on the smoothness of both the 
planar projection and the guide curves, which can be generated with any usual 
modelling tool based on NURBS, T-spline and Bézier curves. Moreover, it was 
shown that marionette meshes give an intuitive illustration on the principle of 
subspace exploration, a powerful tool for constrained optimisation of meshes. 
The underlying smooth parameterisation of marionette meshes could hence open 
new possibilities for efficient parameterisation of fabrication-aware design space 
in structural optimisation problems.
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Abstract
This paper defines and describes ways of designing with curved-crease paper-
folding. Curved creases are mathematically underexplored, and while many new 
analytic results exist, we still have no general way to geometrically predict how 
an arbitrary curved crease folds in 3D. We can, however, use and exploit several 
well-known subsets in geometry and expand on folding gadgets that include rul-
ings or deploy analogue design methods that cannot be simulated. The paper is 
an investigation into four ways of designing with curved creases. The first uses 
developable surfaces such as cones, cylinders, and tangent surfaces, which can 
be manipulated in CAD software. The second focusses on ‘refraction gadgets’  
I have derived from David Huffman’s work. These sets of curves and rulings form 
the smallest tile of a crease pattern and can be used for digital simulation. The 
last two approaches focus on manual folding with the option of controlling crease 
patterns at the beginning or the end of a design process. The ways in which 
knowledge in geometry is used and to some extent abused is opportunistic in 
nature as the main goal consists of defining design approaches, not adequately 
defined mathematical models. This is important to note as many of the results 
may consist of ill-defined creased surfaces, for example, surface configurations 
made with elastic sheet materials. In this paper I introduce useful characteris-
tics and ‘design representations’, the control mechanism to manipulate certain 
types of curved creases, for digital and analogue methods that make the design 
process more clear. These characteristics allow for an evaluation of the present-
ed design approaches. This facilitates ways to teach rigorous explorations for 
designers and educators.

Keywords: 
curved crease paperfolding, origami, developable surfaces, design
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Introduction
In order to learn how curved creases have been used, we need to investigate 
works in art, design, science, and engineering. Contemporary artists such as  
Robert Sweeney (2009), Yuko Nishimura (2009), and Matthew Shilan (2009) tend to 
expose personal aspects of the creative process (Klanten 2007; Nolan 1995) and don’t 
necessarily provide productive references for defining a way of designing. Paul 
Jackson has published work with curved creases (Thomas & Jackson 2001), which has in-
spired me to try to define ways of designing rather than collecting crease pattern.

Curved creases have been explored in science and engineering with signif-
icant achievements. Regarding the foundational work, we need to acknowledge 
David Huffman (1976), Ron Resch and Ephriam Cohen (1970s), and Richard Riesen-
feld (1974), and Dmitry Fuchs and Sergei Tabachnikov (1999). More recent work by 
Erik and Martin Demaine and Tomohiro Tachi (2014), Robert Geretschlaeger (2009), 
Jun Mitani (2009), Jeannine Mosely (2008; 2009), and Saadya Sternberg (2009) inspect-
ed specific configurations. Significant results in post-rationalising paper models  
exist by the team of Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy Mitra, Alla 
Sheffer, and Helmut Pottmann (2008). Works in engineering by the teams of Simon 
Guest and Sergio Pellegrino (1992), Yannick Kergosien, Gotoda Hironoba, and Kunii 
Tosiyasu (1994) as well as Marcelo Dias and Christian Santangelo (2012) have also 
explored specific aspects of curved folding. Examining the work by these math-
ematicians and computer scientists provides insight into geometric aspects, but 
may not be easy to use for a designer. As the behavior of curved creases is not 
yet fully understood, designers face a lack of available digital tools. Investigating 
historical examples in art, design, and education helps to locate the time and 
discipline of a specific type of curved crease design, but it is not obvious how 
to derive design methods as we can only rely on limited documentation (Demaine 

& Demaine 2010), (Demaine et al. 2011).
In order to make curved creases accessible to a broader audience, includ-

ing design students, I propose four design approaches that expand on specific 
aspects of protagonists in the field and combine them with contemporary digital 
tools. In order to elucidate advantages and shortcomings, I define design repre-
sentations and characteristics for each approach. The relevance for architectural 
design is based on the convention that many building materials are manufactured 
as flat sheet-goods. Forming such surfaces with curved creases may have eco-
nomic and energy efficiencies compared to stamping processes with molds, for 
example (Shelden 2002), which has been explored among others by Gregory Epps 
and Robofold.
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Problem Statement
How can designers learn to use curved-crease paperfolding? And which tools 
should be involved? Which design approaches can be included if we allow the 
use of surfaces that are mathematically defined in an inappropriate way? Lastly, 
which kind of metric can be used to qualify the proposed design approaches?

Regarding the methodology, I collected case studies in the history of curved 
creases and identified general design problems. I subsequently matched tools 
to the problems and field-tested them with students. I conducted the following 
workshops and seminars as a proof of concept: a 1-day workshop at the Massa-
chusetts Institute of Technology, a 2-day workshop at Southern Polytechnic State 
University, Marietta, Georgia, and a seminar in the Architecture Department at 
Pratt Institute. The evidence is qualitative as the students had different education-
al backgrounds, some courses were short, and some were long. The evaluation 
considers and compares characteristics of each design approach. It is important 
to note that every design approach has intrinsic limitations and constraints, which 
is in part due to missing mathematical knowledge. However, if we understand 
the relevant constraints, as the examples demonstrate, we can still invent ways 
of designing with them.
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1. Defining Design Approaches
1.1 Design Approaches and their  

Design Representation
If we want to define ways of designing with this geometry, which control mech-
anisms can we find? How can we define useful representations for designers? It 
is necessary to formalize characteristics and what I call ‘design representations’ 
for each design approach? These representations are abstractions of a curved 
crease design and are always related to its crease pattern. The approaches use 
digital and analogue methods and the rigorous definitions of representation in 
computer science and mathematics may not be suitable for analogue methods, 
for example.

The design representation of a paperfolding consists of the control mecha-
nism that is constrained by geometric, digital, or material aspects. It is the ab-
straction a designer can use and manipulate in order to modify a design. These 
design representations relate to the crease pattern in different ways as not all 
geometric subsets for curved creases are well-defined. The design approaches, 
two fully digital and two mostly analogue, each have their own design represen-
tations (Fig. 1).

Developable surface reflection uses well-known configurations of cones cylin-
ders and tangent surfaces. The ‘direct digital’ representation uses mirror reflec-
tions of developable surfaces in CAD software. The crease pattern is constructed 
at the end of the design process for fabrication.

Refraction gadgets is based on gadgets I have derived from David Huffman’s 
method of drawing creases and rulings together, which can be used in simulation 
software. The ‘indirect digital’ representation relies on fixed rulings within the gad-
gets. The crease pattern is constructed at the beginning of the design process.

Drawing open and closed curves expands on the ‘Bauhaus model’, a design 
used by students of Josef Albers, and on the work of T. Roy Iwaki. A designer can 
draw curves and explore variations without exactly knowing what the outcome 
will be. The ‘direct analogue’ representation consists of the crease pattern that 
is constructed at the beginning of the design process.

Sculpting and post-rationalising surfaces expands on Ron Resch’s crinkling by 
using curved creases. A designer sculpts paper or more flexible materials and 
defines a notational system. The ‘indirect analogue’ representation is based on 
material constraints. The crease pattern is constructed whenever a new material 
is introduced in the design process.
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1.2 The Characteristics of a Design Approach

The design approaches and their explorations are presented in comparison in 
order for us to be able to evaluate them. The questions that arise are: Which de-
sign goals can s/he define before starting? How much knowledge is required and 
which digital tools are involved?  The following different characteristics were used 
as a heuristic. In some cases, the characteristics may overlap as their bound- 
aries can become blurry.

Bottom-up/top-down
The first characteristic distinguishes between designing in a top-down or bottom-up 
way. In the case of a bottom-up approach, the designer reacts to what the curved 
crease gives him or her. The logics of the crease pattern and rulings drive the design 
process and the designer evaluates the result. The material constraints of physical 
paper are identified in a separate characteristic. A top-down approach demands 
decision making beforehand, meaning that the designer has to have made up his 
or her mind about what the model is supposed to look like before beginning the 
design process. This can in some cases represent a strong design goal, but it can 
also become less relevant in the process.

A priori knowledge of geometry
The second characteristic relates to a priori knowledge of geometry, the reason-
ing related to previously acquired knowledge in geometry. It can play a signifi-
cant role in a design approach, as a designer’s decision can be influenced by the 
knowledge of mathematical models, for example. This knowledge is different to 
knowledge obtained from observation and experience, and can help in charac-
terising a design approach.

Figure 1. (from left to right). 
Developable Surface Reflection (direct digital representation). 
Refraction Gadgets (indirect digital representation). 
Drawing Open and Closed Curves (direct analogue representation). 
Sculpting and Post-Rationalising Surfaces (indirect analogue representation).
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Exploiting material properties
The third characteristic lies in exploiting material properties. Paper resists when 
one folds it and the pressure in the material can guide design decisions. A de-
signer can start to manipulate paper or felt and ‘let the material fold the way it 
wants to fold’. The material driven process requires little mathematical knowl-
edge, but relies heavily on tacit tactile knowledge, the knowledge that is trans-
ferred via the repeated physical manipulation or folding of paper. This can also 
be described as a bottom-up approach based on material logics.

Use of digital tools
The fourth characteristic relates to the use of digital tools. The two subcatego-
ries relate to the representations defined above. The first uses direct geometric 
manipulation of static 3D objects in CAD software, which means that a designer 
looks at a static model while working on it. The second is related to the simu-
lation of folding crease patterns that include rulings. A designer can see how a 
discrete version of a curved crease folds in real-time.

In the following section I discuss the design approaches in similar ways using 
the common headlines ‘Geometry and Design Representation’, ‘Historical refer-
ences and precedents’, and ‘Definition of the Design Approach’.

2. The Four Design Approaches
2.1 Developable Surface Reflection

Geometry and design representation
We can imagine a general cylinder that is cut with a plane. We subsequently mirror 
and rotate the remaining part (Fig. 2). The rulings are all parallel in the crease pattern. 
Cones can be manipulated in a similar way, but their rulings converge in an apex. 
The well-known geometry includes tangent surfaces, which can be used in digital 
3D models. The direct digital design representation consists of the 3D surfaces in 
CAD software, which are unrolled to construct the crease pattern for fabrication.

Historical references and precedents
Students of Josef Albers made models based on general cylinders at Black Moun-
tain College (Fig. 3 left). We can assume that the design goal consisted of creating 
a cylindrical shape or enclosure, which can be achieved with cylinder reflections. 
Haresh Lalvani provides many variations of similar configurations in the work that 
has been built by Milgo/Bufkin using large sheets of steel (Fig. 4) (2003). Tim Herok 
and Markus Schein’s ‘Liegengenerator’ makes use of a discretised approach (2002). 
Their process starts by defining the constraints for input surfaces, namely, the 
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Figure 3. (from left to right) 
Work by students of Josef Albers, Black Mountain College (1950s – photographer unknown). 
Bulletin Cover 1944 with model made in Albers’ class, Black Mountain College (1944).

Figure 4. Metal column covers and wall panel (Haresh Lalvani).

Figure 2. Mirror reflection of general cylinder (DK).
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two edges of a bench that touch the ground (Trebbi 2008). Schein sets up a digital 
model with user inputs for height and undulation that uses a genetic algorithm 
(2002). Regarding reflected cones, we can find examples by students of Josef Al-
bers at Black Mountain College (Fig. 3 left). David Huffman based some of his de-
signs on cone reflections such as ‘Cone reflected seven times’ with a gradually 
rotating main axis (Wertheim, 2004). The designer Poul Christiansen also uses cone 
reflections in one of his lamp designs (Klint 1943). Ron Resch worked with 2 cones 
without cutting the paper in ‘Yellow Folded Cones: Kissing’.

Definition of the design approach
Regarding cylinders, the designers begins with a 3D model of a general cylin-
der in any CAD software and then places a plane to cut it with. The subsequent 
step consists of reflecting the cut-off part and placing it on the resulting curved 
crease. The designer continues this process step-by-step. The approach can also 
be applied to cones and tangent surfaces.

I used two types of software ‘ORI-REF: A Design Tool for Curved Origami 
based on Reflection’ by the Japanese geometer Jun Mitani (2011) and Rhino3D 
in my seminar. ORI-REF takes cylinders, cones, and tangent surfaces as input 
surfaces, and the user then manipulates a local coordinate system to orient the 
reflection plane. The red spline in the example below with several reflections by 
Ashley Hickman indicates the profile of the input surface (Fig. 5). Students con-
structed the planes and reflections themselves in Rhino3D. Closed configurations 
with single and double reflections can be seen below (Fig. 6 and 7).

Corresponding examples with cones by Ashley Hickman and Kalliopi  
Oikonomou were made using Rhino 3D (Figures 8 to 10). The cones are cut with 
planes parallel to the base or the axis. The last example shows a tiling of partial 
cones that share an apex A.

2.2 Refraction Gadgets
Geometry and design representation
Huffman’s gadgets determine the position of curves and rulings in a crease pat-
tern. If the curves are abstracted as line segments, we can create a discrete 
version of the gadget (Koschitz 2013), which can be used in simulation software such 
as ‘FreefromOrigami’ by Tomohiro Tachi (2013). The indirect digital design repre-
sentation consists of the crease pattern that includes fixed rulings, mountain 
and valley folds. The crease pattern must be constructed at the beginning of the 
design process.

Historical references and precedents
Huffman drew what I call ‘refraction gadgets’ for his designs. He interpreted 
rays in optics as rulings and exploited the refractive properties of the conics 
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Figure 5. 3D model in ORI-REF, crease pattern (Ashley 
Hickman).

A

Figure 9. 3D model of cone with two vertical reflections, 
crease pattern (Kalliopi Oikonomou).

45o

Figure 6. 3D model in Rhno3D with reflection plane, crease 
pattern (Kalliopi Oikonomou).

A

Figure 10. 3D models of cone reflections with two 
reflections, crease pattern (Kalliopi Oikonomou).

30o

Figure 7. 3D model with two reflection planes per corner, 
crease pattern (DK).

A

Figure 8. 3D model of cone with two horizontal reflections, 
crease pattern (Ashley Hickman).
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to redirect the rulings. The three available curves are ellipses, parabolas and 
hyperbolas and he drew all available refraction cases (Fig. 11). The diagrams on 
the left show how rulings get refracted, if they start in the focal point of a hy-
perbola, parabola, or ellipse. The cases on the right display inversions of the 
corresponding examples.

The foci of a hyperbola can be used to refract rays on either side of the curve 
(on the left). Rulings can be made to fan out on both sides of the curve (on the 
right). Parallel rays on the concave side of a parabola refract toward its focus (on 
the left). The inverse configuration pushes rulings away from the focus (on the 
right). Rays converging towards one focus of an ellipse get refracted to the sec-
ond focus (on the left). The roles of the foci are inverted (on the right).

A rare hand-drawn sketch reveals that Huffman has the rulings in mind when 
designing a new model (Fig. 12 left). Huffman uses the corresponding gadget for the 
inner ellipse (Fig. 12 right) four times in one of his final designs (Fig. 13).

His approach can be seen as a constraint propagation system, in which ‘the 
paper is the computer’. He sets up his designs the way a computer scientist 
would, namely, as a problem to be solved. Every crease pattern has the equiva-
lent to a base case or initialisation procedure of an algorithm, in which the rulings 
have to follow an initial rule. He assigns the refraction scheme that will get exe-
cuted on the first crease and then lets the individual rays follow the constraints 
given by all consecutive curves.

Definition of the design approach
I expand on Huffman’s interpretation of optics by asking a designer to use any 
of the gadgets and to subsequently simulate them using FreefromOrigami. 
A designer can alter and/or tessellate any of the gadgets. The design can be 
folded in software in real-time.

Many cases for which Huffman might have had a wrong mathematical con-
jecture can be used for simulation. The discrete representation is an approxima-
tion and thus does not necessarily follow mathematical constraints. Additionally, 
folding physical paper is more forgiving than its mathematically defined equivalent. 
The flexibility of the material allows us to create models of ill-defined mathemat-
ical foldings. This means that all of Huffman’s gadgets are available for designers 
to explore and experiment with.

The designs produced by Kalliopi Oikonomou in my seminar consist of re-
fraction gadgets with ellipses, parabolas, and hyperbolas. In the first example, 
a single ellipse is divided into two parts, one used as mountain and the other 
as valley (Fig. 14).

The figure below shows two examples with the same parabola gadget. A 
cylindrical configuration could be achieved in the bottom example (Fig. 15). The 
last example in this section consists of a regular tiling made with a hyperbola 
gadget (Fig. 16).
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Figure 11. Refractive properties of conic sections (1977, DAH, David A. Huffman archive).

FE

Figure 12. Sketch (undated, DAH, David A. Huffman archive), Gadget (DK).
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2.3 Drawing Closed and Open Curves

Geometry and design representation
Designs with closed curves should consist of concentric curves and should have 
a hole in the centre. Recent results suggest solutions for concentric circles (Dias & 

Santangelo 2012). Designs based on free-hand scored curves have no constraints on 
curves, but they may not be foldable. No practical discrete representation exists 
for software, so the design approach has to be partially analogue. The models 
could be 3D scanned and post-rationalised using sophisticated algorithms (Kilian 

et a. 2008), but this might prove to be cumbersome, if it was to be part of a design 
process. The direct analogue representation consists of the curves drawn on 
the model one uses.

Historical references and precedents
Josef Albers introduced ‘The Bauhaus model’ (Fig. 17 left) in his design foundation 
course in 1927 (Wingler 1978). Erik and Martin Demaine started to explore the model 
in 1998 and have made variations of it since then. Kunihiko Kasahara published his 
version with more creases in 2002 (2003). The model was used either as single mod-
ule or in an aggregation (Fig. 17 right). It was also expanded beyond 360° with multiple 
joined discs (2006). In 2008 further variations of the model used quadratic curves in 
addition to circles (Koschitz, Demaine & Demaine 2008). Regarding curves that intersect each 
other, T. Roy Iwaki (2010) created a small booklet that provides a rare instance of 
an artist sharing his methods. He used a ‘base mask’, which he then modified to 
design specific facial features of the animals he wants to portray (Fig. 17  right). Iwaki 
worked from one crease to the next and allowed the paper to assume a ‘natural’ 
folded state before making a decision about the next step. He might have forced 
the paper on one side of the crease, but not the other, for example.

Definition of the design approach
Regarding self-closing curves, a designer can draw any set of ‘vaguely concen-
tric’ curves in CAD software. The configuration requires a hole at the centre. Re-
garding intersecting curves, a designer can score curves directly on a piece of 
paper. Every crease should be folded and evaluated prior to moving on to the 
next crease, if s/he wants to avoid crinkles.

Aleksandra Chechel uses concave and convex curves in 2d in CAD software 
in my seminar (Fig. 18). The series investigates self-closing curves with two, four, 
and five eccentricities. In some cases, the curves are convex only, in other cases 
the curvature changes direction. Once the paper has been pre-creased with a 
vinyl cutter, the final model is folded by hand. An important characteristic of this 
design approach allows designers to explore the degree to which a model can 
be folded. Some crease patterns fold very well and provide excellent examples 
to study folding motion and moving rulings.
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Figure 13. ’4-lobed, cloverleaf, design’ (undated, DAH), Vinyl model (1977, DAH, David A. Huffman archive).

Figure 14. Ellipse gadget, crease pattern, simulation (Kalliopi Oikonomou).
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Ashley Hickman, another student in my seminar, used the design approach 
with intersecting curves and simply started by making a model with several 
creases rather than working from one to the next (Fig. 19). She made new decisions 
about altering regions of paper that are wrinkled by marking options for creases 
in red. She subsequently folded the marked creases in the next iteration and 
repeats these steps until the result is satisfactory. Other students followed the 
initial suggestion of working step-by-step and achieved similar results.

2.4 Sculpting and Post-rationalising Surfaces
Geometry and design representation
For this design approach creases and paper surfaces are created through an it-
erative analogue process similar to Iwaki’s approach. No curve types or surface 
types can be defined in any practical way. Similar to the previous design approach, 
3D-scanning and analytically deriving an appropriate mathematical model would 
slow down the process significantly. The indirect analogue design representation 
consists of re-constructed crease patterns on the folded model.

Historical references and precedents
‘The Ron Resch Paper and Stick Film’ (Resch 1968) features a sequence in the be-
ginning, in which he explains how he discovered paperfolding for himself. He 
starts with a sheet of brown paper on a table and slowly crumples it while 
pushing it down to the table with his fingers. Once he has achieved a desired 
folded shape, he flattens it, and draws simplified versions of the creases with 
a pen (Fig. 20). He modifies the crease pattern and tries to find regularities to 
eventually create tilings made of straight creases. Gregory Epps, a British de-
signer and curved folding expert, has published similar ways of post rational-
ising creases (Vysivoti 2008).

Definition of the design approach
I extend Resch’s approach by using curved creases and developing a notational 
system to keep track of changes. The process starts with crumpling or sculpt-
ing a sheet of soft paper or felt into a desired shape (Fig. 21 and 22). A designer then 
marks mountains and valleys and subsequently flattens the sheet to digitize the 
crease pattern. The digital image needs to be traced with vector-based software. 
The designer can use vinyl cutters to pre-crease paper with the digitised version 
of the marked scan. As the model may not fold the way a flexible material might, 
a designer might have to go through several iterations of this process until s/he 
obtains a desirable result.

During my seminar, UnJae Pyon and Lauren Greer sculpt a desired shape 
and then mark mountain and valley creases with two different colours (Fig. 21 centre).  
I asked them to use a notational system that would allow them to document the 
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Figure 16. Simulations of gadgets with parabolas and hyperbolas, crease patterns (Kalliopi Oikonomou).

Figure 17. Bauhaus model, extended discs (Josef Albers Foundation), Horse head (Roy Iwaki).
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Figure 15. Simulations of gadgets with parabolas and hyperbolas, 
crease patterns (Kalliopi Oikonomou).
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necessary finger motion, if they needed to recreate the model. They photograph 
the drawn crease pattern in its flat state (Fig. 21 right).

The next step consists of transferring the crease pattern to CAD software 
(Fig. 22 left). Further steps involve making new models in paper or plastic and con-
tinuously refining the crease pattern until the paper finds an (almost) ideal con-
figuration (Fig. 22 right).

3. Results and Analysis
The workshops and seminars yielded interesting observations that might be 
useful for instructors and designers in general. The table below shows the re-
lationships between the design approaches and their characteristics (Fig. 23). The 
proposed design representations aid in identifying how a designer can work with 
the given constraints of the design approaches. The presented results include a 
brief summary of the design approach and used tools, a comment on the design 
process, issues relative to scalability and notes on design pedagogy.

Because developable surface reflection uses well-known configurations of 
cones cylinders and tangent surfaces, 3D models can easily be made with CAD 
software. The designer is visually confronted with the result of every cut while 
working on the computer, which provides constant visual feedback during this 
step-by-step process. The crease pattern is usually only necessary for production. 
Physical models can be made easily, and scaling should not be an issue. Formal 
explorations are limited as the designer is bound by the initial developable sur-
face. In terms of design pedagogy, only little knowledge in geometry is required 
and there is no element of surprise in this approach.

In refraction gadgets the designer needs to be in full command of the crease 
pattern as it is designed first. The opportunity for designers lies in using simula-
tion software to observe the folding process in real-time. The constraints produce 
cylinders and cones, but no tangent surfaces. The smaller mathematical solution 
space reduces opportunities for expressive designs as the rulings are forced to 
remain in their relative position, which is not how paper folds. Additionally, tan-
gent surfaces are not represented in the gadgets. It is unclear whether this ap-
proach would scale well. The simulation may result in ill-defined surfaces, and 
one may have to rely on the elasticity of materials to realize these designs. The 
design approach is very systematic and demands a moderate level of knowledge 
of geometry. As a result, mastering the approach might only be suitable for a 
more computationally inclined designer. The exploratory potential of the design 
approach lies in trying out different kinds of tilings and in some cases using more 
or less curvature for the folded model.

For drawing open and closed curves a designer needs to draw simple curves. 
The direct analogue representation consists of the crease pattern that has to be 
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Figure 18. Designs with self-closing curves with varying degrees of curvature (Aleksandra Chechel).

Figure 19. Iterations of a design made with intersecting curves (Ashley Hickman).

Figure 20. Images from The Ron Resch Paper and Stick Film (1968, Ron Resch).
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constructed at the beginning of the design process. The approach suits design-
ers who are interested in tactile interaction with paper. Scaling is problematic for 
closed curves. The process does not require any a priori knowledge in geometry, 
but a designer will need to be very patient in order to master this design approach. 
Probably many hundreds of hours of practice are needed to gain the experience 
to control the shapes and their precision. It is hard to predict the folded state, 
and this element of surprise can raise curiosity and make the process of mak-
ing a model engaging for a student. The design approach is surprisingly difficult 
to learn and qualifies to teach many aspects of curved creases such as folding 
motion and moving rulings.

With sculpting and post-rationalising surfaces one can explore designs very 
quickly. The indirect analogue design representation is used to cope with material 
constraints in a playful way. The crease pattern has to be constructed differently 
whenever a new material is introduced in the design process. Scaling is possible 
only with much iteration. The resulting shapes of this design approach tend to 
be irregular and display great expressive potential. Sculpting paper of more flex-
ible materials and defining a notational system is easy to learn. This is the least 
restrictive approach that does not require any a priori knowledge of geometry.

4. Conclusion
The mathematical behavior of curved creases cannot be fully described yet, re-
sulting in a lack of available digital tools. Designing with curved creases can oc-
cur in several ways, and I propose four design approaches, two digital and two 
analogue, that can help designers to make curved-crease paperfoldings. Refer-
ences in the history of curved creases can help in defining alternative design 
approaches and adhering to categories in geometry is useful in some cases.

Regarding digital design approaches, designers can easily explore cones, 
cylinders, and tangent surfaces. The proposed refraction gadgets can be used 
for simulation, but expressive explorations are difficult. It is unclear which crease 
patterns have well-defined surface configurations.

Analog design approaches provide the potential for formal exploration, but rely 
on tacit knowledge rather than a priori geometric knowledge. In these cases, it is 
beneficial to combine the process of making models by hand with digital tools.

The evaluation of the design approaches via characteristics and design rep-
resentations may help designers who want to use this subset of geometry. Elu-
cidating the limitations and constraints of the design approaches may identify 
future work and open problems.
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Figure 21. Sculpting, Notation of pinching, Crease pattern (UnJae Pyon, Lauren Greer).

Figure 22. Sculpting, Notation of pinching, Crease pattern (UnJae Pyon, Lauren Greer).

Figure 3.1 Design approaches in comparison
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Scaling is problematic for closed curves. The process does not require any a priori knowledge in 
geometry, but a designer will need to be very patient in order to master this design approach. 
Probably many hundreds of hours of practice are needed to gain the experience to control the 
shapes and their precision. It is hard to predict the folded state and this element of surprise can 
raise curiosity and make the process of making a model engaging for a student. The design ap

Figure 23. Design approaches in comparison.
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Abstract
This paper presents a new lightweight construction system for doubly-curved 
shells, built from two interconnected layers of structural wood veneer plates. 
The system uses integral through-tenon joints for a fast, precise, and simple 
assembly, allowing for the construction of a series of differently shaped shells 
without a costly mould or support structure. Instead, inclined joints cut with a 
5-axis CNC milling machine embed the correct location and angle between plates 
into the shape of the parts. This constrains the relative motions between joined 
parts to one assembly path. To take advantage of the benefits of such connec-
tors, the constrained assembly paths must be considered in the fundamental 
design of the system, allowing for the insertion of each plate. This imposes ad-
ditional constraints in the segmentation process of doubly-curved shells. In or-
der to meet the requirements and resolve the multi-constraint system, we use 
a global, non-linear optimisation approach. Developed as a close collaboration 
between architects, computer scientists and structural engineers, the paper in-
cludes an experimental analysis of the influence of parametric modifications in 
the shape of connectors on their load-bearing performance.

Keywords: 
segmented shells, timber plate shells, design for assembly, integral attachment, 
interlocking assembly, timber joints, digital fabrication, computational optimization, 
5-axis CNC fabrication, lightweight structures
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1. Introduction
The use of CNC-fabricated integral joints, such as through-tenons and dovetails, 
is a common technique in modern timber-frame constructions with linear mem-
bers such as beams and posts. These connectors allow for a fast, precise, and 
simple on-site assembly, taking advantage of prefabrication technology, reducing 
and replacing increasingly expensive manual labour.

An innovative application of such joints is the construction of freeform tim-
ber plate structures, which have been the subject of recent research in the field 
of architectural geometry. Examples are the single-layered and double-layered  
Timbeer Folded Plate Structures (Robeller & Weinand 2015) (Robeller & Weinand 2016b) or the 
ICD/itke Landegsgartenschau Pavilion (Krieg et al. 2015) (Li and Knippers 2015). In such designs, 
structurally beneficial curved or folded shapes are constructed from hundreds or 
thousands of small and individually shaped, planar plates, made from cross-lam-
inated wood panels such as laminated veneer lumber (LVL).

The design and fabrication of such structures is made possible by CAD  
programming interfaces and automatic fabrication technology. However, the as-
sembly of the parts on site is still carried out manually. Locator features, which 
constrain the relative movements of parts to only one possible assembly direction 
(1DOF) are crucial for a fast and precise assembly of such complex designs. They 
allow reducing or completely replacing the need of costly support structures or 
moulds that prescribe the shape of the freeform structure.

In addition to the improved assembly, the previous research projects have 
also demonstrated that integral joints can be used to transfer forces between 
the plates, reducing or replacing additional connectors such as screws or nails.

This paper builds upon the previous research, demonstrating a new construc-
tion system for a double-curved shell structure built from two interconnected 
layers of thin LVL panels, assembled entirely with 1DOF closed-slot joints. The 
construction system with two thin layers takes particular advantage of the new 
possibility for the edgewise connection of thin plates with integral joints.
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2. Project Description
The construction for a timber prefabrication facility covers an area of 5,800 m2 
with a series of 23 discontinuous shells, each 6 m wide and 9 m high (Fig. 1). In 
the transversal direction of the shells, an s-shaped cross-section curve introduc-
es a second curvature which prevents buckling, the expected mode of failure for 
such a structure (Pedreschi and Theodossopoulos 2007).

The design was inspired by the famous Gaussian Vault masonry roof struc-
tures of the Uruguyan architect and engineer Eladio Dieste, such as the TEM 
factory in Montevideo, Uruguay, 1960-1962, and the Caese Produce Market in 
Porto Alegre, Brazil, 1969-1972 (Anderson 2004).

In addition to the structural advantages of the doubly-curved shape, it is also 
essential for the architectural concept. Multiple, successive shells with such a 
cross- section create an overlap in between, which is used as a clerestory for 
the natural lighting and shading of the building, much like the sawtooth roofs of 
19th-century factories. However, in contrast to the Dieste’s structures, where a 
series of shells with the same shape was built through the repetitive use of a 
single mould or template, our project requires the construction of 23 individual-
ly shaped shells. This is both due to the shape of the building site, which is not 
rectangular but obtuse trapezoidal, and the architectural program, merging from 
a single-story factory space on the southern wide end into a triple-storey office 
area at the narrow northern end of the site (Figures 2 and 3).

The span of the shells ranges from 22.5 m in the smallest, to 53.7 m in the 
largest shell. The cross-section profile in this main direction of loading is a com-
promise between the architectural program and a structurally optimised shape. 
With a span-to-rise ratio of 2.5-6, it deviates from the catenary line, which Dieste 
used for his masonry roofs (with a span-to-rise of 8-10), mostly in the first 4 m 
from the ground plane. Here our shells are tangential to the vertical axis, reduc-
ing horizontal forces on the supports.

Figure 1. Interior view and cross-section schematic.
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3. Construction System
Our system consists of two layers of thin plates, instead of one thick layer, tak-
ing advantage of our joints’ ability to connect thin plates, which already provide a 
high strength but are difficult to join with conventional fasteners such as screws. 

A double-layered prototype was demonstrated in the ICD/itke Research 
Pavilion 2011 (la Magna et al. 2013), where prefabricated polyhedra made from wood 
veneer plates with finger joints (3DOF) were assembled to a spatial structure. 
In contrast to this project, our system uses 1DOF integral joints not only within 
segments/modules (in the previously mentioned project, prefabricated modules 
where joined with metal connectors), but between all of the plates, in order to 
take advantage of the locator and connector features everywhere in the structure.

Figure 4a shows our construction system, which approximates the curved tar-
get surface with hexahedra-shaped segments Si, each consisting of four plates. 
Each segment is based on a centre point Pi and a normal vector ni. A combina-
tion of multiple parameters in the system allows for the rotation between the 
normal vectors of neighbouring segments, which is required by the curvature of 
the target surface.

Within each segment, there are two shell plates, parallel to the segment 
plane, (L 1 and L 2) which form the two layers of the shell structure. Two additional 
vertical shear block plates W 0 and W 1 are used to transfer forces between the two 
layers of the shell. There are no plates for the remaining two vertical faces of the 
hexahedron, because these plates are shared with the neighbouring segments.

Figure 4b shows how a vertical plate supports the connection of the main layers 
of the shell: The intersection area of the three plates is divided into alternating 
segments, creating slots which receive the tabs of the shell plates. This allows for 
a direct contact between the shell plates for the transfer of compressive forces. 

Figure 2. Floor plans left: production spaces, right ground floor offices.
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In between these slots and on the top and bottom face of all tabs, the vertical 
plate holds the shell plates.

The assembly of the segments follows their numbering. Figure 4 shows the 
assembly of segment S4 in an m *  n matrix of segments. Within a segment, the 
shell plates are inserted first, along the segment’s assembly vector →vi. They con-
nect simultaneously to the two shear block plates of the neighbouring segments 
Si−1 and Si−m . The slots in these neighbouring shear plates are oriented along →vi , 
to receive the tenons of the shell plates L 1i and L 2i .

3.1 Joints
Figure 4c shows a close-up view of the through-tenon joints that connect the shell 
plates. We have chosen these so-called closed-slot connectors, because they 
combine the benefits of dovetail joints with additional features. Like the dovetails, 
the shape of the through-tenon joint are kinematically classified as prismatic pins 
with slots, constraining the mobility of parts to one assembly motion path (M = 1) 
(Whitney 2004). This shape fully integrates a unique position of the parts within the 
structure and allows for a rapid and precise assembly.

While the 1DOF property is also provided by open-slot dovetail joints, through- 
tenon joints provide additional features for the transfer of forces. The bending 
strength of different types of multiple-tab-and-slot plate joints (MTSJ) has been 
compared by (Roche et al. 2015a), demonstrating that joints with a closed slot, also 
called through-tenon joints, combine the high shear strength of finger- and dove-
tail joints (see Roche et al. 2015b) with a high bending strength.

Like dovetail joints, through-tenon joints connect plates in two planes. The 
average dihedral angle ϕmean = 6.5◦ between our shell plates is too small for the 
use of such joints. We solve this problem with the connection through the vertical 

Figure 3. Cross-section through the building.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



110

shear plates in between shell plates. This connection requires only a small rota-
tion θ1 of the joint faces about the edge line (see Fig. 4c, faces marked A).

However, the assembly of our system requires a second rotation of the 
tabs θ2 , about the normal vector of the plate, because we want to connect two 
non-parallel edges simultaneously, along the same direction →vi.

This rotation θ2 has an influence on the shear strength of the joints, which 
we have analysed. Figure 5 shows our shear load test, where we have examined 
a joint with two tabs at a rotation θ2 from 10◦ to 40◦, with the load applied in 
both directions. Graph 5b shows that the best shear strength is achieved at 
low rotations up to 25◦, although the larger rotations of 25◦ to 40◦ also show a 
satisfying shear stiffness. Most specimen showed a brittle failure, while some 
specimen with angles larger than 30◦ showed a certain amount of hardening af-
ter the failure. The bottom graph shows the load/displacement behaviour in the 
linear elastic range of 10-40%.
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Figure 4. Construction system for a 2-layered shell,  
a. assembly of 4-sided box segments,  
b. alternating allocation of joint slots on shared vertical plates,  
c. joint detail/rotations.
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Figure 6 illustrates the contact surfaces between two 40 mm-thick shell plates, 
along an edge with a length of 1.65 m. Without integral joints, the contact area 
between these plates is 662 cm2. In our system, neighbouring edges are slightly 
rotated, Figure 6 shows an example where this angle is κ = 0.82◦. Without joints, 
this rotation reduces the contact area to 85.1%. With our integral joints (Fig. 6b), 
the frontal contacts (for the transfer of compression) are divided into a direct and 
indirect area. Through the front face of the tabs, plates are in direct contact on 
222 cm2 (33.5%). Additionally, an indirect contact of 383 cm2 (57.5%) is estab-
lished through the vertical shear plate, adding up to 605 cm2 (91% of max area 
of two parallel edges). A distinction between the two areas is made because of 
the fibre-direction of the wood plates. The indirect compression is transferred 
normal to the shear plate, where the compressibility strength is reduced. (Fig.6, left)

Additionally, the joints provide a large contact area transversal to the edge. 
In Figure 6, there is an additional 220 cm2 (+33%) across the plate surface, which 

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180 10°
15°
20°
25°
30°
35°
40°

Fo
rc

e
(k

N
)

Vertical displacement (mm)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

40

45

50

Fo
rc

e
(k

N
)

Vertical displacement (mm)

10°
15°
20°
25°
30°
35°
40°

Figure 5. Experimental analysis of the influence of the tab rotation θ2 on the shear stiffness of the joints on 40mm cross-
laminated LVL plates.  
a. Load test setup  
b. top: load/displacement curves for θ2 from 10◦ to 40◦, bottom: linear elastic range (10-40%)
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is relevant for shear forces, and 597 cm2 (+90%) parallel to the plate, which is 
relevant for bending moments. The total contact area between the plates with 
joints is 1,422 cm2 (214%).

3.2. Assembly-Constrained Tiling
For our assembly of multiple parts, where the mobility of each part is reduced to 
M = 1, we must find a solution where each part can be inserted without conflicts.

Additional constraints are that we want to insert each part individually, and 
we want to use the interlocking of elements to block the last degree of freedom 
of the parts with one another, avoiding long-range escape paths in the assembly, 
which allow for multiple segments to be detached simultaneously.

The assembly path →vi of parts is considered an Escape Path for the part. A 
part is considered locally free-, when the escape path of all of its connections 
have a common direction. In this case, the dot product of all escape paths is 1, 
assuming →vi as unit vectors. If this is not the case, the part is blocked and can-
not be removed without prior removing other parts from the assembly. A second 
important situation is global freedom, also called long-range escape paths, where 
a group consisting of multiple parts can be separated from the assembly along 
one common direction.

Figure 7 illustrates the assembly of 4 x 2 quadrilaterals with different shapes. 
Figure 7a uses rectangles with prismatic pins perpendicular to their edges. In this 
assembly all eight pieces are locally blocked, meaning that no single element 
such as part A can be removed. In order to remove A, we have to either remove 
the four parts E, F, G, H, or we remove A together with part E, which shows the 
existence of a long-range escape path in this assembly. For our construction this 
pattern has two major disadvantages. The assembly of this configuration is only 
possible by first connecting all elements in the first row A, B, C, D, then con-
necting all elements in the second row E, F, G, H, and finally connecting the two 
groups. This means that, in the final step, the edges of four elements must be 
joined simultaneously, which is problematic due to the combined length of this 
edge, which needs to be kept parallel during the assembly. Also, tolerances of 
the parts themselves and caused by the connections within the two groups will 
make it difficult to assembly these two groups in one step.

These problems can be resolved through pins that are not perpendicular to 
the edges, but rotated to share one common direction per segment (Fig. 7b).

The required rotation of the pins θ2 can be obtained from the angle α between 
the edges which are connected simultaneously as θ2 = 90◦ − (α/2). For the array 
of rectangles shown in Figure 7b, all pins must be rotated at θ = 45◦. As discussed 
in Section 3.1, we want to avoid such large rotations on our joints.

We solve this problem through the use of rhombus-shaped elements, as 
shown in Figure 7c. With α = 135◦, we can reduce the rotation of the pins to 22.5◦, 
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κ = 0.82°a.

b.
indirectdirect

Frontal

Wood fibers

Transversal 2

Transversal 1

Figure 6. Contact area between two shell plates, without (a) and with joints (b).
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Figure 7. Comparison of different patterns from a point of view of assembly and transfer of forces:  
a. rectangular elements with pins perpendicular to the edges,  
b. rectangular elements with parallel pins,  
c. rhombus-shaped elements with parallel pins,  
d. rhombus-shaped elements with parallel pins, alternating orientation for every second row (Herringbone Pattern).
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half of the previous value using rectangles. However, while this configuration 
allows us to assemble the array piece by piece, and the shape of the elements 
greatly reduces the required rotation of the pins, all three configurations shown 
in Figure 7a,b,c share a common problem of multiple long-range escape paths.

This problem is greatly reduced by the fishbone pattern configuration in  
Figure 7d, where every second row of the rhombus shaped elements is mirrored. 
In consequence, the assembly direction is also reversed in all mirrored rows. 

Except for the last row, all elements in such a configuration are connected 
with multiple pins with different directions, similar to the configuration a., but 
with the possibility of piece-by-piece assembly and without any escape paths in 
the vertical direction.

3.3 Application to Target Surface
In order to create a two-layer shell structure, we first need to segment a given 
design surface. To apply the previously chosen tiling pattern to our doubly curved 
target surface, we use a first algorithm to generate the basic pattern through the 
evaluation of a point grid on a NURBS surface.

We gradually increase the density of this point grid in the main direction of 
loading, starting with a quadratic 500 x 500 mm segment on the ground plane, 
with a linear increase to a maximum segment size of 500 x 2,500 mm at the top 
of the shell. This relates both to the increased curvature on the lower end of the 
shells (see the curvature graphs in Fig. 8), as well as the increased loads in this area. With 
this subdivision, we obtain a quad mesh for each shell, with 312 faces on the 
first shell, and 216 faces on the last one.

Each quad mesh of this basic pattern lies exactly on the target surface, but 
the quadrangular faces are not planar. Unlike in constructions with glass or metal 
panels, where a certain amount of non-planarity is permissible, we require very 

Figure 8. Left: Isometric view of the first shell. The length of the blue lines illustrates the curvature of the rail curves in main 
direction of loading. Right: Tiling of the first shell.
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close to 100% planarity of the segments, due to the high rigidity of the 40 mm 
thick structural wood veneer panels (LVL) that we use for our construction. These 
plates do not allow for any significant bending or twisting.

Planar quad meshing has recently been an active area of research, see (Pott-

mann et al. 2015) for an overview. A common approach relies on the fact that planar 
quad meshes can be interpreted as discrete versions of conjugate curve networks 
(Liu et al. 2006). Such methods therefore optimize for the alignment of mesh edges 
with discrete approximations of conjugate curves. In our case study, however, the 
chosen tiling pattern in general does not follow conjugate directions. To overcome 
this problem, we do not represent our plate structure as a quadrilateral mesh, 
but as a collection of disconnected, but spatially coupled, planar elements. This 
introduces additional degrees of freedom for our global optimisation that tries 
to approximate the target surface as well as possible, while respecting all the 
fabrication and assembly constraints.

Our solution is based on the geometric optimisation framework proposed by 
(Bouaziz et al. 2012) and (Deuss et al. 2015). The core of this method is an iterative solver that 
minimizes a global non-linear energy function derived from a suitable chosen set 
of geometric constraints. A key feature is that constraints can be implemented 
via local projections that provide a modular mechanism to satisfy each constraint 
locally. A global step then reconciles all these local projections in a least-squares 
sense. Global optimisation distributes the error across the surface and thus sig-
nificantly decreases locally undesirable behaviour, such as large angles κ between 
neighbouring edges (see Section 3.1). A comparison with a simple local optimi-
sation approach that planarises each quad face independently is given in Figure 9.

Below we give a summary of the different constraints we use in our opti-
misation. These constraints are equipped with weights that allow balancing the 
trade-offs inherent in our over-constrained optimisation. Please refer to (Deuss et 

al. 2015) for a derivation of the constraints and a more detailed description of their 

any significant bending or twisting. 
Planar quad meshing has recently been an active area of research, see (Pottmann et al. 2015) for an 

overview. A common approach relies on the fact that planar quad meshes can be interpreted as discrete 
versions of conjugate curve networks (Liu et al. 2006). Such methods therefore optimize for the alignment 
of mesh edges with discrete approximations of conjugate curves. In our case study, however, the chosen 
tiling pattern in general does not follow conjugate directions. To overcome this problem, we do not 
represent our plate structure as a quadrilateral mesh, but as a collection of disconnected, but spatially 
coupled, planar elements. This introduces 
	
	
	

Optimisation A B C D E 

Average kappa angle 2.05◦ 1.9◦ 1.7◦ 1.3◦ 1.03◦ 
Maximal kappa angle 6.93◦ 5.5◦ 5.1◦ 4.4◦ 3.72◦ 
Average alpha angle 121.4◦ 118.7◦ 116.9◦ 112.4◦ 110.6◦ 
Minimal alpha angle 106.5◦ 105.4◦ 102.1◦ 100.1◦ 100.3◦ 
Average surface deviation 13.5 mm 30.9 mm 38.6 mm 42.3 mm 46.2 mm 

	

additional degrees of freedom for our global optimisation that tries to approximate the target surface as well 
as possible, while respecting all the fabrication and assembly constraints. 

Our solution is based on the geometric optimisation framework proposed by (Bouaziz et al. 2012) and 
(Deuss et al. 2015). The core of this method is an iterative solver that minimizes a global non-linear energy 
function derived from a suitable chosen set of geometric constraints. A key feature is that constraints can 
be implemented via local projections that provide a modular mechanism to satisfy each constraint locally. 
A global step then reconciles all these local projections in a least- squares sense. Global optimisation 
distributes the error across the surface and thus significantly decreases locally undesirable behaviour, such as 
large angles κ between neighbouring edges (see Section 3.1). A comparison with a simple local optimisation 
approach that planarises each quad face independently is given in Figure 9. 

Below we give a summary of the different constraints we use in our optimisation. These constraints are 
equipped with weights that allow balancing the trade- offs inherent in our over-constrained optimisation. 
Please refer to (Deuss et al. 2015) for a derivation of the constraints and a more detailed description of 
their implementation. An open-source implementation of the solver may be found at 
http://shapeop.org/. 
 
To optimise our plate assembly we use the following constraints: 
	

• Planarity of the four vertices of each quadrilateral ensures fabricability. We use a high weight to 
respect the very high stiffness of the LVL plates. 

	
• Closeness links the quads to the target surface. We set high weights for vertices on the boundary to 

match the site requirements. For interior vertices we use lower weights so that elements can adapt 
in size and shape, if necessary to satisfy fabrication and assembly objectives. 

	
	
	
	

	
	

Table 1: optimisation trade-offs
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implementation. An open-source implementation of the solver may be found at 
http://shapeop.org/.

To optimise our plate assembly we use the following constraints:

• Planarity of the four vertices of each quadrilateral ensures fabricability. We 
use a high weight to respect the very high stiffness of the LVL plates.

• Closeness links the quads to the target surface. We set high weights for 
vertices on the boundary to match the site requirements. For interior ver-
tices we use lower weights so that elements can adapt in size and shape, 
if necessary to satisfy fabrication and assembly objectives.

• Angle bounds the angles of each quad face to preserve the initial rhomboid 
shape and avoid rectangular faces.

• Parallelogram is used with a low weight for aesthetic reasons on the non- 
boundary elements.

• Divergence is a new constraint that we introduce specifically to handle our 
disconnected plate arrangement. This constraint couples adjacent plates 
by minimising the distance between neighbouring vertices. The projection 
operator for this constraint is simply given as the mean position of two 
vertices, applied on each pair of adjacent vertices as defined by the topol-
ogy of the grid layout.

The global optimisation in Figure 10 and Table 1 reduces the average kappa angles 
κmean by up to 50%, compared to the local optimisation. This is possible through a 
trade-off between multiple parameters. We allow for a controlled deviation from 
the base surface and for the alpha angles. Option C shows a balanced compro-
mise, where κmean is reduced by 17%. At the same time αmean is well preserved 
with a loss of only 2.2% compared to the local optimisation (Option A), avoiding 
any negative effects on the mechanical strength of the joints.

We run the local-global solver that iterates between constraint projection 
and global linear solver for 50-200 iterations. The output of the solver is then fed 
into a second algorithm that creates the two-layer shell structure. We generate 
the four plates per face, based on local frames that we obtain from the discon-
nected quadrilaterals (Fig. 11). The frames show the mid-layer planes of the shear 
block plates W0: e1 , e3 and W1: e2 , e3 and the insertion direction →vi = (e1 + e2 )/2. 
For the shell plate quads, one corner lies along e3 , while the other corners are 
found through an intersection with the shear block planes of the neighbouring 
segments. The final result is shown in Figure 12.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



117

Figure 9. Comparison of a local and a global optimisation approach applied on the last shell. Quad faces are coloured according 
to a maximal angle κ between the edges of neighbouring faces. The angle varies from 0 to 7 degrees. Left: By planarazing each 
face independently average κ angle is 2.05 degrees and maximal κ angle is 7. Right: Our global approach can reduce the average 
κ angle to 1.03 degrees, and the maximal angle to 3.72.

Figure 10. Balancing the fabrication requirements with the optimisation. From left to right different optimisation results are given 
by controlling the weights of constraints. First row is the top view and the second row is the side view of the last shell. Meshes 
are coloured according to a maximal angle κ between the edges of neighbouring faces. The comparison of κ angle, α angle, and 
deviation from the target surface is given in Table 1.
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4. Fabrication
In order to test the fabrication and assembly, a prototype of the structure was 
built using 15 mm birch plywood panels (scale 1:2.66). Figure 13 shows the location 
of the prototype within the first double-curved shell of our project. It shows the 
assembly of 4 x 7 hexahedron-shaped segments, consisting of 112 interlocking 
plates connected entirely with through-tenon and dovetail joints.

The main algorithm generates the geometry of each plate through an upper 
and lower polygon contour. On the shear plates, there are additional polygon 
contours for the joint slots. For the fabrication of the parts, the polygon contours 
for each plate are laid out on the World XY plane.

A second algorithm was used for the cutting of the parts with a 5-axis milling 
machine. It generates the G-code through a loft-like 3D offset of the plate contour 
polygons. On concave corners, notches are added automatically (Robeller & Weinand 2016a).

The total contour or cutting path length of the prototype (28 segments, 112 
plates) is 217 meters. Parts were cut with 4 infeeds at 5 m/min (2x roughing 
without notches, 2x final cut with notches). Compared to a plate contour without 
integral joints, the contour length with the joints increases by 20% for the shell 
plates and 100% for the shear plates, which contain all of the slots.

On the full-scale structure, built from LVL plates with a thickness of 40 mm, 
the 1,248 plates of the first and largest shell add up to a total area of 1, 063 m2 

(without off-cuts), a volume of 43 m3 and a self-weight of 32 tons.
The prototype was assembled lying on its side, inserting the tight-fitting 

pieces with a small mallet as shown in Figure 14. A similar prefabrication strategy 
is planned for the full-scale structure, dividing the 23 shells into an average of 6 
pre-fabricated modules per shell, with a maximum transportation size of 20 x 2 
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meters. In between these large modules, through-tenon joints cannot be used 
for the assembly, because no common assembly direction can be found. Instead, 
additional shear plates can be added and connected with metal fasteners on site. 
This strategy would require regular metal fastener joints on 17% of the edge-to-
edge connections on the first shell.

5. Conclusion
With his Gaussian vault structures, Eladio Dieste developed a highly elegant and 
efficient structural system, taking advantage of the local resources and technol-
ogy at his time. In the same spirit, the new construction system in this paper 
presents a contemporary re-interpretation of a double-curved shell structure us-
ing timber, a locally sourced material that addresses the contemporary shell for 
sustainable building structures.

Dieste’s masonry shells were based on the material and its connections, 
which could not resist bending forces. This was addressed through the form of 
the shells, but it also put a great outward thrust on the supports, requiring sub-
stantial reinforcements. Our new construction system uses integrally attached 
timber plates, with different material and joint properties. Our joints can resist 
bending forces, which is reflected in the different form of our shells, which re-
duces horizontal forces on the supports.

While previous projects introduced dovetail joints for the connection of tim-
ber plates, the through-tenon joints provide a high resistance to bending forces. 
Like the dovetail joints, the through-tenons are also prismatic joints and reduce 
the mobility of parts to a single motion path.

Figure 12. left: upper shell plates, right: cross-section view.
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The use of prismatic joints, fabricated with a 5-axis CNC-enabled cutting 
method, allows us to integrate the assembly instructions into the shape of the 
plates. Therefore, our construction system does not require a mould, which is 
crucial for the case study project with its 23 individually shaped shells.

The tiling with trapezoidal shaped hexahedron segments was chosen to op-
timize the assembly of the structure, the mechanical strength of the joints and 
the transfer of forces within the structure.

A rotation of the tabs allows for the piece-by-piece assembly of small plates, 
connecting multiple edges simultaneously. We analysed the influence of this ro-
tation on the shear strength of the joints and optimised the shape of our plates 
based on the results.

The alternation of the joint rotation in every second row avoids long-range 
escape paths, supporting our strategy of blocking parts with one another, using 
their form to reduce or replace the need for additional fasteners.

4 x 7 Segments Prototype
Scale 1 : 2.6

Figure 13. Isometry of arch 1 with location of Prototype A (scale 1:2.66).
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At the same time, the alternating trapezoidal shape of the segments results 
in an alternating rotation of all edges across the direction of span on all shells. 
The length of these edges is increased and continuous bending axes are avoided.

The research underlines the need for close interdisciplinary collaboration of 
architects, computer scientists, and engineers in the development of new types 
of sustainable lightweight structures, which are equally optimised for fast and 
precise assembly and for structural efficiency.

Figure 14. 4 x 7 segment prototype at scale 1:2.6.

Figure 15. 4 x 7 segment prototype, fabricated from 15 mm birch veneer panels (scale 1:2.6).
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Abstract
This paper explores the potential of forming hierarchical structures using just one 
type of element, called SL block. SL block is an octocube composed of an S-shaped 
and an L-shaped tetracubes attaching to each other side by side. SL blocks can 
be systematically assembled into variations of interlocking structures called SL 
strands. Multiple SL strands can be used as basic elements to build larger and 
stronger structures. A generative process of SL strands based on syntax-directed 
translation of high-level geometric specifications is defined to formalise the anal-
ysis and synthesis of forms that can be constructed with interlocking SL blocks. 
With the system it is not difficult to design forms that can be built by SL blocks 
in a top-down manner. SL blocks can be assembled to form large and firm struc-
tures without using mortise/tenon, glue, or nail. The construction can be repet-
itively dissembled and reassembled into various forms. The assembly process 
can be guided with sequential instructions so that very sophisticated structures 
can be encoded into compact and efficient specifications for construction. 

Keywords: 
interlock, polycube, generative system
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1. Introduction
The research described in this paper uncovers a specific type of polycube, called 
SL block, which is an octocube consisting of an S-shaped and an L -shaped 
tetracubes attaching to each other side by side as shown in Figure 1. SL blocks can 
be used to assemble extendable self-interlocking structures. Large and stable 
structures can be constructed with thousands of SL blocks without using mortar, 
glue, or any adhesive materials. A set of generative rules of building interlocking 
structures with SL blocks was discovered. A generative system is proposed to 
enable systematic methods for the design and assembly of composite structures.

Interlocking is an interesting issue that is very useful in timber and prefabri-
cated constructions. Advances of digital fabrication technology drive researches 
towards automatic generation of interlocking parts for assembly (Song et al. 2012). 

Interlocking levels of assembled structures can be distinguished by calculating 
the degrees of translational freedom for individual parts of the structure as well 
as the network of relations for parts engagements (Fu et al. 2015). Among these re-
searches, polycubes were often used as the basic elements (Lo et al. 2009; Song et al. 

2012; Song et al. 2015).
The discussion is further extended to uncover the top-down design method 

of constructions with higher levels of hierarchy based on interlocking SL blocks. 
The generative mechanism is defined with context-free string grammars, which 
is fundamentally different from the shape grammar devised by Stiny (1980). Shape 
grammar is based on the processing of non-monotonic shapes, which are regarded 
as dividable constructs that allow non-deterministic recognition and processing of 
shape features. Shape grammar is inevitably coupled with the problem of being 
non-computable for which its grammar rules, with the required non-terminal shapes 
in the left-hand sides, are all context sensitive. For shape generative methods, Shih 
(1994) took a different approach by using string grammars to generate sequences 
of symbols that specify shape creation processes. String grammars have been 
successfully used for the compilation of high-level programming languages since 
the 1970s. Well-developed methods based on string grammars have been proven 
to be efficient and effective for the analysis and synthesis of syntactic structures 
that can be defined with context-free grammars.

Figure 1. An SL block consists of an S-shaped and an L shaped tetracubes.
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2. Engagements, Strings and  
Strands of SL Blocks

The engagement of two SL blocks is defined with the transformation that trans-
forms one SL block to the other block that is attaching to it. Figure 2 shows 10 
types of engagements for SL blocks that form the basic structure of interlocking 
configurations. The blue (darker) one in each figure represents the host block, 
which receives a grey (lighter) block as the guest for the engagement. A geo-
metric transformation can be defined to transform the blue to the gray. Each en-
gagement is named with an upper case letter if the engaging position is at the L 
part of the host block, and is named with a lower case letter if the engagement 
takes place at the S part of the host block.

A string of engagements specifies the construction process of an SL string 
by starting with an initial block and adding on more with sequential applications 
of engagements in the string. For example, the string HhH specifies a string of 
four SL blocks lining up to form the configuration shown in the left-hand side of 
Figure 3. Respectively, SL strings of aaa and ddd are shown in the center and the 
right-hand side of Figure 3.

h	 a	 d	 s	 t	
Figure	2.	10	types	of	engagements	for	SL	blocks.	

A	string	of	engagements	specifies	the	construction	process	of	an	SL	string	by	starting	
with	an	initial	block	and	adding	on	more	with	sequential	applications	of	
engagements	in	the	string.	For	example,	the	string	HhH	specifies	a	string	of	four	SL	
blocks	lining	up	to	form	the	configuration	shown	in	the	left-hand	side	of	Figure	3.	
Respectively,	SL	strings	of	aaa	and	ddd	are	shown	in	the	center	and	the	right-hand	
side	of	Figure	3.	

HhH	 aaa	 ddd	

Figure	3.	SL	strings	represented	with	corresponding	types	of	engagements.	

Engagements	with	upper	and	lower	cases	of	the	same	letter	are	conjugates	to	each	
other.	For	every	SL	string,	a	conjugating	string	can	be	derived	by	replacing	each	
engagement	with	its	conjugate.	Two	conjugating	strings	of	SL	blocks	can	be	placed	
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Engagements with upper and lower cases of the same letter are conjugates 
to each other. For every SL string, a conjugating string can be derived by replac-
ing each engagement with its conjugate. Two conjugating strings of SL blocks 
can be placed against each other from the tops to form an interlocking structure 
called an SL strand. Figure 4 shows three simple interlocking strands formed by 
placing conjugating strings against the three SL strings shown in Figure 3. In this 
paper we use # as the notation for the operation that combines two conjugates 
together to form a strand. Since it is trivial to derive the conjugate of an SL string, 
the second string in an SL strand can be omitted in the notation. 

Figure	3.	SL	strings	represented	with	corresponding	types	of	engagements.	

Engagements	with	upper	and	lower	cases	of	the	same	letter	are	conjugates	to	each	
other.	For	every	SL	string,	a	conjugating	string	can	be	derived	by	replacing	each	
engagement	with	its	conjugate.	Two	conjugating	strings	of	SL	blocks	can	be	placed	
against	each	other	from	the	tops	to	form	an	interlocking	structure	called	an	SL	strand.	
Figure	4	shows	three	simple	interlocking	strands	formed	by	placing	conjugating	
strings	against	the	three	SL	strings	shown	in	Figure	3.	In	this	paper	we	use	#	as	the	
notation	for	the	operation	that	combines	two	conjugates	together	to	form	a	strand.	
Since	it	is	trivial	to	derive	the	conjugate	of	an	SL	string,	the	second	string	in	an	SL	
strand	can	be	omitted	in	the	notation.	

HhH	#	hHh	 aaa	#	AAA	 ddd	#	DDD	

Figure	4.	SL	strands	with	conjugating	strings	of	three	engagements.	

3. Interlocking	

The	interlocking	mechanism	of	elements	can	be	distinguished	by	whether	it	is	locked	
by	topology	or	by	friction.	With	topological	interlocking	(Dyskin	2003),	the	whole	
structure	would	not	be	broken	until	some	elements	have	already	been	broken.	If	the	
element	is	locked	by	friction,	then	the	structure	falls	apart	when	the	dragging	force	
overpowers	the	friction.	The	interlocking	structure	of	SL	strands	is	not	totally	

Figure 4. SL strands with conjugating strings of three engagements.

Figure 5. The conjugating strings of HhHhHhHhHhH (center) and hHhHhHhHhHh (bottom). The interlocking strand built 
with the two strings (top).
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3. Interlocking
The interlocking mechanism of elements can be distinguished by whether it 
is locked by topology or by friction. With topological interlocking (Dyskin 2003), the 
whole structure would not be broken until some elements have already been bro-
ken. If the element is locked by friction, then the structure falls apart when the 
dragging force overpowers the friction. The interlocking structure of SL strands 
is not totally topological. Indeed, if any composite structure with parts that are 
jointed totally with topological locking, there would be no way to disassemble 
the structure without breaking some of the parts. Take the long strand formed by 
HhHhHhHhHhH and its conjugate (Fig. 5) as an example. Interlocking is topologi-
cal when applying forces along the axial direction of the strand. The strand will 

Figure 6. The conjugating strings of HhaHhaHhaHh(a) (bottom left) and hHAhHAhHAhH(A) (bottom right). The interlocking 
strand built with the two strings (top).

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



130

not be broken unless it is pulled apart along its axis hard enough to break some 
of the blocks. When the dragging force is applied vertically, which is along the 
same direction as the conjugate string is pushed into the host string, the lock-
ing is held only by friction. Even so, except for the two blocks that are located at 
the very ends of the strand, no single SL block can be pulled out of the strand 
without taking with it at least one other block. The weak points of the ends dis-
appear when the strand joints its two ends to form a cyclic configuration such 
as the strand of HhAHhAHhAHA(A) # hHahHahHahH(a) (Fig. 6). The engagement 
enclosed by parenthesis is for the emerging engagement that takes place when 
the last SL block engages with the first.

4. Syntax-Directed Translation of SL Strings
Syntax-directed translation is a method of compiler implementation for trans-
lating the input code in one language to its corresponding code in another lan-
guage. The definition of a specific syntax-directed translation requires an input 
grammar, which is used to derive the syntactic structure of the input, and an 
output grammar, which is used to generate the output. Our purpose is to derive 
the construction process of SL strands for a given shape.

With the notation we used, the plus sign represents options for what is to 
substitute with, and 1 represent the null string. The translation is defined as such:

Non-terminal Production rules for input string Production rules for output string

Init: XT  

XT → 1. XS XS

 2. XL XL

 3. 1 1
XL → 4. ff XS H XS

 5. frf XL A XL

 6. dff XL + fdf XL + ffd XL D XL

 7. ufrf XS + furf XS + fruf XS + frfu XS T XS

 8. dflf XS + fdlf XS + frdf XS + flfu XS S XS

 9. 1 1
XS → 10. ff XL h XL

 11. flf XS a XS

 12. uff XS + fuf XS + ffu XS d XS

 13. dflf XL + fdlf XL + fldf XL + flfd XL t XL

 14. ufrf XS + furf XS + fruf XS + frfu XS s XS

 15. 1 1
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The input grammar defines a language that uses letters to represent the path 
of the SL string. The definitions of letters are listed as follows:

f : move one step forward
r : turn right for 90 degrees
l : turn left for 90 degrees
u : move one step up
d : move one step down

With this representation, a straight line of n steps can be written as f n. 
A square with 6 steps in width can be written as f 5rf 6rf 6rf 6rf. With the above 
syntax-directed translation, the square would be translated into the SL string 
(HhA) 4. With the string, it is trivial to derive the conjugate to build the correspond-
ing strand, as the photo shows in the middle of Figure 6. The deviation process of 
the output string is listed as follows:

Syntax-directed translation (Aho et al. 1986) can be used to implement tools for 
automatic generation of SL strand based on figures drawn by the user. With the 
parser for the input grammar, the process can also check if it is possible to cre-
ate an SL strand for the desirable form. The tool can use the input grammar to 
guide the form-creation process so that only forms that can be assembled with 
SL blocks would be drawn. Even when erroneous forms are given as input and 
the parsing fails, some syntax-directed methods such as error-correcting parsing 

Input : Output

 Rule Input Output

 XL XL

 4. ff XS H XS

 10. f 4 XL Hh XL

 5. f 5rf XL HhA XL

 4. f 5rf 3 XS HhAH XS

 10. f 5rf 5 XL HhAHh XL

 5. f 5rf 6rf XL HhAHhA XL

 4. f 5rf 6rf 3 XS HhAHhAH XS

 10. f 5rf 6rf 5 XL HhAHhAHh XL

 5. f 5rf 6rf 6rf XL HhAHhAHhA XL

 4. f 5rf 6rf 6rf 3 XS HhAHhAHhAH XS

 10. f 5rf 6rf 6rf 5 XL HhAHhAHhAHh XL

 5. f 5rf 6rf 6rf 6rf XL HhAHhAHhAHhA XL

 9. f 5rf 6rf 6rf 6rf HhAHhAHhAHhA
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(Aho et al. 1972) might be able to adapt the input form so that some similar shapes 
that are buildable can be created. With the assistance of such tools, it would not 
be difficult to create more sophisticated structures using multiple SL strands.

5. Strand Hierarchy
Interlocking can be implemented at various levels, among which the lowest is 
built upon the engagements of SL blocks. Since SL strands are stable construc-
tions formed by interlocking SL blocks, they can be used as basic elements to 
create super structures built upon multiple SL strands. The process may go on 
recursively for higher hierarchy still. Figure 7 shows a structure built with eight in-
terlocking rectangular rings arranged like a cyclic chain. The ring-like strands are 
moveable but cannot be totally separated from each other.

Figure 7. A chain structure with 8 moveable parts built with SL strands of (ahHhHahH)².
left: expanded; right: contracted.

Figure 8. A chain structure with non-moveable parts built with 20 SL strands.
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Figure 8 shows a long stick consisting of 480 SL blocks. The structure is formed 
by 20 interlocking square rings identical to the one that is shown at the top of 
the figure. Except for the two ends, each internal ring is locked by two neigh-
boring rings that are oriented perpendicularly. The structure effectively prevents 
individual strand from breaking when forces are applied to twist the entire chain.

Figure 9b. One of the strands for the interlaced structure.

Figure 9a. A structure with interlaced strands.
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 Figure 9(a) shows a structure built with 9 interlaced SL strands like the one shown 
in Figure 9(b), which can be represented as (asHhTahH)n#(AShHtAHh) n. Interlacing 
could be an effective means to substentially extend the size and strength of the 
structure for practical applications. Each strand is strenthened by perpendicular 
strands that are locked with it. Except for the SL blocks that are located at the 
boundary, all internal blocks are topologically interlocked by others.

Figure 10(a) shows three structures composed of spiral strands. The one 
on the left consists of just one spiral strand, represented as (St)n#(sT) n. The 
center one consists of two interlocked spiral strands, each of which is repre-
sented as (add) 4n#(ADD) 4n. The structure on the right consists of four spiral 
strands interlocked to form an integrity. Each of the strand is represented as 
(adddd) 4n#(ADDDD) 4n. (Fig. 10 b)

Figure 10a. Three structures with spiral strands.
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6. Conclusion
SL block is a simple element with great potential for building larger composite 
structures. It is feasible to create hierarchical structures using multiple SL strands. 
Generative rules for the engagements of SL blocks enable efficient means for 
the analysis and synthesis of forms that could be built with SL blocks. Its usage 
for architecture is yet to be discovered. Various materials, details, sizes of SL 
blocks, etc., should be tested for practical applications.

Figure 10b. The spiral strand of (adddd) 4n.
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Abstract
Most recent developments in architectural geometry pursue formal complexity 
through non-standard building components that are digitally defined and fabri-
cated from standardised material. An alternative approach is proposed in which 
non-standard materials are used a priori by exploiting their inherent geometric 
forms through metaheuristic optimisation placement techniques. The rationale 
for this approach is that the diverse characteristics of near-site material can be 
exploited directly without wasteful industrial processing to first standardise and 
then add variation back to the component geometries.

This proposition is tested in the Wood Chip Barn project completed by  
Design + Make at Hooke Park, in which a series of strategies allowed the inherent 
natural geometries of forked wood to be exploited. The application of 3D-scanning, 
evolutionary optimisation of the placement of each discrete component within a 
structurally determined arch, and customised robotic fabrication are presented 
as enabling an alternative conception of material form in which inherent irregular 
geometries are actively exploited by non-standard technologies. 

Keywords: 
natural material, inherent form, 3D-scanning, fabrication, robotics
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1. Introduction
While wood has seen a resurgence as an advanced architectural material, the 
complex and organic forms pursued are generally not attributable to the inher-
ent geometric and anisotropic structural properties of wood. Instead, subtractive 
digital fabrication processes are often used to create complex components from 
standardised and homogenised wood products that have been glued together 
to ensure consistency (Self 2016, 1). However, before processing, trees and other 
organic materials already present what digitals tools are commonly employed 
in pursuit of: a non-standard series (Carpo 2011, p. 105). Thus, a wasteful redundancy 
becomes apparent in which material is processed two or more times to achieve 
characteristics that may already be present in the original material. Analogous to 
the intuitive assembly of a dry-stone wall from irregular rocks or the application 
of specifically curved timbers in traditional ship building, alternative conceptions 
of design and fabrication process have recently been proposed (Monier et al. 2013; 

Stanton 2010; Schindler et al. 2014) which address this redundancy.
In a standing tree the naturally occurring branching forks exhibit remarkable 

strength and material efficiency, able to carry significant cantilevers with mini-
mal material. The Wood Chip Barn project revisits the traditional methods that 
used curved and forked timber sections in the fabrication of wooden boat hulls 
in the 17th and 18th centuries. In need of a range of non-linear components, ship-
builders selected appropriate materials based not only on the geometric form 
of pieces of wood but also an understanding of the strength of their grain. By 
aligning the grains of these branched members which had grown in response to 

Figure 1. The Wood Chip Barn’s 
arching truss.
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specific loads they had carried while standing into their designs, boat-builders 
were able to construct stronger vessels (Matthew 1831, 15).

The present work tests the premise that the integration of digital tools in-
cluding 3D-scanning, parametric control modelling, and robotic fabrication enable 
sophisticated exploitation of the inherent qualities of natural materials such as 
wood. The building’s primary structure is an arching truss consisting of 20 dis-
crete beech forks that were 3D-scanned and optimally configured for structural 
performance before receiving robotically machined connection geometries that 
define their relationship to each other. The inherent geometric forms and structural 
potential of naturally grown tree forks (Slater & Ennos 2015) from Hooke Park’s forest 
were deployed to create a long-span structure with minimal machine processing.

In this paper four key strategies are elaborated: the development of a precise 
geometric referencing system to ensure consistent placement of each component 
independent of its irregular surface features; the photographic and photogrammet-
ric techniques deployed to identify and 3D-scan appropriate tree-forms to build 
a database of available geometries; the metaheuristic evolutionary optimisation 
of the placement of each discrete component within the structurally determined 
arch form; and the strategies employed in the robotic tool path generation for 
the connection fabrication to ensure overall dimensional precision independent 
of the local material irregularity.

Figure 2. A plate 
from the Encyclopédie 
Méthodique (1782) which 
illustrates various naval 
timber components 
traditional boat-builders 
sought from curving and 
branched trees.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



142

2. Methods
2.1 Establishing a Database
Historically, shipbuilders travelled into the woods equipped with a set of tem-
plates describing the specific forms they required to construct various compo-
nents. The introduction of digital tools in this project allowed the use of a wider 
range of geometric forms as the eventual structural form was derived from the 
specific character of each component found rather than finding forms which 
would fit within a predetermined design. Two databases of tree-fork geometries 
were established. First, a photographic survey of 204 standing beech trees pro-
vided approximate two-dimensional fork representations with enough detail to 
make informed decisions on which trees to cut down. Following the harvesting 
of 25 selected trees, a second more detailed 3D-scan of each fork was carried 
out which allowed for the development of the final truss configuration from these 
forks’ specific geometric forms.

For the two-dimensional survey, a scaled polyline outline was generated by 
tracing a photograph of each fork, then correcting for parallax error according to 
the photograph’s inclination angle and distance from the tree. An analysis of this 
database gave an understanding of the variations in the geometric characteristics 
such as the included angle between branches and minimum diameters, and, by 
extracting GPS location data, patterns within the forest with the aim of identifying 
forest compartments with the most promising forks. From this analysis a short-
list of 40 forks to be considered for felling was generated based on geographic 
proximity to each other, as well as a minimum angle of opening and minimum 

Figure 3. Approximately scaled 2D 
outlines were generated for each 
of the 204 forks photographically 
surveyed.
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diameter which were determined in working with engineers from Arup based on 
early iterations of the truss form. Of these, 25 beech forks were successfully har-
vested. Once transported back to the yard, a detailed photogrammetric 3D-scan 
was made of each in order to capture their complex forms. The resulting surface 
mesh geometry was used as the basis of centre-curve and diameter approxima-
tions that informed the subsequent placing of the components.

Traditional timber framing methods include the projection of straight cen-
trelines and axes onto irregular pieces of wood. Measurements are then taken 
outwards from this arbitrarily introduced centre geometry to ensure that vari-
ations in the tree’s form have no bearing on the overall organisation. For this 
project, rather than straight centrelines, centre curves were defined using a 
polygon-based method in which transverse sections were cut through each fork 
at regular intervals to obtain the outer profile of their geometry and then local 
best-fit diameters and centroids calculated for each profiles’ section which were 
interpolated to generate the medial curves.

Throughout the project, a fundamental consideration was how to ultimate-
ly achieve construction precision when the original material exhibited complex 
irregularities. The whole workflow – from standing tree to standing building – 
was organised around a consistent system of geometric reference (in physical 
and digital realms) to ensure precision in the location of the components, and 
thus the relative position of the fabricated surfaces, even though the actual nat-
ural form was not precisely known. This referencing system simply consisted of 
three points that were physically created on the tree fork components by drilling 
three reference holes to define a local origin point, orientation axis and plane 

Figure 4. Medial curve generation 
from best-fit transverse circles.
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analogous to a local construction plane in 3D-modelling software. These holes 
were picked up in the 3D-scanning process so that they could be incorporated 
in the digital modelling processes and ultimately transferred back to the physi-
cal realm by being used as the supporting points when the fork component was 
mounted in the robot cell.

2.2 Metaheuristic Component Organisation
The tree forks are employed within a Vierendeel-style1 arching truss, whose global 
geometry was determined to take account of the initial analysis of the available 
forks. The Vierendeel configuration exploits the structural capacity of the fork 
junction that provides the rigid moment connection that enables the construc-
tion of a non-triangulated truss. The arch structure is composed of two planar 
inclined arched Vierendeel trusses whose lower chords are connected by lateral 
elements. The structure lands at four points, the front slightly wider than the rear, 
with four inverted tripod legs supporting the robotically fabricated mid-section.

The Grasshopper plugin for Rhino was used to develop an organisation pro-
cedure capable of dynamically placing forks within the truss’ target curves. An 
individual fork was located within the truss through a sequence of three trans-
formations: (1) moved to an assigned point on the lower target curve; (2) rotated 
3-dimensionally such that its stem contacts this same curve at a second point; 
(3) a second rotation performed using these two points to define an axis allows 
the branch to find its third point along the upper target curve. This placing logic 
was repeated for every component in each iteration of the optimisation.

1

2

3

Second point - rotateFirst point - move

Third point - rotate Evaluate deviation from target curves

Figure 5. This image illustrates the transformations each fork underwent in being oriented to the truss target curves. 
Once placed, its deviation from the target curve was evaluated as a fitness parameter.
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The procedure followed in organising the tree forks was to initially define the 
ideal (‘target’) inverted-catenary curves for the truss chords, and then to seek the 
optimum arrangement of the forks, in terms of their location within the structure 
and their exact local positioning, so as to best satisfy structural requirements. 
To minimise non-compression forces throughout the arched truss, the prima-
ry parameter evaluated in optimising the truss was the total deviation (‘offset’) 
of all 20 forks’ root and stem curves from the target curves. As the placement 
script became more developed, a number of secondary parameters were added 
which addressed specific material and fabrication requirements of the truss. For 
example, conditions were added to ensure a minimum 300-mm gap occurred 
between connections as well as controls to ensure that forks which had to pass 
by each other did not clash.

Within the organisation process, forks were allowed to move both globally 
(occupying different positions within the truss) and locally (shuffling within that 
position) with the aim of minimising the summed offset dimension. In order to 
allow the truss’ fitness to be optimised for the stated parameters in a controlled 
manner, a series of 20 integers were used as index values for selecting forks 
from the database of available geometries. Because the harvested forks were 
each longer than their required size, the individual forks were allowed to slide 
between the two points that define their position, to find the location where 
they best match the arch chord curve. The overall optimisation process was gov-
erned by 56 separate variables that would result in approximately 1 × 1059 pos-
sible solutions. In order to address this very large search space, metaheuristic 
processes were implemented in an effort to find appropriate solutions through 

Figure 6. An early test of 
the optimisation scripting 
using 2D outlines of 
forks and their respective 
centrelines. 
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partial searches rather than truly optimal solutions. Within the Galapagos com-
ponent developed by David Rutten for Rhino-Grasshopper, both the Evolution-
ary and Simulated Annealing solvers were used. The role of the human operator 
remained significant, and a number of strategies were implemented in order to 
aid the solving algorithms, as discussed below.

The allocation of real physical stock within a structure presents a particular 
challenge to optimisation processes. Whereas adjustable variables within an op-
timisation typically refer to abstract quantities or proportions and building com-
ponents are later derived a posteriori from a final geometry, in this case selected 
discrete integers refer to actual objects. As such, in order to select 20 forks to 
populate the truss, a list of 20 unique, non-repeating reference integers must be 
generated as forks cannot be in two places at once. The difficulty lies in avoiding 
duplication while allowing each position to select a value with equal priority. One 
option would be to null any iteration in which a selection is repeated but the per-
mutations for selecting 20 objects a list means that only about 0.001% would 
be admitted and thus too inefficient computationally. Another option would be 
to randomly assign shuffled sequences of fork objects in each iteration but this 
would lose any correspondence between iteration cycles, resulting in an overly 
stochastic search.

The strategy that proved most successful was to assign the forks to loca-
tions sequentially, accepting that the first location that was populated was likely 
to have better fit success than latter locations that have a smaller set of remain-
ing available forks to choose from. This was used to our advantage by dictating 
that queuing sequence according to which positions within the truss were more 

9F09 9G15

10E07 10E?? 11A29 11B09 11B16 11B25 12A03 12B10 12B1311A12 11B03 11B06

8C11 9B048A13 8A14 8C05 8C14 8D02 8D038A03 8A208A12

Figure 7. The Wood Chip Barn’s 
arching truss.
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difficult to populate than others, thus requiring more specific or uncommon fork 
geometries (examples include those which cross each other). These positions 
were placed higher within the selection queue, allowing them to take priority 
over those positions that might be more easily filled.

A related strategy that was found to help improve the metaheuristic search 
was to sequence the discrete set of available forks according to their geometric 
similarities. This helped the optimising solver because it meant it was presented 
with variables in which there was a correspondence between variations between 
forks and their position in the integer sequence that indexed them. To generate 
this sequence, a script was written which, by comparing each fork’s three cen-
tre curves, was able to rank the remaining 24 forks in a logical order by their 
geometric similarity to the first. While this ‘similarity’ represented a significant 
simplification of these complex 3-dimensional forms, it was observed that this 
reordering increased the ability of the solver to generate meaningful truss con-
figurations. Although with just 25 forks the steps between them remain quite 
significant, it is presumed that a larger database would with surveys of enough 
forks begin to result in a smooth progression of geometric forms and thus en-
able a less stochastic search.

From the optimisation script, a series of possible truss iterations were out-
put, and geometries provided to the engineering team for analysis and compar-
ative quantification of the structural performance.

By automatically drawing these lines to layers based on local fork diameters, 
the performance of the truss could be accurately and swiftly evaluated by the 
engineers for a large number of iterations. In working with the engineers, one of 

Curve D_0

Curve D_1

Curve D_2

Point D_4

Circle D_7

Circle D_8

Circle D_9

Point D_5

Point D_6

Figure 8. The final 
wireframe drawing output 
from the optimisation 
scripting.  
All of the digital 
fabrication information 
was developed from 
these geometries.
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these iterations was selected and this arrangement further refined. With a final 
truss geometry confirmed, the optimisation script was used to output a model 
with all of the geometry needed to derive the necessary digital fabrication infor-
mation – 60 curves, 60 points, 60 radius circles, and 20 meshes.

2.3 Connection Definition and Fabrication
The strategy for the connections between the truss components was to maxi-
mise the use of compression transfer through timber-to-timber bearing and to use 
steel bolts and split rings to provide tension and shear capacity where needed. 
The connection bearing surfaces were all formed by milling using a router spin-
dle on a six-axis robot arm. Additionally, the router was used to drill pilot holes 
and make locating marks for the steel hardware, and to drill further geometric 
reference holes for the truss assembly. Three categories of connections were 
fabricated. Firstly, a set of 36 axial connections between components along the 
truss chords were formed by milling matching planar end-faces on the pair of 
meeting components, which were tied together using pair of steel cross-bolts. 
These two planar faces, on two different pieces of irregular wood, needed to be 
precisely positioned and oriented 3-dimensionally so that the compression force 
would be transferred evenly.

Secondly, an oblique through-bolted mortise and tenon connection was used 
to connect the end of the branch elements to the top chords. The timber inter-
face geometry for this connection became relatively complex as a consequence 
of needing to provide sufficient compression area whilst allowing for diversity in 
the position of the surrounding wood surface and also having a geometry that 
could be formed within the access constraints of the robot arm. A form similar 
to a truncated elliptical cone was found to best satisfy these criteria. A further 
subtlety was that while the compression-bearing surface was precisely milled as 
a smooth surface, the non-loaded surface was best milled as a series of contour 

Figure 9. Development of the mortise and tenon connection.
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steps. Thirdly, a simpler set of planar ‘seat’ surfaces were defined and milled, to 
which smaller reinforcing timber truss members were screw connected.

To create the connection geometries, a pair of corresponding ‘subtraction 
volumes’ was defined for each of the pair of elements meeting at a given con-
nection. These subtraction volumes – co-planar on their shared faces – consisted 
of geometric primitives (cuboid, cylinder, truncated cone) and represented the 
volume of the wood material to be removed to leave the required connection 
surface in its correct precise position. Intentionally, these subtraction volumes 
were oversized when compared to the actual pieces of wood (i.e. larger the 
fork’s local diameter) to allow for irregularity in the wood’s surface and thus 
ensure that all of the existing wood would be removed as required. In other 
words, there was always some ‘milling of air’ to provide tolerance for inac-
curacies of the surface scan. This was one of the fundamental strategies for 
achieving connection precision whilst allowing for variability in the surface of 
the irregular natural material.

The output of the fork placement optimisation process was a 3D-model com-
prising sets of points, curves, and meshes that defined the component positioning, 
centre-curves, and surfaces, respectively. The spatial location of each fork compo-
nent was defined using the three reference points from the original scan that de-
fined its local coordinate system. A further three nodes defined the intersections 
of the centre-curves with the truss chord curves for each element; these nodes 
are shared with neighbouring elements and locate the connection geometries. At 
each of these connection nodes a set of vectors was defined that represented 
the local tangent directions of the two or three incoming elements’ centre-curves.

Figure 10. The robot arm 
machining one of each fork’s two 
bearing surface.
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This set of minimal information for each connection – the three direction 
vectors and the xyz coordinate of the connection node – was the input for the 
generation of the connection surface geometries. Notably, the surface mesh 
data was not used directly in defining the connections; it was only used to check 
that the connection milling volumes would wholly capture the available wood. 
These subtraction volumes were geometric primitives defined relationally from 
surrounding nodal and vector information. Once defined, these volumes were 
populated with routing toolpaths defined using Grasshopper.

The robotic fabrication cell consisted of a fixed-position 2.7 m reach 6-axis 
robot arm carrying a routing spindle, and an adjustable ‘trolley’ that carried each 
fork for machining. Three vertical steel dowels, located in a horizontal plane, sup-
ported the fork at its reference holes, ensuring correct positioning of the fork 
within the robot workspace. The trolley itself was able to move longitudinally, 
acting analogously to a seventh-axis rail and enabling the robot to access the 
various parts of the tree for fabrication.

Machining finished, a large assembly jig made up of CNC’d sheet material 
and wooden studs was constructed in the Big Shed in order to precisely join to-
gether these large and complex building components. The truss was preassem-
bled in two halves – each approximately 8 m x 6 m. This jig needed to allow the 
positioning of all ten forks in each half with respect to each other precisely and 
stably, as no connections would be made until all of the components had been 
loose fit together. In order to allow this, a second three-point reference system 
was established. The last procedure performed by the robot arm on each fork was 
to mill a second set of three reference holes - each drilled such that they would 

Figure 11. The front half of the 
truss being assembled within the 
Big Shed. In this image, all ten forks 
are loosely braced together before 
any connections have been made.
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be vertically oriented once the fork was properly positioned above the jig’s floor. 
Corresponding to these points, three square pockets were cut into the 18 sheets 
of oriented strand board (OSB) by the CNC for each of the 20 forks, a simple 
vertical support then rising from each pocket to allow the reference points to be 
precisely set out in X, Y and Z.

Forks were lifted into place one at a time and temporarily braced. With 
ten forks positioned and approximately fitting, the robot-fabricated top chords 
were lifted in to place. With all of the major pieces held together as a loose 
system, the assembly team moved around the truss with hammers, straps 
and a Rhino model, adjusting each piece to as close to its intended position 
as could be achieved.

3. Results, Reflection, and Conclusion
With the preassembly completed, the two halves of the truss were moved to site 
where they were craned in to place and connected. The ease with which these 
large pieces came together is seen to demonstrate the success of the geomet-
ric strategies previously described in the processing of inherently non-standard 
materials. With its scaffolding removed, the truss was left self-supporting – its 
rigid, naturally formed forked components working together to allow a non-trian-
gulated truss to stand stably. Spanning 25 m from front to back and 10 m side to 
side, the truss rises to 8.5 m at its zenith. Subsequently roof panels were added 
and the Wood Chip Barn building completed.

Figure 12. A drone photo of the 
Wood Chip Barn’s primary structure 
erected on site. Spanning 25 m 
from front to back and 10 m side 
to side, the arching truss rises to 
8.5 m at its zenith.
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Throughout this work digital technologies were used to convert low-value 
branched section of trees into complex and valuable building components while 
using a minimal amount of energy. In combining 3D-scanning, metaheuristic 
optimisation and customised robotic machining with traditional timber framing 
practices this has been done without significant increase in production time 
over a similar structure composed of standardised materials – the fabrication 
and construction of the building taking place in under 6 months. That the Wood 
Chip Barn project was realised by a student team using low-cost software and 
local resources is seen to prove the viability of a design-fabrication workflow in 
which the inherent geometric forms of materials can be exploited and deployed.

As, we believe, the first full-scale materialisation of these concepts, each 
of the individual processes within the workflow might be further developed and 
refined. For example, the survey from which components were selected for in-
clusion in the structure documented just 204 trees from the Hooke Park estate. 
A survey of this kind might be expanded to include thousands of available tree 
forms from a number of forests, and in doing might progress to be capable of 
allowing an understanding of how variables such as topography and climate af-
fect the development of specific tree geometries for construction purposes. As 

Figure 13. The structure fully loaded with its roof added. The complex form of the truss contrasts with the regular lines of 
the roof above. Image: Valerie Bennett.
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well, the optimisation process could be developed to integrate real-time structural 
analysis as well as a sensitive consideration of wood’s unique grain patterns. In 
allowing the global form to be adjusted in accordance to performance and local 
material properties, this might allow for a greater degree of design flexibility and 
a return to the sensitive treatment of material in traditional buildings.

While the Wood Chip Barn project focuses on the exploitation of naturally 
occurring materials – in this case branched trees – the geometric strategies de-
veloped throughout might readily be applied to other materials with inherent form 
such as recycled industrial building components. In an era in which architects 
commonly seek to both add geometric sophistication to built forms as well as to 
reduce the embodied energy of their projects, lessons from the work outlined 
in this paper have significant implications. The on-site processing of near-site 
material by a generic industrial robot arm serves as an example of distributed 
manufacturing processes that fully exploit the potential of new digital tools and 
technologies. The non-standard aspect of the structure achieved is derived di-
rectly from a specific material’s inherent forms.

Endnotes
1 A Vierendeel truss arrangement, more commonly found in steel structures, is one in which the truss gains stability by rigid moment resisting 

connections in place of triangulation.
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Abstract
Recent developments in the field of segmented timber shells have shown prom-
ising structural and constructional characteristics. Advancements in computa-
tional design and digital fabrication enable architects and engineers to handle 
the increased geometric complexity necessary for this new construction type, 
integrating fabrication constraints and structural feedback in one design model. 
The research presented in this paper builds on new findings from biological role 
models for the constructional morphology, connection type, and material distri-
bution of segmented shells. Based on the transfer of these principles, a robotic 
fabrication technique was developed that enables the production of elastically 
bent, double-layered segments made from custom-laminated beech plywood, 
by transferring traditional textile connection methods to timber construction. The 
construction system was evaluated through the design, production, and assem-
bly of a large demonstrator. 

Keywords: 
timber shell, segmented shell, elastic bending, textile fabrication,  
finger joint connection, robotic fabrication
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1. Introduction: Segmented Timber Shells
The transfer of biological principles of constructional morphology from natural 
organisms into technical applications has a long tradition in engineering. Howev-
er, only recent developments in digital design and fabrication have unlocked the 
vast possibilities and opportunities of biomimetic design strategies for architec-
ture and construction as the generation, communication, and fabrication of com-
plex geometry becomes a crucial aspect of the design process (Kieran & Timberlake 

2004). Simultaneously, these advancements have now driven architectural design 
research to seek for natural examples that are characterised by both their com-
plex, hierarchical material distributions, and their high structural performance.

Often, morphological and process-specific role models in nature lie outside 
or between established categories and methods in building construction. In addi-
tion, their complex shapes necessitate a digital chain from design to fabrication. 
Especially in the field of lightweight timber construction, biological role models 
have helped to redefine building systems, design methodologies, and fabrication 
technologies. As shown in previous research by the authors (La Magna et al. 2013; Krieg 

et al. 2015), segmented shells exhibit promising structural characteristics as well as 
architectural articulations. However, they pose challenges to the fabrication and 
construction and therefore require innovative and integrative design methods.

The research presented in this paper is based on a new approach to segment-
ed shells in architecture. It builds on existing role models and integrates newly 
discovered biomimetic principles as well as robotic textile fabrication techniques 
for thin timber shells. Common connections in timber construction are usually 
optimised for much thicker building elements, but can hardly be applied to thin 
layers of veneer. Instead, much more suitable solutions were found in textile 
manufacturing techniques, and the construction system presented in this paper 
was developed based on one of the oldest techniques for fastening and attaching 
objects: sewing. Although sewing is used in many different industries, the degree 
of automation is often far less than in other production processes. The reciproci-
ty between the sewing machine’s mechanics, the thread, and the sewn material 
mostly require sensitive manual labour and many fast corrections in the mate- 
rial or tool movement. Although contemporary sensing technology and machine 
control allow for the necessary adaptability, only few automated solutions have 
been developed to date. Still, the possibilities of industrial sewing machines in 
architecture are promising as they can go far beyond the connection of textiles.

Timber as a construction material offers notable advantages. Not only the 
ecological benefits such as its negative carbon footprint (Alcorn 1996), but also its 
strength to weight ratio as well as its high elasticity make wood an ideal material 
for lightweight building construction. Further, the advancement of digital fabri-
cation in the timber industry and its ease of machinability provides great possi-
bilities for innovative freeform structures. As a natural fibre composite it would 
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seem counter-intuitive to use contemporary connection types that generally rely 
on subtractive fabrication that cut off and destroy the fibres and therefore weak-
en the material itself. In contrast, textile connections such as sewing provide the 
opportunity to connect timber elements while maintaining most of their fibrous 
material structure. Textile connection techniques have a long tradition in timber, 
e.g. in historical boat construction. They are often employed when geometrical 
flexibility is desired at the connection level, however they usually require predrill-
ing of holes and large amounts of manual labour, making it less suitable for large 
scale applications. This can be avoided by employing modern robotic fabrication 
techniques in conjunction with an industrial sewing machine.

2. Biological Principles of Double-Layered 
Segmented Shell Structures

Previous research by the Institute for Computational Design (ICD) and the Insti-
tute of Building Structures and Structural Design (ITKE), in collaboration with the 
Department of Geosciences at the University of Tübingen in the field of segment-
ed shells (La Magna et al. 2013; Krieg et al. 2015; Li & Knippers 2015) was characterised by a thor-
ough investigation of biological role models as a basis for further structural and 
constructional developments. Exhibiting promising morphological features, the 
skeleton of echinoids was analysed to transfer functional and structural principles 
to the construction of segmented shells in architecture. As biological research 
advanced in the last years this previous work has been revisited and extended 
for a new type of lightweight timber construction.

Within the taxonomic phylum of Echinodermata, two species of the class 
Echinoidea (sea urchin) and the order Clypeasteroida (sand dollar) were identified 
as particularly promising for the transfer of morphological principles for the con-
structional morphology as well as procedural principles of growth and form-finding 
for an integrative design process. The biomimetic analysis of these species led to 
the further investigation of the following, already known, principles: (1) a double- 
layer skeleton, which forms in some species as so-called secondary growth and 
reinforces the test; (2) hierarchical material organisation and differentiation within 
the calcite stereom, which can be found in many biological structures (Gruber & 

Jeronimidis 2012); and (3) the principle of connecting segments with finger joints.
In an effort to thoroughly understand the constructional morphology, a num-

ber of previously unknown principles were also identified and integrated into 
this research project: (1) the differentiation of material composition for elastic 
or stiff material behaviour; (2) fibrous connections between segments in addi-
tion to the finger joints; (3) growth principles of plate addition and plate accre-
tion (Raup 1968; Chakra & Stone 2011); and (4) morphological features such as internal 
supports and shell openings, which appear in most sand dollars and are most 
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relevant in an architectural context. Although wood is a natural fibre composite 
with anisotropic material behaviour compared to the heterogeneous calcite with 
highly differentiated porosity, which makes up the skeleton of sea urchins, the 
analysed constructional principles can be transferred on an abstract level.

The basis of the system development was formed both by the abstraction 
of biological principles and the inspiration from the material. From the former a 
double layer construction similar to the secondary growth (Fig. 2a) in sand dollars 
was derived. The latter led to the choice of extremely thin and elastically bent 
plywood, which once bent and connected to neighbouring elements generates 
a stiff doubly-curved shell structure (Fig. 2b). In order to achieve sufficient intercon-
nection between the two layers while allowing high geometric flexibility within 
the segment geometry, the general segment construction logic is based on three 
initially planar plywood strips with 3 mm to 6 mm thickness, which are bent 
around their longitudinal axis in order to connect on both ends with lap joints. 
These thin plywood strips are normally not suitable to bear significant bending 
moments, which is why forces are mostly transferred in form of in-plane shear 
forces and normal forces. This is also reflected in the joint layout. The shear forces 
and compression forces can be transferred between elements via finger joints. 
As an additional element, laces are used similar to the fibrous connection of sea 
urchins to withstand tensile forces.

The calcite plates of some sea urchin species are connected through fibrous 
elements (Fig. 3a), and it can be hypothesised that those play an important role in 
maintaining the shell stability during growth as well as for dynamic forces (Wester 

2002). The possibility of the fibrous connections to adjust to continuously varying 
connection angles between the segments, and to adjust to tolerances during 

Figure 1a. Photograph of the interior of a Clypeaster 
Rosaceus with visible internal support structures 
connecting the top and bottom of the skeleton.

Figure 1b. The double-layered timber segments are most 
visible during the demonstrator’s construction phase.
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assembly, can directly be compared to the biological role model, where the flex-
ibility of the connections allows for the rearrangement and growth of the skel-
etal plates (Fig. 3b). In conclusion, the introduction of fibrous connections for thin 
plywood on multiple hierarchies turns out to be a very effective method for the 
robotic prefabrication of the segments as well as their on-site assembly.

Figure 2a. Photograph of a cut Mellita 5-perforata with 
visible secondary growth inside the bottom layer.  
The exterior plate structure is supported by a second layer 
of calcite with small cavities in between.

Figure 3a. Microscopic image of a joint between 
ambulacral plates, bound by collagen fibres, from a 
Diadema antillarum (scale bar 50 µm). From Telford (1985).

Figure 2b. The principle constructional morphology of 
such structures is transferred into a segmented timber 
shell construction system with bent plywood strips.

Figure 3b. A combination of finger joints and fibrous 
connection is used for the developed construction system.
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3. Implementation of Textile Robotic 
Fabrication Techniques

The transfer of forces via textile connectors is implemented on two different 
levels of hierarchy: On the segment level, robotic sewing of laminated veneer is 
introduced to connect each of the three elastically bent sheets of plywood into 
one double-layered segment (Fig. 4). In timber construction, multiple continuous 
connections are generally preferable to singular ones, as the local stress concen-
trations of the single joints are more critical to the fibrous nature of wood. This is 
one of the reasons why joining thin sheets of plywood is usually achieved by glu-
ing. However, glued connections require planar configurations or complex form 
work to maintain the high pressures necessary to laminate veneer sheets. Each 
of the geometrically differentiated segments in this research project, however, 
necessitate the strips to be joined while in a deformed state, making a glued 
connection difficult and time-consuming to achieve. In addition, the pre-bending 
of the strips induces high stress concentrations at the ends of the lap joints, 
resulting in potential delamination. To prevent this effect robotic sewing of the 
laminate is introduced as a manufacturing technique (Fig. 4). 

With a direct connection to the digital model an industrial robot is used to 
position each strip of a segment and guide it through an industrial sewing ma-
chine. To attain the required shape of each segment, the height and inclination 
of the two opposing planes where the strips are connected are indicated by the 
robot in a first step of the fabrication process. After the three strips are bent into 
place and glued to the lap joint, the segment is mounted onto the robot using 
an adjustable effector. The robot then guides the segment through a stationary 
industrial sewing machine. To avoid breakage of the needle, the plane of the 
segment’s part that is currently sewn has to be orthogonal to the needle’s axis. 
Furthermore, it has to be ensured that the segment is not moving during the 
stitching motion of the needle. For this purpose the sewing machine controller 
was integrated into the robot control. It receives signals for stitching commands 
and sends a signal back once a stitch is completed.

Common sewing processes in industry are designed for rather soft materials 
such as textiles. When sewing wood, the high resistance of the plywood requires 
an adjustment of this process. In order to generate the required force to pene-
trate the veneer strips, the setup of the industrial sewing machine was modified 
by increasing the machine’s transmission to achieve a larger torsional moment 
and thus a higher penetration force. In order to enable the production of a wide 
range of segment sizes to create more freedom in the design space, a long arm 
sewing machine is used. Also, to prevent needle breakage and therefore ensure a 
continuous fabrication process while sewing comparably strong wood, the needle 
has to resist high axial forces and simultaneously exhibit a certain flexibility due to 
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the deformation while puncturing the material. To achieve enough extrusion and 
therefore minimise the effect of abrasion or breakage of the thread, the needle 
tip was tested and evaluated. Thus, a titanium nitride coated needle was chosen, 
offering a greater hardness than standard needles and a better protection against 
wear and damages. In addition, a bonded polyamide thread is employed, which 
provides a very high breaking strength and abrasion resistance.

The robotic sewing technique offers the opportunity to directly integrate a 
second hierarchy of connection type. Sewing is further used to attach pre-cut, 
PVC-covered polyester fibre membrane strips along the finger-jointed edges of 
each segment (Fig. 5a). These allow to continuously transfer tensile forces between 
segments. They are joined using polyester-coated aramid ropes, whose density 
is adjusted to structural requirements. Traditional connections of membranes via 
laces typically require the folding of the membrane to create a keder rail, howev-
er in this case this would have been geometrically difficult to achieve. From pre-
liminary finite element analysis estimations of the required tensile load bearing 
capacity of the joint are estimated. Afterwards, structural tests are performed 
on the connection to ensure that the membrane strips are still able to transfer 
those tensile forces between the elements with only a single membrane lay-
er (Fig. 5b). The aluminium eyelets well known from membrane constructions are 
maintained. The laced connections between the segments allow the transfer of 
tensile forces and thus complement the finger joints. This connection type also 
has the benefit to be highly adaptable to varying geometric configurations and 
can ease the assembly by tensioning the laces gradually.

Figure 4a. Diagram of the robotic fabrication process. 
Equipped with an adaptable effector the robot holds a 
pre-assembled segment and guides it through the sewing 
machine.

Figure 4b. Photograph of the process.
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4. Integrative Design and Hierarchy
The robotic fabrication setup in conjunction with the overall fabrication sequence 
is analysed for its possibilities and constraints, which are then implemented in 
the development process in order to determine the morphospace of possible 
segment shapes. For example, the element size is limited by the length of the 
arm of the sewing machine, and if elements become too distorted, collisions 
between element and robot arm are possible. This information is directly includ-
ed in a computational design tool that implements the introduced principles all 
while staying within the solution space set by the material characteristics and 
fabrication constraints. It is using a form-finding process based on the biological 
role model of plate growth and plate addition. Compared to morphological prin-
ciples, this process-based principle is abstracted for the design process in order 
to distribute segments over a user-defined area.

This integrative approach allows the design tool to act as an information 
model. It generates buildable solutions and is driven by structural and architec-
tural requirements. It decides on the material orientation within each strip and 
exports fabrication information for lamination, CNC cutting, and robotic sewing. 
All data are automatically generated and exported into the respective file formats. 
This integrated digital process facilitates the production of 151 unique segments 
with their own differentiated material distribution, custom-fit finger-joints, and 
connection details (Fig. 6).

The biological role model is hierarchically organised, integrating functional 
aspects and constructional requirements at different levels. Similarly, the design 

Figure 5a. Photograph of the membrane and lacing 
technique. The membrane strips are sewn onto the 
segments during robotic fabrication.

Figure 5b. Structural tests were performed for several 
lacing techniques.
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tool also follows through all aspects of hierarchy from the fabrication of the 
finger joint to the assembly of the entire structure and integrates them in one 
global model. The developed construction system also allows for different mor-
phological features similar to those from the biological role model. While the 
segments’ arrangement is mostly characterised by openings in the shell, other 
types of segments form a closed arrangement. Similar to the internal supports 
of some species of the sea urchin, the shell can additionally form directional 
sub-structures that follow the material logic. In the case of the developed con-
struction system, plywood strips bend outwards away from a segment and form 
a column. The structure is therefore not forced to end vertically on the ground 
but can cantilever horizontally above the ground while being supported by those 
column-like segments.

5. Material Differentiation and Form-Finding 
of Laminate Geometry

Generating doubly-curved structures from initially planar elements is of major in-
terest in the field of architecture, as double curvature is highly beneficial to the 
structural behaviour, while the planarity of the elements facilitates fabrication. 
One possibility is to approximate doubly-curved surfaces with uniaxial elastic 
bending of initially planar strips (Lienhard 2011; La Magna 2016), creating the entire struc-
ture by bending it on a global level into shape. In this research project a different 
approach was chosen, whereby the elastic bending is used only at a segment, 
or local, level, thus creating complex geometries using initially planar strips. A 

Figure 6. Visualisation of the geometric information in the computational design tool. A mesh forms the basis for all 
geometric operations that generate the final segment and membrane geometry.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



164

major advantage is that the pre-bending forces are short-circuited inside the seg-
ment during fabrication and do not have to be maintained by an external device 
after assembly.

Biological structures often present a highly anisotropic material behaviour 
and characteristics that are locally adapted to comply with functional or structural 
requirements. In the sea urchin’s case, the density of the stereom varies along 
the shell (Seilacher 1979) (Fig. 7a). This principle is transferred on an abstracted level, 
where local adaptation through a differentiated material stiffness is achieved by 
programming the material to comply with structural requirements. Although the 
role model’s material has only few similarities to wood, it can be argued that the 
principle of material differentiation is transferred on a local level for each plywood 
strip. In both cases the material density is differentiated for functional require-
ments. In the case of wood veneer, the fibre direction is the main medium to 
control each strip’s bending stiffness (Fig. 7b).

For the developed construction system, the shape for each segment results 
from the global shell layout, leading to continuously varying curvature along 
each strip. As the strips will be bent with an approximately constant bending 
moment, this results in the requirement of a gradually adapted stiffness distri-
bution to achieve the desired 3-dimensional shape. The stiffness graduation is 
achieved by laminating discrete veneer strips on a base material of 3 mm beech 
plywood to locally reinforce and thereby stiffen the resulting laminate (Fig. 8a). For 
this purpose, a form-finding algorithm is developed, which allows to compute 
an approximate material layout as a consequence of the curvature distribution 
along each strip (Fig. 8b). This tool takes into consideration minimum bending radii, 

Figure 7a. Electron microscope image of a sand dollar’s 
calcite structure with differentiated density (Image by 
Tobias Grun, 2015, from the Department of Geosciences, 
University of Tübingen).

Figure 7b. Elastically bent plywood strip laminated with 
veneer layers facing in different directions.
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veneer strip size and layer orientation to compute a material layout for the un-
rolled strip, which can then be laminated and cut into shape. During an evaluation 
period, physical tests and digital simulations were compared in order to identify 
the relationship between grain direction in laminated veneer and the resulting 
bending stiffness. However, it is important to note that the desired shape can 
only be approximated. The error results from the step-like differentiated stiffness 
(as a consequence of the additive fabrication process) and the time-dependent 
material behaviour (such as relaxation of the pre-bending stress), which was not 
considered for simulation. This ties back to the requirement of a flexible joint 
connection, which allows for tolerances and further justifies the choice of the 
textile connection system.

6. Form-Finding: Integration of Procedural 
Biological Principles

Several studies in biology have analysed the growth process of sea urchins in-
dependent from intents of transferring the underlying principles into engineer-
ing or architecture (Johnson et al. 2002; Ellers 1993). In general, several mechanisms can 
be distinguished, but mainly the plate addition originating from the apical disc 
and accretion of calcite material around each plate’s edge are responsible for 
the growth and distribution of the sea urchin’s skeletal plates. For a living organ-
ism it is especially effective, as these principles maintain structural integrity and 
stability of the shell during the entire growth process. The growth process can 

Figure 8a. Multiple plywood strips laminated with 
different veneer directions to influence their elastic 
bending behaviour.

Figure 8b. Simulation of the bending behaviour with 
differentiated material make-up in finite element analysis.
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therefore be seen as a form-finding process that automatically respects certain 
geometrical and functional constraints. The principle of adding and growing seg-
ments – in the case of the research project over a pre-defined three-dimensional 
surface – can be transferred through a parametric circle packing approach (Zachos 

2009). The geometric rules of distributing plates in a packed configuration resem-
ble the attraction and repulsion between circles on a surface. While these circles 
represent segments, their radii determine the segments’ sizes and keep them at 
distance from their neighbours. Once seeded at user-defined input areas, they 
grow until the surface is filled completely. In the case of the demonstrator, two 
opposing points were chosen at the base of the building. During the simulation 
the segments are seeded at those points and follow a user-defined design intent 
while growing and distributing over a specified area. This growth process leads 
to a similar segmented layout as the sea urchin’s skeletal plates as segments 
that are further away from the starting points are usually larger. This geometric 
characteristic is also structurally advantageous as smaller segments lead to a 
higher density of interconnection and therefore to a higher structural stiffness 
at the base points.

A form-finding model based on procedural biological principles has several 
advantages for the design process. Similar to the sea urchin’s growth the circle 
packing approach allows the control over areas where segments are seeded 
and hence the direction of growth. During the process segments can react to 
boundary conditions and follow pre-defined design intends. On a computation-
al level, the resulting arrangement is translated into a mesh topology, which in 
turn forms the basis for the segment geometry. Architectural requirements are 

Figure 9a. Diagrammatic representation of plate accretion 
(left). A row of calcite plates is shown that grow in size 
while moving towards the middle. The principle of growth 
is abstracted in the computational design tool (right).

Figure 9b. The principle of plate addition (right) starting 
from the top (ambulacral plates) is also transferred to the 
computational design tool (right).
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mainly implemented through the pre-defined design surface on which the seg-
ments are distributed throughout the growth process, as well as the openings 
between segments.

7. Conclusion
The presented research is a collaborative project between biology, engineering, 
and architecture. It is based on a bottom-up research process in biomimetics 
and can be summarised by two main findings: On the one hand, biological role 
models cannot only be transferred for the constructional morphology, but also 
for the design process of segmented shells in timber construction. On the other 
hand, textile and fibrous connections for joining thin plywood strips are a valid 
technique and were evaluated on a large-scale prototype building. It can be con-
cluded that the structural and architectural solution space for segmented shells 
was extended through the development of the described construction system 
within the context of computational design and construction.

The research was evaluated through the fabrication and construction of a 
prototype building. With 151 segments made from 3 to 6 mm thick beech ply-
wood, the complete structure weighs 780 kg while covering an area of 85 m² 
and spanning 9.3 m. With a resulting material thickness/span ratio of 1/1000 on 
average, the building has a structural weight of 7.85 kg/m² shell. With this new 
kind of fibrous connection type no metal fasteners were needed for fabrication 
or assembly.

Figure 10. Photograph of the demonstrator. Once assembled, the robotically sewn segments act together as a rigid, 
double-layered shell.
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As research in shells for timber construction progresses towards thinner 
materials, new connection types become necessary. Contemporary jointing 
techniques do not account for varying angles or exceptionally thin material and 
therefore need to be reconsidered. In addition, innovative form-finding process-
es allow for the exploration of lightweight and material-efficient architecture, 
but require a closed digital loop between design and fabrication. The developed 
construction system accounts for both the design process and new fabrication 
techniques while exhibiting the structural and architectural possibilities of light-
weight segmented timber shells.
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Abstract
Aiming to support the current research on bending-active plate structures, this 
paper discusses the topic of form-finding and form-conversion and presents ex-
amples to illustrate the formal and structural potential of these design strategies. 
Following a short introduction into the topic, the authors reflect on the specific 
challenges related to the design of bending-active plate structures. While previ-
ous research has mainly focussed on a bottom-up approach whereby the plates 
first were specified as basic building blocks and the global shape of the structure 
resulted from their interaction, the main emphasis of this paper lies on a possi-
ble top-down approach by form-conversion. Here, the design process starts with 
a given shape and uses surface tiling and selective mesh subdivision to inform 
the geometrical and structural characteristics of the plates needed to assemble 
the desired shape. This new concept entails some constraints, and the paper 
therefore provides an overview of the basic geometries and mechanics that can 
be created by following this approach. Finally, to better demonstrate the inno-
vative potential of this top-down approach to the design of bending-active plate 
structures, the authors present two built case studies, each of which is a proof 
of the concept that pushes the topic of form-conversion in a unique way. While 
the first one takes advantage of translating a given shape into a self-support-
ing weave pattern, the second case study gains significant structural stability by 
translating a given form into a multi-layered plate construction. 

Keywords: 
bending-active structures, elastic bending, plate structure,  
form-finding, nonlinear analysis
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1. Introduction
With the rise of new simulation strategies and computational tools, a new gen-
eration of architects and engineers is getting more interested in form-finding ar-
chitectural systems. The key motivation of this approach is to determine a force 
equilibrium to generate and stabilise a structure just by its geometry. While the 
membrane and shell structures of pioneers like Frei Otto, Heinz Isler, and Felix 
Candela were often derived from model-based form-finding processes or using 
pure geometrical bodies (Chilton 2000, Otto 2005, Garlock & Billington 2008), today’s structures 
often arise from advanced digital simulations and the integration of material be-
haviour therein (Adriaenssens et al. 2014, Menges 2012).

A good example for the new possibilities emerging from a physics-informed 
digital design process is the research done on bending-active structures. This type 
of structural system uses large-scale deformations as a form-giving and self-sta-
bilising strategy (Knippers et al. 2011, Lienhard et al. 2013, 2014, Schleicher et al. 2015). Typically, 
bending-active structures can be divided into two main categories, which relate 
to the geometrical dimensions of their constituent elements. For instance, 1D 
systems can be built with slender rods and 2D systems out of thin plates (Fig. 1). 
While extensive knowledge and experience exists for 1D systems, with elastic 
gridshells as the most prominent application, plate-dominant structures have not 
yet received much attention and are considered difficult to design. One reason is 
that plates have a limited formability since they deform mainly along the axis of 
weakest inertia and thus cannot easily be forced into complicated geometries.

 However, this obstructive limitation of the smallest building block can also 
be understood as special advantage. Used strategically, it offers not only more 
control over the global formation process, but can also be used to inform the 
individual parts of the assembled structure based on the features of the overall 
shape. This essentially means that form-finding in the context of bending-active 
structures could evolve from a bottom-up to a top-down approach, starting with 
a desired global shape first and then solving the form-force equilibrium of its 
parts. Following this approach renders the ability to construct a given shape by 
integrating local bending of its components while guaranteeing that stresses 
remain within the permitted working range of the material.

2. Typical Design Approaches and  
Resulting Challenges

Bending-active structures are often designed by following either a behaviour-based, 
geometry-based, or integrated approach (Lienhard et al. 2013). While the first category 
refers to traditional, intuitive use of bending during the construction process and 
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relies only on hands-on experience regarding the deformation behaviour of the 
used building material (Fig. 2a), the latter two categories describe a more scientif-
ic take on the design of bending-active structures. Here, experimental and ana-
lytical form-finding techniques were conducted beforehand and then informed 
the design process.

One example for bending-active plate structures that were built by following 
a geometry-based design approach are Buckminster Fuller’s plydomes (Fuller 1959). 
This construction principle is based on approximating the basic geometry of a 
sphere with a regular polyhedron. Its edges and angles are then used to arrange 
multiple plates into a spatial tiling pattern, which is fastened together by bending 
the plates at their corners (Fig. 2b). The resulting structure is made out of identical 
plates joined together by placing bolts at predefined positions. Even though this 
technique allowed Fuller to construct a double-curved spherical shape out of 

Figure 1. Classification of bending-active structures based on the member’s geometrical dimension  
(from Knippers et al. 2011).

Figure 2a. Traditional Mudhif reed house.  
Figure 2b. Plydome.  
Figure 2c. ICD/ITKE Research Pavilion 2010.
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initially planar and then single-curved plates, this methodology also had several 
shortcomings. First and foremost, it is limited to basic polyhedral shapes. Only 
because of the repetitive angles was it possible to use identical plates. Further-
more, at his time Fuller was forced to compute the needed overlap of the plates 
and the exact position of the pre-drilled holes mathematically. The only way to 
calibrate this data was by producing plydomes in series and improving the de-
tails over time.

Compared to that, following an integrative design approach for bending-active 
plate structures provides more flexibility and renders the opportunity for com-
putational automatisation. A prominent example is the 2010 ICD/ITKE Research 
Pavilion (Fig. 2c). As characteristic for an integrative approach, this project started 
with intensive laboratory testing to better understand the limiting material be-
haviour of the used plywood. The results of these physical experiments were 
then integrated as constraints into parametric design tools and used to calibrate 
finite-element simulations. Synchronising physical and digital studies ensured 
that the form-finding techniques provided an accurate description of the actual 
material behaviour while at the same time giving more feedback on the resulting 
geometry of the structure. This project even went so far to re-create the actu-
al bending process by simulating the deformation of every strip into a cross- 
connected and elastically pre-stressed system (Lienhard et al. 2012).

While the last project is definitely innovative, it should be pointed out that 
the integrated approach here was used mainly in a bottom-up way and thus nar-
rowed the possible design space. For the future development of bending-active 
plate structures, however, it may be desirable to prioritise a top-down approach, 
which gives more weight to the target geometry and thus more freedom to the 
designer. However, the key challenge remains and boils down to how to assess 
both the global shape as well as the local features of the constituent parts for 
structures in which geometrical characteristics and material properties are inev-
itably linked together and similarly affect the result.

3. Form Conversion
The principal limit to the formal potential of bending-active structures lies in 
the restrictions on the material formability. The only deformations that can be 
achieved within stress limits are the ones that minimise the stretching of the 
material fibres. For strips and plate-like elements, these reduce to the canonical 
developable surfaces: cylinders and cones. Attempting to bend a sheet of mate-
rial in two directions will either result in irreversible, plastic deformations or ul-
timately failure. Such a strict requirement severely limits the range of structural 
and architectural potential for plate-based bending-active systems. To expand the 
range of achievable shapes, it is therefore necessary to develop workarounds 
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for the induction of Gaussian curvature. To overcome such limitations, multidi-
rectional bending can be induced by strategically removing material and freeing 
the strips from the stiffening constraint of the surrounding. A similar approach 
is presented by Xing et al. (2011) and referred to as band decomposition. The key 
principle is illustrated in Figure 3.

Here a continuous rectangular plate is reduced to two orthogonal strips. The 
strips are later bent into opposite directions in a finite element simulation using 
the ultra-elastic contracting cable approach based on Lienhard, La Magna and 
Knippers (2014). The bending stiffness of the plate, depending proportionally on its 
width b, results in a radical increase of stiffness in the connecting area between 
the strips. As a result, the connecting area almost remains planar, and therefore 
the perpendicular bending axis remains unaffected by the induced curvature. In 
this way it becomes possible to bend the strips around multiple axes, spanning 
different directions but still maintaining the material continuity of a single element. 
Figure 3b depicts the resulting von Mises stresses calculated at the top fibres. The 
gradient plot clearly displays an area of unstressed material at the intersection 
between the two strips, as expected based on the previous arguments. A local 
stress concentration appears at the junction of the strips due to the sharp con-
necting angle and inevitable geometric stiffening happening locally in that area. 

Figure 3a. Multidirectional strip.  
Figure 3b. von Mises stress distribution after bending.  
Figure 3c. Gaussian curvature.
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This result can be compared with Figure 3c, which displays the Gaussian curvature 
of the bent element. From the plot it is clear that the discrete Gaussian curva-
ture (based on Meyer et al. 2003) of the deformed mesh is everywhere zero, apart from 
a small localised area at the intersection of the two branches. This confirms that, 
within stress limits, flat sheets of inextensible material can only be deformed 
into developable surfaces at most.

Based on the strip approach defined so far, the general procedure for an ar-
bitrary freeform surface is summarised in the following steps:

1. Mesh the target surface (Fig. 4a).
2. Perform an interior offset for each face of the mesh.
3. Connect the disjointed faces by creating a bridging element; two faces 

initially sharing an edge will be connected (Fig. 4b).
4. The bridging element is modified to take into account the bending cur-

vature. Assuming that the start and end tangent plane of the bridging 
element coincide with the surfaces to be connected, the element can be 
defined through a simple loft (Fig. 4c).

5. Unroll the elements.

The presented method maintains general validity for any arbitrary source 
mesh. In the case of an Ngon mesh, its banded dual will have strips with N arms 
departing from the centre surface element. The geometry of the voids is defined 
by the valence of the mesh. For the sphere example a 4-valent source mesh 
produces square voids throughout the banded structure. A tri-valent hexagonal 
mesh would produce triangular voids and so forth.

Figure 4a. Mesh of target surface.  
Figure 4b. Offset and edge bridging.  
Figure 4c. Bending of bridging elements.  
Figure 4d. Plywood prototype of sphere test case.
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4. The Geometry and Mechanics of 
Bending-Active Plate Structures

It is typical in engineering to distinguish between plate and shell structures, the 
main difference being that plates are initially flat and shells already present curva-
ture in their stress-free configuration. Both structures can be identified as having 
thickness significantly smaller than length and width. In this way the geometry 
of a shell or plate is uniquely defined by their centre surface and local thickness 
(Bischoff et al. 2004). The structural behaviour of shells and plates is characterised by 
two main states of deformation, membrane and bending action. Membrane de-
formations involve strain of the centre surface, whilst bending dominated defor-
mations roughly preserve the length of the mid-surface fibres. Under bending, 
only the material fibres away from the mid-surface are fully exploited, therefore 
the structural elements are much more flexible. Pure bending deformations are 
also called inextensional deformations as the neutral surface is completely free 
from longitudinal extension or compression. In mathematical terms, a transfor-
mation that preserves lengths is also referred to as an isometry. Pure bending, 
inextensional, and isometric deformations are all synonyms that are often used in-
terchangeably in literature, preferring one term over another to highlight either 
mechanical or mathematical aspects. Strictly speaking, the only isometric trans-
formations of the plane are into cones and cylinders, i.e. developable surfaces.

In structural applications, membrane deformation states are generally pre-
ferred as the cross-section is completely utilised and the load-bearing behaviour 
of the shell is significantly enhanced. On the other hand, characteristics of inex-
tensional deformations may be exploited in certain situations, for example, deploy-
able or tensile structures which might benefit from bending dominated transition 
stages. In the context of bending-active structures, inextensional deformations 
represent the main modality of shape shifting, as the bending elements may un-
dergo large deformations without reaching a critical stress state for the material. 
Owing to the high flexibility of thin plates with respect to bending, this state of 
deformation may be regarded as the dominating mechanical effect for bending- 
active structures as having the strongest effect on the nonlinear behaviour of plates.

The relationship between large deformations and pure bending is well un-
derstood in light of energetic arguments explained in the following paragraph. 
An important assumption in the context of bending-active structures is that of a 
perfect elastic response of the material. This is the case of Hookean elasticity, 
which assumes a linear elastic response of the material and therefore yields a 
proportional relationship between strain and stress (Audoly & Pomeau 2010). This as-
sumption is valid for small strains in general, which is commonly the case for 
bending-active structures. In the membrane approximation, the elastic energy 
of a plate reads:

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



178

where the subscript ‘cs’ means that we can evaluate the density of the elastic 
energy along the centre surface. The approximation (4.1) can be understood as 
following: It is the surface integral of the squared, 2-dimensional strain along 
the centre surface 𝜖αβ, multiplied by the factor Eh, which is proportional to the 
thickness h and to Young’s modulus E of the material.

Conversely, the bending energy of a 2-dimensional plate assumes the fol-
lowing form:

which can be read as the surface integral of the squared curvature (dependent 
on x and y) of the centre surface, multiplied by the factor Eh3, which is common-
ly called bending stiffness.

Comparing the stretching energy (4.1) with the bending energy (4.2) shows that 
the small thickness h comes in the flexural energy (4.1) with a larger power than 
in the stretching energy, i.e. h3 in place of h. For very thin plates, this makes the 
energy of isometric deformations much lower than those involving significant 
stretching of the centre surface. As a result, large deformations occur mainly 
under bending, as the low energy involved in the process is generally compatible 
with the strain limits of the material.

Although commonly referred to as bending-active, the term has been spe-
cifically coined to describe a wide range of systems that employ the large defor-
mation of structural components as a shape-forming strategy. Besides bending, 
torsional mechanisms can also be employed to induce form, as the energy in-
volved is of similar order of magnitude compared to bending. An essential re-
quirement for bending-active structures is that the stress state arising from the 
form-finding process does not exceed the yield strength of the material. Based on 
the previous assumptions of perfect elastic material response and thin, slender 
sections, the maximum bending curvature and maximum torsional angle twist 
can be checked against the following relationships:
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Figure 5a. Material strip subject to axial bending. 
Figure 5b. Material strip subject to torsion.

for bending-active structures is that the stress state arising from the form-finding process does not 
exceed the yield strength of the material. Based on the previous assumptions of perfect elastic 
material response and thin, slender sections, the maximum bending curvature and maximum 
torsional angle twist can be checked against the following relationships:
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where: 
k  curvature [1/m]    θ  angle of twist [rad] 
MB  bending moment [kNm]   MT  torsional moment [kNm] 
E  Young’s modulus [N/mm2]   G  shear modulus [N/mm2] 
I  moment of inertia [m4]   J  torsional constant [m4] 
W = bh2/6 resistance moment [m3]   WT = bh3/3 torsional resistance [m3] 
σmax  max. allowable stress [N/mm2]  τmax   max. shear stress [N/mm2] 
h  section height [mm]    h   section height [mm] 
 

These equations refer to the classic Euler-Bernoulli model for bending and de Saint-Venant torsion 
model for beams. Both models ignore higher order effects, respectively deformations, caused by 
transverse shear and torsional warping. Although generally non-neglectable for large deformations, 
owing to the previous assumptions of slender cross-sections and elastic behaviour, it is safe to 
assume these values for a preliminary check of the master geometry. 
The complexity of the structural systems and form-finding procedures still require an accurate 
numerical analysis. In general, currently available simulation tools can be subdivided into two 
categories. The first one, dynamic relaxation (DR), is a numerical iterative method to find the 
solution of a system of nonlinear equations. It has been successfully employed in engineering 
applications for the form-finding of membrane and cable net structures (Barnes 1999, Adriaenssens  
& Barnes 2001) and in modified versions also for torsion related problems in surface-like shell 
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material response and thin, slender sections, the maximum bending curvature and maximum 
torsional angle twist can be checked against the following relationships:

Figure 5a. Material strip subject to axial bending.    Figure 5b. Material strip subject to torsion. 

𝑘𝑘=𝑑𝑑𝑑𝑑𝑥𝑥=𝑀𝑀𝐵𝐵𝐸𝐸𝐼𝐼	   	   	   	   	   	   	   𝑑𝑑𝜃𝜃𝑑𝑑𝑥𝑥=𝑀𝑀𝑇𝑇𝐺𝐺𝐽𝐽	  

𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥=𝑀𝑀𝐵𝐵𝑊𝑊       𝜏𝜏𝑚𝑚𝑎𝑎𝑥𝑥=𝑀𝑀𝑇𝑇𝑊𝑊𝑇𝑇 

𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛=1𝑅𝑅𝑚𝑚𝑎𝑎𝑥𝑥=𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥𝑊𝑊𝐸𝐸𝐼𝐼=2𝜎𝜎𝑚𝑚𝑎𝑎𝑥𝑥𝐸𝐸ℎ    𝑑𝑑𝜃𝜃𝑑𝑑𝑥𝑥=𝜏𝜏𝑚𝑚𝑎𝑎𝑥𝑥𝑊𝑊𝑇𝑇𝐺𝐺𝐽𝐽=𝜏𝜏𝑚𝑚𝑎𝑎𝑥𝑥𝐺𝐺ℎ 

where: 
k  curvature [1/m]    θ  angle of twist [rad] 
MB  bending moment [kNm]   MT  torsional moment [kNm] 
E  Young’s modulus [N/mm2]   G  shear modulus [N/mm2] 
I  moment of inertia [m4]   J  torsional constant [m4] 
W = bh2/6 resistance moment [m3]   WT = bh3/3 torsional resistance [m3] 
σmax  max. allowable stress [N/mm2]  τmax  max. shear stress [N/mm2] 
h  section height [mm]    h   section height [mm] 
 

These equations refer to the classic Euler-Bernoulli model for bending and de Saint-Venant torsion 
model for beams. Both models ignore higher order effects, respectively deformations, caused by 
transverse shear and torsional warping. Although generally non-neglectable for large deformations, 
owing to the previous assumptions of slender cross-sections and elastic behaviour, it is safe to 
assume these values for a preliminary check of the master geometry. 
The complexity of the structural systems and form-finding procedures still require an accurate 
numerical analysis. In general, currently available simulation tools can be subdivided into two 
categories. The first one, dynamic relaxation (DR), is a numerical iterative method to find the 
solution of a system of nonlinear equations. It has been successfully employed in engineering 
applications for the form-finding of membrane and cable net structures (Barnes 1999, Adriaenssens  
& Barnes 2001) and in modified versions also for torsion related problems in surface-like shell 
elements (Nabaei et al. 2013). The second method relies on finite element simulation (FEM). Non-
linear finite element routines have advanced so much lately that it is becoming more common to 

These equations refer to the classic Euler-Bernoulli model for bending and de 
Saint-Venant torsion model for beams. Both models ignore higher order effects, 
respectively deformations, caused by transverse shear and torsional warping. Al-
though generally non-neglectable for large deformations, owing to the previous 
assumptions of slender cross-sections and elastic behaviour, it is safe to assume 
these values for a preliminary check of the master geometry.

The complexity of the structural systems and form-finding procedures still 
require an accurate numerical analysis. In general, currently available simulation 
tools can be subdivided into two categories. The first one, dynamic relaxation 
(DR), is a numerical iterative method to find the solution of a system of nonlin-
ear equations. It has been successfully employed in engineering applications 
for the form-finding of membrane and cable net structures (Barnes 1999, Adriaenssens  

& Barnes 2001) and in modified versions also for torsion related problems in sur-
face-like shell elements (Nabaei et al. 2013). The second method relies on finite element 
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simulation (FEM). Non-linear finite element routines have advanced so much lately 
that it is becoming more common to integrate them in the design process. All 
the results presented here were achieved through geometrical non-linear finite 
element simulations run in SOFiSTiK.

5. Case Studies
The following two case studies are both made out of the same material – 3 mm 
birch plywood. This plywood consists of three layers and has different mechani-
cal behaviours along the main fibre orientation (stronger) and against it (softer). 
This is due to the fact that the fibre direction of the upper and lower layers is ori-
ented in one direction and rotated by 90° in the centre layer. Based on this the 
plywood also has two values for the minimal bending radius that can be achieved 
as well as two values for the maximum axial twist the material can undergo. The 
Young’s modulus of a 3 mm plywood along the grain is: EmII = 16471 N/mm² 
and against the grain is: Em⊥ = 1029 N/mm².

5.1 Case Study: Berkeley Weave
The first case study investigates the design potential emerging from inte-
grating both bending and torsion of slender strips into the design process. 
A modified Enneper surface acts as a base for the saddle-shaped design 
(Fig. 6a). This particular form was chosen because it has a challenging anticlastic  
geometry with locally high curvature. The subsequent conversion process 
into a bending-active plate structure followed several steps. The first was to 
approximate and discretise the surface with a quad mesh (Fig. 6b). A curvature 
analysis of the resulting mesh reveals that its individual quads are not planar 
but spatially curved (Fig. 6c).

The planarity of the quads, however, is an important precondition in the 
later assembly process. In a second step, the mesh was transformed into a 
four-layered weave pattern with strips and holes. Here, each quad was turned 
into a crossing of two strips in one direction intersecting with two other strips 
in a 90-degree angle. The resulting interwoven mesh was then optimised for pla-
narisation. However, only the regions where strips overlapped were made planar 
(blue areas), while the quads between the intersections remained curved (Fig. 6d). 
A second curvature analysis illustrates the procedure and shows zero curvature 
only at the intersections of the strips while the connecting arms are both bent 
and twisted (Fig. 6e). In the last step, this optimised geometrical model was used 
to generate a fabrication model that features all the connection details and strip 
subdivisions (Fig. 6f).

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



181

A closer look at the most extremely curved region in the structure illustrates 
the complexity related to this last step (Fig.7a). To allow for a proper connection, bolts 
were placed only in the planar regions between intersecting strips. Since the strips 
are composed out of smaller segments, it was also important to control their po-
sition in the four-layered weave and the sequence of layers. A pattern was created 
which guaranteed that strip segments only ended in layers two and three and are 
clamped by continuous strips in layers one and four. A positive side effect of this 
weaving strategy is that the gaps between segments are never visible and the strips  
appear to be made out of one piece. The drawback, however, is that each segment 
has a unique length and requires specific positions of the screw holes (Fig. 7b).

Figure 6. Generation process and analysis.

Figure 7a. Analysis of Gaussian curvature.  
Figure 7b. Schematic of the weaving and technical details.
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To demonstrate proof of concept for this design approach, this case study 
was built in the dimensions of 4 m x 3.5 m x 1.8 m (Fig. 8). The structure is assem-
bled out of 480 geometrically different plywood strips fastened together with 
400 similar bolts. The material used is 3.0 mm thick birch plywood with a Young’s 
modulus of EmII = 16471 N/mm² and Em⊥ = 1029 N/mm². Dimensions and ma-
terial specifications were employed for a finite-element analysis using the soft-
ware SOFiSTiK. Under consideration of self weight and stored elastic energy, the 
minimal bending radii are no smaller than 0.25 m and the resulting stress peaks 
are still below 60% of permissible yield strength of the material.

5.2 Case Study: Bend9
The second case study is a multi-layered arch that spans over 5.2 m and has a 
height of 3.5 m. This project was built to prove the technical feasibility of using 
bending-active plates for larger load-bearing structures. In comparison to the pre-
vious case study, this project showcases a different tiling pattern and explores 
the possibility to significantly increase a shape’s rigidity by cross-connecting dis-
tant layers with each other.

To fully exploit the large deformations that plywood allows for, the thick-
ness of the sheets had to be reduced to the minimum, leading once again to the 
radical choice of employing 3.0 mm birch plywood. Since the resulting sheets 
are very flexible, additional stiffness needed to be gained by giving the global 
shell a peculiar geometry which seamlessly transitions from an area of positive 
curvature (sphere-like) to one of negative curvature (saddle-like) (Fig. 9a). This pro-
nounced double-curvature provided additional stiffness and avoided undesirable 
deformation modes of the structure. Despite the considerable stiffness achieved 
through shape, the choice of using extremely thin sheets of plywood required 
additional reinforcement to provide further load resistance. These needs were 
met by designing a double-layered structure with two cross-connected shells.

As in the previous example, the first step of the process was to convert the 
base geometry into a mesh pattern (Fig. 9b). In the next step a preliminary analysis 
of the structure was conducted, and a second layer was created by offsetting 
the mesh. As the distance between the two layers varies to reflect the bend-
ing moment calculated from the preliminary analysis, the offset of the surfaces 
changes along the span of the arch (Fig. 9c). The offset reflects the stress state in 
the individual layers, and the distance between them grows in the critical areas 
to increase the global stiffness of the system. The following tiling logic that was 
used for both layers guarantees that each component can be bent into the specific 
shape required to construct the whole surface. This is achieved by strategically 
placing the voids into target positions of the master geometry, as described in 
Section 3, and thereby ensuring that the bending process can take place with-
out prejudice for the individual components (Fig. 9d). Although initially flat, each 
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Figure 8. View of the plywood installation Berkeley Weave.

Figure 9a. Base geometry.  
Figure 9b. Mesh approximation.  
Figure 9c. Double layer offset.  
Figure 9d. Conversion to bent plates.  
Figure 9e. Finite-element analysis.  
Figure 9f. Fabrication model.
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element undergoes multi-directional bending and gets locked into position once 
the neighbours are added to the system and joined together. The supple 3.0 mm 
plywood elements achieve consistent stiffness once assembled together, as the 
pavilion, although a discrete version of the initial shape, still retains substantial 
shell stiffness. This was validated in a second finite-element analysis that con-
sidered both self-weight as well as undesirable loading scenarios (Fig. 9e). Finally, 
a fabrication model was generated and the structure fabricated (Fig. 10).

The built structure employs 196 elements unique in shape and geometry (Fig. 

11a). 76 square wood profiles of 4 cm x 4 cm were used to connect the two ply-
wood skins (Fig. 11b). Due to the varying distance between the layers, the connec-
tors had a total of 152 exclusive compound mitres. The whole structure weighs 
only 160 kg, a characteristic which also highlights the efficiency of the system 
and its potential for lightweight construction. The smooth curvature transition 
and the overall complexity of the shape clearly emphasise the potential of the 
construction logic to be applied to any kind of double-curved freeform surface.

6. Conclusions
The two built case studies clearly illustrate the feasibility of a construction logic 
that integrates bending deformations strategically into the design and assem-
bly process. Both structures presented are directly informed by the mechanical 
properties of the thin plywood sheets employed for the project. Their overall ge-
ometry is therefore the result of an accurate negotiation between the mechan-
ical limits of the material and its deformation capabilities.

The assembly strategy devised for both prototypes drastically reduces the 
fabrication complexity by resorting to exclusively planar components which make 
up the entire double-curved surfaces. Despite the large amount of individual 
geometries, the whole fabrication process was optimised by tightly nesting all 
the components to minimise material waste, flat cut the elements, and finally 
assemble the piece on-site.

The very nature of the projects required a tight integration of design, simu-
lation, and assessment of the fabrication and assembly constraints. Overall, the 
Bend9 pavilion and Berkeley Weave installation exemplify the capacity of bend-
ing-active surface structures to be employed as a shape-generating process. 
For on-going research, the buildings serve as first prototypes for the exploration 
of surface-like shell structures that derive their shape through elastic bending.
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Figure 10. View of the Bend9 structure.

Figure 11a. Detail of the elements.  
Figure 11b. Detail of the connecting elements.
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Abstract
Recent advances in real-time structural analysis has given architects the free-
dom to design and manufacture forms and structures that previously would 
have been difficult if not impossible to achieve. Until recently these advances 
had not been seen as a driving force within the area of asymmetrically designed 
tensegrity structures. This paper presents a new design method that is integrat-
ing analysis tools into a computational design process. Through the lens of the 
recently completed Underwood Pavilion this paper demonstrates how this pro-
cess of designing tensegrity structures can be streamlined. This process allows 
for greater access to such structures and a higher level of flexibility in designing 
tensegrity systems by the design community at large. Acting as a case study, 
the Underwood Pavilion describes a process where traditional methods of form 
finding are complimented by a new parametric approach to design tensegrity 
based lightweight structures and envelope systems.

Keywords: 
tensegrity, parametric, membrane, pavilion, modular
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1. Introduction
The Underwood Pavilion was Prof. Riether’s and Prof. Wit’s first successful 
attempt at fabricating a full-scale tensegrity prototype through a novel para-
metric framework. The pavilion defines a space that can comfortably be in-
habited by a group of 12 people. Located close to Muncie, Indiana, it creates 
a permanent destination for hikers and cyclists. Accomplished through a 
5-week summer workshop held at Ball State University in Muncie, Indiana, 
a team of 8 students and faculty collaborated in the development of the de-
sign, fabrication, and construction of the project. This paper discusses in de-
tail the developed tensegrity design methodology and the accomplishments 
and difficulties encountered throughout the project’s overall development. It 
also discusses the project’s workflow and a unique design, fabrication, and 
assembly process created through the development utilising Rhinoceros 3d, 
Grasshopper, Galapagos, and Kangaroo. Through the development of an in-
tegrated digital/manual workflow, the team was able to develop a paramet-
ric design method that allowed for the design of variable tensegrity modules 
that, once aggregated, generated the form of the Underwood Pavilion’s unique 
visual and structural envelope.

2. Background
Unlike conventional construction systems centred around the concept of con-
tinuous compression under gravitational loading, tensegrity structures utilise a 
concept of continuous tension. In contrast, tensegrity systems are similar to 
the assemblies within the human body, where bones act as compression struts 
and the muscles, tendons, and ligaments form the tension members (Ingber, 1998). 
What R. Buckminster Fuller (1973) previously defined as tensegrity structures is 
still unique: isolated compression members and a continuous path of tension 
members that connect all nodes.

Examples of how tensegrity structures are applied to an architectural scale 
are projects such as the Warnow Tower (Volkwin, 2003) in Rostock, Germany, the tall-
est tensegrity mast ever deployed, and the Kurilpa Bridge (Cox Rayner Architects, Arup, 

2009) in South Brisbane, the world’s largest hybrid tensegrity bridge. More recent 
research by Kenneth Snelson also exemplifies the system’s unique properties 
and brings tensegrity into the forefront of design thinking.

Tensegrity structures are relevant to architecture since they are lighter, stron-
ger, and more cost efficient than other structural systems such as space frames 
or truss systems. Additionally, the system where all struts work in pure com-
pression while cables remain in pure tension allows for a more effective use of 
material and nominal dimension optimisation.

Figure 1. Exterior view of Underwood Pavilion.
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Nonetheless, the geometry of tensegrity structures is more difficult to design 
than other structural systems. Tensegrity structures cannot be predicted from their 
geometric characteristics alone. The design process must take into account that 
a tensegrity moment can be achieved only through a structural equilibrium within 
the system. Several methods of mathematically calculating tensegrity structures 
exist and are outlined in papers such as Tibert and Pellegrino (2003). Nonetheless, 
these complexities within these methods are nearly impossible to apply within a 
rapidly adapting design process, especially in relation to a more complex overall 
form, asymmetrical loading or environmental conditions.

Recent tools such as the Rhino 3D plug-in Rhino Membrane and the Grasshopper 
plug-in Kangaroo in conjunction with Galapagos offer for the first time graphic  
design interfaces for a high level of geometric complexity which also have the 
ability to take physical material properties into account. Both applications enable 
form finding and the structural solving of tensegrity systems through a meth-
odology of finite element analysis. This provides real-time feedback of structural 
behavior in both individual and aggregated modules, a necessity within the geo-
metric form-finding process of the Underwood Pavilion.

3. Parametric Tensegrity Structure
Typically, tensegrity structures are realised as a singular continuous system, where 
all parts are reliant on all others within the system. Although this has advantages 
such as material and part optimisation, the complexity inherent within solving and 
fabricating the overall system as a singular object was not desirable. Rather, the 
Underwood Pavilion visualised the tensegrity system as a series of self-contained 
modules with the ability to be individually programmed, fabricated, tensioned, and 
inserted/removed from the structure without causing catastrophic failure of the 
overall system. Through the unique programming of individual modules and the 
removal of modules from the overall system, the resulting pavilion was able to cre-
ate formal deviations that would have been difficult to realise through a traditional 
continuous tensegrity system.

To facilitate the modular system, a variant of a 3-strut tensegrity module was 
chosen as a base constraint that helped minimise the solution space in designing 
the individual modules and the pavilion as a whole. The chosen base module con-
sisted of two equilateral triangles with end faces of differing sizes parallel to one 
another. The upper face was named “ABC”, the lower face “DEF”. Tensile cables 
connected the node pairs “AD”, “BE”, and “CF”, while rods connected the node 
pairs “AE”, “BF”, and “CD”. Within these constraints the typology of the module 
could vary based on two variables that could change (defined variables) and two 
variables that would change as a consequence (unknown variables):
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To initially test the system, two physical experiments were conducted. Rubber 
bands were used to approximate length of cables for struts of different lengths. 
Based on the outcome of the first set of models, a second set of physical mod-
els were developed in which the rubber bands were replaced with strings. With-
in these studies, adjustments were necessary to find the final resting length of 
strings and their corresponding struts allowing for the models to reach a stabile 
tensegrity state. An aggregate of modules was built, then the variables of the 
module were changed, and another system was constructed. A series of aggre-
gates showed the impact of the different module’s geometry on different over-
all forms. Some of the aggregates twisted or curved more than others. Some 
aggregates started to define more enclosures than others.

These physical models created a simplistic starting point for the design meth-
od that was then developed computationally. In replacing the physical studies 
with a parametric model the goals were (1) to test different variations by chang-
ing one model, rather than building a separate model for each variation that the 
team wanted to test; (2) to achieve a more precise understanding of how varying 
the module may affect the overall form; (3) to test aggregations too complex to 
build in a physical model.

3.1 Parametric Form Finding
Tensegrity systems have been applied to projects at large scale before. But the 
examples mentioned earlier showed that only very basic overall forms had been 
used: In the case of the Warnow Tower or the Kurilpa Bridge, modules were as-
sembled into a straight line. In the case of Buckminster Fuller’s studies, the over-
all form was a sphere. The design process developed for the Underwood Pavilion 
was different. Rather than starting with an overall form, the form emerged from 
the aggregation of variations of modules.

To develop the design process of such a system, Rhino Membrane, Grasshopper, 
Galapagos, and Kangaroo were utilised. Rhino membrane, a plug-in designed for 

Defined variable 1: 
Scalar variation between the upper face (ABC) and the lower face (DEF).
Defined variable 2: 
Length of the tensile members between the two faces (ABC) and (DEF).
Unknown variable 1: 
Distance between the upper face (ABC) and the lower face (DEF).
Unknown variable 2: 
Module rotation between upper face (ABC) and lower face (DEF), which was a 
consequence of the previous variables and the tension necessary to stabilise the geometry 
in a tensegrity state.
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Rhino 4.0, was used in conjunction with physical modelling as a means of initial 
module form finding, digital feedback, and enclosure optimisation.

Galapagos, an evolutionary solver, was utilised on singular modules to find 
optimal geometric fitness for the two unknown values of face rotation and dis-
tance between the upper and lower faces. The plug-in was also used as a means 
of obtaining real-time feedback when manipulating individual module proportions, 
while still maintaining a high level of mathematical accuracy (solutions within a 
thousandth of an inch). Through Galapagos, variation of individual modules could 
be created (through a series of number sliders or value inputs), compared and 
directly implemented into the Kangaroo solver for interpreting the overall form. 
Through this workflow, the designers were able to continually modify the pa-
vilion’s overall form through the manipulation of a single module’s variables. To 
verify the parametric modules outputs and internal tensions during the aggrega-
tion process, each selected variation was fabricated and tested at small scale.

Kangaroo, a live physics engine for interactive simulation, optimisation, and 
form finding developed as a plug-in for Grasshopper, was used to simulate each 
possible outcome achieved through the aggregation of modules. By defining a 
series of attractor points in the location where compressive rods and tensile ca-
ble intersect, individual modules were linked, creating a single continuous sys-
tem. With the connection of the cables and struts, each of the formal iterations 
slowly recalculated and found their form in a state of equilibrium.

Although initially the overall form is an unknown, the reconfigured and com-
bined tools enabled the designers to define the final form through the definition 
of all module types in relation to their necessary points of connection as well as 
the desired strut and cable network forces. The overall form was also impacted 
by removing modules to create openings for views or an entrance, creating asym-
metric deformations in the overall form, while simultaneously changing tensile 
forces within the aggregate.

3.2 Module Programming
Each individual module variation was first constructed in Rhino then parameter-
ised: Rather than the elastic properties of the rubber bands in the physical mod-
el, the cables in the digital model were defined by a determined pre-stress value 
and fixed length. The modules were then connected into single rows of modules. 
Utilising customised computational physics simulations allowed the designers 
to precisely predict the curvature of linear aggregations based on specific mod-
ule variations.

Following this step, single rows were doubled. This time the physics simula-
tion visualised a shift within the arch, which was perpendicular to its curvature. 
The shift occurred as a consequence of the individual module’s rotation. In the 
final simulation, the modules were arranged into aggregates of 6 x 6 modules. 

Figure 2. Interior view of Underwood Pavilion.
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The structural and formal behavior of aggregates constructed from different mod-
ule variations and combinations were then compared through digital simulation.

3.3 Module Variation
As the overall form functions as a continuous network, simply replacing one 
module with another was not possible. Rather, the integration of a new module 
type would in turn, redefine the form and parameters of all adjacent modules. 
Varying a module in the physical model required the construction of an entirely 
new aggregate. In the digital model the team was able to instantly recalculate 
the formal properties of the entire aggregate and output their parameters for 
fabrication. In a further development one could also think about using multiple 
module variations within a single system.

4. Aggregation
Developing the pavilion from a set of varied modules allowed for easy explora-
tion of novel strategies for aggregation through different field conditions. When 
connecting modules, one top face (ABC) must connect to other top face (ABC) 
and bottom face (DEF) to other bottom face (DEF). The smaller top triangles de-
fined the inner surface of the pavilion, while the larger bottom triangles define 
the outer surface. In order to form a tensegrity structure from a pattern of indi-
vidual tensegrity modules, the edges of individual triangles must always connect 
to midpoints of edges of neighbouring triangles.

Although during computational modelling and simulation force values were 
calculated to be minimal, it was found otherwise during construction. Although 
each module was fabricated from the exact simulated measurements, it was 
found that slight inconsistencies during assembly, individual module tensioning, 
material flexure or stretching, and finally inconsistent siting conditions created 
conditions where tensions could be nearly unmanageable or self-destructing. 
To bypass these inconsistencies, a system was developed for internal stress 
management.

Rather than reworking the entire tensegrity system to minimise unpredictable 
force accumulation, a system was developed where individual modules could be 
eliminated from the system creating view apertures while also reducing stress. 
This porosity and structural flexibility was created through the skipping of every 
second module in every second row. Although removing elements in a single 
continuous system would cause failure, even with the removal of modules within 
the modular based system, enough continuity still existed for the creation of a 
successful tensegrity system. This variable allowed the designers to create large 
or small apertures within the pavilion’s envelope. Changing the scale between 
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the top face and the bottom face of each module also enabled further manipu-
lation of the pavilions envelope.

5. The Role of Physical Modelling  
and Prototyping

Digitally confirmed results were immediately tested as physical prototypes in-
suring the correct translation of data. This feedback loop between physical and 
digital modelling allowed for previously complex complications to now be de-
tected and solved quickly.

As modules appear very similar and can become disorienting during con-
struction, designers learned to track the complex behaviors of individual elements 
and modules within the structure by creating very simple numbering, colour, and 
vector-based systems. Tying a simple coloured string to repeating elements in 
a physical model or a coloured vector in the parametric model, for example, al-
lowed the team to easily find corresponding points of connection. Understanding 
methods of physically and digitally tracking behaviors of individual components 
within a larger system played an important role during full-scale construction, 
where connections become extremely complex.

Working both with individual modules and complex aggregations, the team 
learned to quickly visualise the effects small changes on an individual component 
could have on the pavilion as a whole. Varying size or tension in a single module 
could affect the shape, structure, and rotation of the entire form.

Full-scale prototyping was also an important feedback mechanism. If an in-
dividual or group had a proposed design idea, it was immediately necessary to 
test its workability, availability as well as cost effectiveness. If any of these could 
not be found or achieved, it was necessary for the designers immediately revise 
their idea to make it feasible.

Initial testing also aided the team in the rapid prototyping of joints, connec-
tors, and details. As prototyping happened simultaneously with the design pro-
cess, the team was able to test large numbers of variations within the mock-up 
of a single module. For example, a single module contained a total of one piece 
of fabric, six joints, nine cables and 27 connectors. Therefore, in the testing of 
one module, designers could test a variety of connections and parts for aesthet-
ics, compatibility, and structural integrity. Because of this integrated process, 
many potential on-site construction issues were confronted early on in the de-
sign process.

With only a single week for fabrication and construction, it was imperative 
that a robust production system be designed and implemented. While prototyp-
ing, the team developed a step-by-step fabrication process utilising individual 
strengths, machines and space to maximise efficiency.
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6. Module Construction
The final tensegrity state of a module can be reached only when all members 
are in tension or compression. The entire system remained loose and in a flat 
pack orientation until one final turnbuckle per module was connected and tight-
ened. In the untensioned state, the modules can be easily stacked and trans-
ported as a loose low-volume bundle of bars and cables (roughly 3” x 3’ x 6’). At 
the site of construction, only a single cable per module was joined creating the 
final module’s form. Each of the 40 individual modules described a volume that 
varied between 3’ x 3’ x 3’ and 4’ x 4’ x 4’, respectively, and weighed less than 
5 pounds. This ease of assembly and scale of module allowed for the module to 
be maneuvered around the site in a compressed form, then simply tensioned 
and moved into its corresponding location by a single individual.

Since cables were in pure tension and struts in pure compression, the axial 
deformation of struts and cables was visually negligible under full loading condi-
tions. This enabled the use of lightweight materials such as 1” diameter alumin-
ium tubes and 1/8” braided galvanised steel cables were used for the pavilion’s 
final structure.

The cables were pre-cut to length for each of the 9 nodes per module. Pre-
cise grooves and holes within the aluminium tubes were created though the 
implementation of a flexible jig and facilitated the fixing of the cable positions, 
through the use of simple crimped cable stoppers and pins.

Through the inserting of a turnbuckle in the centre of the final connecting 
cable, stress was easily regulated within individual modules until each unit had 
snapped into its predicted final geometry; individual modules tension could be 
adjusted in place to achieve the final form.

During the process of connecting modules, after every few connections 
it was necessary to lift the pavilion in progress off the ground to allow the 
structure to find its equilibrium. This process also aided in keeping internal 
stresses down was achievable all the way to the end with only three to four 
individuals.

The Underwood Pavilion was fabricated from 40 interconnected tensegrity 
modules. After all of the modules had been connected, the overall structure was 
anchored. Standard 30” earth anchors were used to secure the pavilion from 
wind and snow loads.

7. From Tensile Enclosure to  
“Tensegrity Fabric”

With all of the modules assembled on the site, each individual module was fitted 
in an elastic fabric. The ends of the three struts were used to span the fabric. As 
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Figure 3. Assembly and variations of module.

Figure 4. Physical study model of pavilion.
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a result, the fabric enclosed the struts within a minimal volume defined by the 
elastic qualities of the fabric.

Elastane, a stretchable environmentally friendly fabric originally used for 
sportswear was adapted to create the pavilion’s skin. Created by filaments that 
are more durable than non-synthetic materials such as rubber, Elastane can also 
be derived from 84% recycled polyester.

Finding the precise pattern for cutting the fabric required taking a stretch fac-
tor of 40% into account. This was derived from experiments utilising a 1/1-scale 
module prototype. Having studied the elastic behavior of the material, the team 
digitally modelled the fabric in Rhino Membrane. The 3D model was then unrolled 
with the holes necessary to connect the fabric to the struts. The final fabric pat-
tern was calculated to a width of 62”, the same width of the fabric roll offered by 
the supplier. This minimised material waste.

The modules were “dressed” after the entire structure of the pavilion was 
assembled. This affected how the fabric was unrolled and the pattern was de-
veloped. After the dressing of the pavilion, each module divided an enclosed vol-
ume that as a pattern created a self-shading system. The self-shading structural 
envelope created a cool environment in the hot summer months of Indiana, and 
as a windbreak in the cooler fall months.

With the successful completion of the Underwood Pavilion, the authors en-
vision the next steps for further development moving towards (1) the creation of 
more complex formal solutions through the utilisation of new module and aggre-
gation variables; (2) the elimination of tensile cables through the introduction of 
a structural tensile membrane. Although the formal goals are more obvious, the 
elimination of the tensile cables could have several benefits. In the current con-
figuration, the membrane serves only as a shading device. The use of reinforced 
tensile membranes could allow for the simplification of the overall structure while 
simultaneously introducing a more robust, material necessary for larger scale 
structures. Additionally, the introduction of reinforced fabrics would eliminate 
the current condition where aluminium and stainless steel interact eliminating 
long-term problems of fatigue and corrosion. In part, these principals were tested 
recently in the Noda Pavilion by Prof. Kazuhiro Kojima and his students from the 
Tokyo University of Science. This pavilion was constructed from a single sheet 
of fabric. Also, developing the Underwood Pavilion further in this direction would 
create a novel outcome. Rather than building a pavilion from a single sheet of 
fabric, each module would be developed as an independent tensegrity system. 
Advantages of that are that such a system would be easier to assemble, expand, 
modify and change in scale. Using fabric and struts to form a tensegrity module 
would be a new type of tensegrity structure.
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Figure 5. Schematic of the simulation algorithm for one iteration step Figure 5. Aggregation of different module variations.
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8. Findings
Rather than rationalising a given geometry such as a line or sphere into a 
tensegrity system, the intention of this project was to use simulation tools for 
a form-finding process. The form in such a process emerges from changing 
the module’s proportion or the configuration of the pattern causing a twisting 
and bending in the aggregate which was used to define the pavilion’s spatial 
enclosure.

Enclosing the module with an elastic fabric created a unique perception of 
the structural system. Appearing as volumes that visually do not touch each other 
created a perception of weightlessness, architecturally articulating a tensegrity 
system in a new way. Enclosing the modules with a fabric also suggests using 
the fabric structurally. This would create a novel method of constructing modular 
based tensegrity structures.

The use of a parametric tensegrity structure had in the case of the Underwood 
Pavilion proven effective as a temporary structure because of its self-erecting 
behavior along with its ease and range of adapting its geometry. The creation of 
simplistic and precise details within the pavilion allowed for a fast and accurate 
assembly process, while also maintaining the possibility of collapsing a mobile 
pavilion into lightweight bundles of cables and rods for easy transportation. The 
findings will allow for further prototypes to explore the possibility of more irreg-
ular tensegrity systems that respond to new sets of parameters in the future.
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Abstract
This paper provides an overview and an analysis of research in progress on au-
tomated facade pattern generation for The Edmond and Lily Safra Centre for 
Brain Sciences. This pattern is derived from accurate microscopic scans of brain 
tissue and is architecturally reconstructed with the implementation of structural 
and fabrication constraints. A single automated work-flow and pattern recon-
struction is presented here.

Keywords: 
cortical column reconstruction, parametric design, digital fabrication
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1. Background
A strong desire to accurately and iconically represent a building’s function is  
often found in architecture. Such a desire faces the hardship of doing so, once 
considering architectural, structural, and manufacturing constraints. In this pa-
per we introduce an automated work-flow that integrates these two criteria to-
gether to design, generate, and manufacture a neural facade pattern. The result 
of this work-flow is an architectural reconstruction of a section through brain tis-
sue, specifically the visual neocortex area. This section, also known as cortical 
column, is scaled up to a full height of four floors and serves as the building’s 
facade element.

Finding the right balance between the correct representation of original neuro- 
scientific data and its architectural representation is facilitated by cooperation 
with the client itself, the Centre for Brain Sciences. Two main types of neurons 
are used to build the network, pyramidal cells with triangular shape and stellar 
cells with rounded shape. Pyramidal cells connect different layers within the cor-
tical column by its apical dendrite (Fig. 5).

Currently built projects use different ways of rationalisation to allow for the 
fabrication of complicated patterns. Repetition of panels, such as Francis Soler’s 
Ministere de la Culture et de la Communication in Paris, or incorporation of frames, 
such as Jakob + Macfarlane’s Euronews headquarters in Lyon, are the most 
common solutions. Here we look at free-form, non-repetitive, frame-less panels.

1.1 The Safra Centre 
The Edmond and Lily Safra Centre for Brain Sciences at The Hebrew University 
of Jerusalem is a pioneering research facility for the scientific exploration of the 
brain. Physically, the building (Fig. 1) acts as a gateway between the university  
campus and city - its dynamic social spaces and laboratory facilities are designed 
to attract exceptional scientists, as well as to foster an interest in the centre’s 
research activities within the wider community.

The building is arranged as two parallel wings around a central courtyard. The 
upper levels house 28 highly flexible laboratories linked by social hubs, which are 
conceived to encourage interaction and the exchange of ideas between students 
and staff. The centre’s progressive environmental strategy makes use of passive 
techniques to naturally reduce energy use.

Local materials, such as Jerusalem stone, are utilised where possible, and 
the building is orientated East-West to reduce solar gain. The upper three levels 
are shaded by a perforated aluminium screen, with a pattern derived from the 
neurological brain structure. Further passive cooling of the building is provided by 
translucent ETFE canopies to the West and East, which form distinctive markers 
for the main entrances.

Figure 1. Visualisation of the completed neuron screen and building.
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1.2 Design Objectives/Brief

The design objective is to generate a facade screen and shading element that 
iconically represents the Safra building’s function. For this purpose a reference 
image which is identifiable and meaningful within the research community (Fig. 2 left) 
of Santiago Ramon y Cajal’s drawing of a cortical column (y Cajal 1899, y Cajal 1928) from 
the beginning of 20th century is selected. This image was hand drawn by the 
scientist while observing brain tissue under a microscope and is an important 
image within the field of neuroscience. Using this image directly for a facade el-
ement raises many issues like difficulty of scaling up to building height, avoiding 
repetition when applied multiple times and difficulty to incorporate any manu-
facturing or architectural constraints.

To facilitate all of these aspects, a fully generated pattern representing a 
cortical column is proposed and designed (Fig. 2 right). This pattern shows the first 
five out of six layers of visual neocortex. Each layer is presented by a carefully 
selected type of neuron and placed so as to create a whole network of neurons.

2. Design Methodology
2.1 Neuron Library
The original neuroscientific scans of neurons are downloaded from www.neu-
romorpho.org (Ascoli 2006, Ascoli et al. 2007, neu). This webpage provides an open library 
of neurons. These are 3D computer reconstructions of microscopic scans of 
neurons sorted by brain area or author. The reconstructed format we use is a 
*.swc file, which stores information as a text file and describes neurons like a 3D 
network of points (nodes) and their linear connections (edges) with given radii 
for each connection.

Additionally, each line has a tag about what kind of structure it is – apical 
dendrite (branches going to higher layers mainly receiving signals, basal dendrite 
(branches going to lower layers mainly receiving signals) or axon (branches send-
ing out signals). Each node has an x,y,z coordinate, its own index and an index 
of a connected node.

All models used are from the primary visual cortex area of the neocortex 
of a rat, provided and reconstructed by Markram (Markram 2006). In total we use 70 
unique files, each representing one neuron. These are grouped into types by layers.

2.2 Parametric Neuron Model
All neurons are first fully reconstructed in Grasshopper andRhinoceros (Fig. 3), the 
primary software used throughout the whole project. Raw data from downloaded 
files are parsed as a sequence of numbers that define locations of points in 3D 
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space. Indices of connected nodes are reconstructed in the same way and are 
used to build an initial network of lines that represent centre-lines of dendrites. 
This is done in Python programming language and stored in a custom object class, 
which also stores a radius read in original raw data file for each of these lines.

To correctly reduce the number of branches in the final pattern, a sub-section 
of the neuron is created. The depth of this section is a variable that trims off any 
branches that are outside this range.

Five key steps (Fig. 4) is used to simplify the centrelines and build surfaces. 
The pseudo-code (implemented in Python) for neuron generation is described 
by Algorithm 1.

2.3 Constraining Parametric Model
Incorporating some of the structural and manufacturing constraints is necessary 
and most efficient on the level of centre-lines. To allow all spigot locations to be 
on a given grid or within predefined zones, which is discussed later, all these  
centre-lines have to go through specified points, representing a possible spigot lo-
cation. Another advantage of introducing these fixed points is that more branches 
intersect at those locations, thus minimising the number of free branches which 
structurally act as cantilevers and thus have limited performance. A Python func-
tion rebuilds the centre-lines and forces them to go through these fixed points. 
Only a small maximum movement is allowed to keep the original visual charac-
teristics of branches. Each fixed point finds a point closest on a centre-line, and 
if within given tolerance, the centre-line is split into two halves, shortened and 
the newly created gap is replaced by a new curve that goes through the fixed 

Figure 4. Five key steps in the process of simplifying and smoothing the raw data.

3D space. Indices of connected nodes are reconstructed in
the same way and are used to build an initial network of lines
that represent centre-lines of dendrites. This is done in Python
programming language and stored in a custom object class,
which also stores a radius read in original raw data file for
each of these lines.

To correctly reduce the number of branches in the final
pattern, a sub-section of the neuron is created. The depth of
this section is a variable that trims off any branches that are
outside this range.

Five key steps (Figure 4) is used to simplify the centerlines
and build surfaces. The pseudo-code (implemented in
Python) for neuron generation is described by Algorithm 1.

Algorithm 1 Neuron generation
while next branch in neuron available do

rebuild center polylines by connecting nodes as points from the raw
data
if distance of this point not close to existing point then

skip
end if
store points as a list in a neuron class
sample these polylines
interpolate these points to smooth the centreline
sort these curves by their length and distance from the origin of the
neuron
count number of branches
if length or distance > target value then

skip curve
end if

end while

Constraining Parametric Model
Incorporating some of the structural and manufacturing
constraints is necessary and most efficient on the level of
centre-lines. To allow all spigot locations to be on a given grid
or within predefined zones, which is discussed later, all these
centre-lines have to go through specified points, representing
a possible spigot location. Another advantage of introducing
these fixed points is that more branches intersect at those
locations, thus minimizing the number of free branches
which structurally act as cantilevers and thus have limited
performance. A Python function rebuilds the centre-lines and
forces them to go through these fixed points. Only a small
maximum movement is allowed to keep the original visual
characteristics of branches. Each fixed point finds a point
closest on a centre-line, and if within given tolerance, the
centre-line is split into two halves, shortened and the newly
created gap is replaced by a new curve that goes through the

fixed point and is tangent to the two parts of the original
centre-line. The new three curves are joined and rebuilt into
a new single centre-line.

Three main groups of fixed points are introduced because of
required manufacturing and structural constraints. Each panel
is attached by spigots on its vertical edges, top and bottom
horizontal edges and a single point in the centre of the panel.

Once the selection and modification of centre-lines is
finished, these are offset to create surfaces. The amount
of offset is primarily driven by the original radius from the
raw data. Because each branch has to have a minimum
thickness to work well structurally and another minimum
thickness to hide a connection detail on the back side of
each panel, the original raw radius is first scaled up by a
fixed number. Scaling all radii by the same number keeps
the characteristic tapering of dendrites. Fixed number scaling
also keeps the characteristic average thickness of branches
that varies between neurons in different layers - neurons in
lower layers tend to be thicker and larger compared to neurons
in higher layers. To minimize noise in the raw data, this
tapering is further forced by a function that checks for a
gradient along the centre-line. Each centre-line is sampled to
a dense list of points, each point is then offset along a normal
vector to both sides to a distance driven by the radius of the
closest raw line. A list of points on either side is generated
and an interpolated curve created from those points.

Figure 5. Centre-points of neurons, e.g. soma’s locations, placed within
the solid areas of facade. Colours represents different neuron types with
a typical sample shown to the right. Neurons with circular marker
represent interneurons (stellar cells) in different Layers, rectangles
represent pyramidal cells.
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Figure 2. Vertical alignment of the facade screen (right) with 
Ramon y Cajal’s drawing (left) of cortical column showing 
generated target layers.

Figure 3. All 70 reconstructed neurons used to generate the 
pattern. 

Figure 4. Five key steps in the process of simplifying and smoothing the raw data.
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point and is tangent to the two parts of the original centre-line. The new three 
curves are joined and rebuilt into a new single centre-line.

Three main groups of fixed points are introduced because of required man-
ufacturing and structural constraints. Each panel is attached by spigots on its 
vertical edges, top and bottom horizontal edges and a single point in the centre 
of the panel.

Once the selection and modification of centre-lines is finished, these are 
offset to create surfaces. The amount of offset is primarily driven by the original 
radius from the raw data. Because each branch has to have a minimum thickness 
to work well structurally and another minimum thickness to hide a connection 
detail on the back side of each panel, the original raw radius is first scaled up 
by a fixed number. Scaling all radii by the same number keeps the character-
istic tapering of dendrites. Fixed number scaling also keeps the characteristic 
average thickness of branches that varies between neurons in different layers 
– neurons in lower layers tend to be thicker and larger compared to neurons in 
higher layers. To minimize noise in the raw data, this tapering is further forced 
by a function that checks for a gradient along the centre-line. Each centre-line 
is sampled to a dense list of points; each point is then offset along a normal 
vector to both sides to a distance driven by the radius of the closest raw line. 
A list of points on either side is generated and an interpolated curve created 
from those points.

These two offset curves define edges of a loft B-spline surface of degree 3, 
which creates the actual fill of branches. Additional surfaces at the end of each 
centre-line creates a smooth ending filet. This end surface is generated from a 
curve that is tangent to the two offset curves and goes through a point on a pro-
longed original centre-line to create a tip of the branch.

2.4 Generating Somas – The Cell Bodies
As somas are not described by enough points in the raw data file and at the 
same time have a shape crucially characterising each neuron type, they are 
drawn manually for each of the 70 neuron files. There are two main shapes of 
somas: a circular one for interneurons and a triangular one for pyramidal cells. 
Further somas are significantly larger in lower layers then in higher layers, e.g. 
somas of large pyramidal cells in layer 5 have larger somas than small pyrami-
dal cells in layers 3 and 4. These manually drawn templates of somas are then 
positioned to the centre-point of neurons within the pattern and a small noise 
is applied to remove any repetition when the same neuron is used more than 
once. This noise is generated by scaling the soma by a small random number 
different in x and y directions and in a plane that is rotated by a small random 
angle to introduce skewing.
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Figure 5. Centre-points of neurons, e.g. soma’s locations, 
placed within the solid areas of facade. Colours represents 
different neuron types with a typical sample shown to the 
right. Neurons with circular marker represent interneurons 
(stellar cells) in different layers, rectangles represent 
pyramidal cells.

Figure 6. Visualisation of the pattern itself showing three facades connected together into a single pattern. Few panels 
shown with larger scale to the right.

Figure 7. Added solidity of two halves of panels attached to an adjacent vertical mullion determines the number of 
spigots along that mullion. Few panels shown with larger scale to the right.

Figure 8. All 290 panels shown in different colours. Few panels shown with larger scale to the right. 

Figure 9. Structural analysis of all 290 panels analysing combined dead load and wind load. Few panels shown with 
larger scale to the right.
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2.5 Layer Mapping and Neuron Size

Another key characteristic of pyramidal cells is what layers within the cortical 
column they connect by their apical dendrites. Pyramidal cells in layer 3 are con-
nected to layer 1, pyramidal cells in layer 4 are connected to layer 3 and large 
pyramidal cells in layer 5 are connected to layer 1. Although the raw data puts 
neurons to the correct layer and gives it the right size to connect to the correct 
layer, as the generated screen pattern has the cortical column layers aligned with 
building’s floor levels, a small modification needs to be done to match the dis-
tance of correct connecting layers. This is simply done by scaling the neurons 
along its centre-point by a ratio that is calculated as a ratio between the height 
of a bounding box of all apical dendrites within a neuron and the target height 
given by a distance between connecting floor levels.

2.6 Horizontal Branches in Cortical Layer 1
The very top layer 1 is filled by separate horizontal branches, which are directly 
generated by a Python script and connects random points within allowed ver-
tical zones for spigot locations along the vertical mullions. These points define 
centre-lines that are offset by a fixed number to create two edges of resulting 
surfaces.

2.7 Network
Neurons in the neocortex are of multiple different types. The type defines its 
shape, size, and connectivity to other neurons and other layers. The cortical col-
umn is made of 6 layers. Our pattern rebuilds five of them, leaving out layer 6. 
As each neuron has two key parts – the soma (central nucleus) and dendrites 
and axon (branches) – and the facade’s objective is to keep all parts of the pat-
tern within a standing or sitting person’s field of view more open (less dense), 
we deliberately place somas into areas in front of solid parts of facade. Because 
these are mainly floor and ceiling constructions and we cover three floors, we 
have in total four separate height levels for placing somas (and thus neurons). 
These height levels drive positions of neurons in levels 2, 3, 4, and 5. Layer 1 
is made by thin horizontal branches and thus is put jointly above layer 2 on the 
very top floor of the building.

For structural reasons somas are placed close to potential structural supports, 
because somas are a large solid piece and so the heaviest part from a structural 
point of view. This is considered when generating the initial grid of points based 
on a structural grid of possible support locations. These are defined by the win-
dow mullions behind the pattern. A centre-point of each neuron is then generated 
as a random offset from this structural point within a predefined range along x 

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



215

and y axes (y axis is z axis in the building’s coordinate system). At the same time 
these centre-points are constrained to the facade’s solid areas only for transpar-
ency reasons (Fig. 5). Only small stellar cells in layer 2 with thin branches and small 
somas are placed off the solid zone.

The y coordinate of each centre-point then defines the layer within the cor-
tical column and thus the type of neuron used in that location. For layer 2 (the 
very top floor / roof level of the building) a random selection among 20 neurons 
is made. 50% of those neurons are small Basket cells and the other 50% are 
small Martinotti cells. Both are sub-types of inter-neurons, which are neurons 
characterised by rounded shape of soma and missing the apical dendrite, the 
thicker vertical branch coming out of soma.

Layer 3 (second floor level from the top) is made of neurons selected from 
20 different small pyramidal cells. Pyramidal cells in this layer are characterised 
by smaller somas of triangular shape and thicker vertical branch (apical dendrite) 
connecting this neuron to layer 1.

Layer 4 (third floor level from the top) is made of combination of inter-neurons 
and pyramidal cells. Both neurons in this layer have larger somas compared to 
previous layers. We use 50% of each type, so there is always one pyramidal cells 
followed by one inter-neuron. Inter-neurons are further selected from a group of 
Martinotti and Basket cells. Pyramidal cells in layer 3 are connected to layer 2 by 
apical dendrites, so the cell is forced to be the correct height.

Layer 5 (the very bottom floor level in the building) is made of large pyrami-
dal cells only. Because the density of neurons in layer 5 is smaller, we place cells 
only to every other structural point, leaving more space in between. We have 10 

Figure 10. Location of all spigots overlaid with corresponding vertical grid and horizontal target zones required for spigot 
placement. 
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different pyramidal cells to choose from and they are forced to be the correct 
height to connect to layer 1.

Layer 1 is generated separately as a number of thin horizontal branches span-
ning over the whole width of the building. They are placed above layer 2 cells and 
also create a solid visual ending of the pattern at the top edge.

After initial generation of centre-points (Fig. 5) of cells and assigning a type of 
corresponding neuron, random rotation of each neuron is applied. This rotation is 
along the z axis of the neuron and provides further diversity in the pattern when 
the same neuron is used more than once – on average each neuron is used three 
times to reach the total number of 230 neurons. This rotation is within plus-minus 
10 degrees additionally to 180 degrees used for mirroring. Somas are generated 
separately as discussed in previous sections.

The final network (Fig. 6), which is generated in original dimensions and is 
900 nm in height, is scaled up to 14093 mm to match the facade’s height. This 
gives a scale of 15659:1.

2.8 Workshop
To facilitate the search for the right balance between architectural representa-
tion and accuracy, we collaborated with the client directly, which is the Centre 
for Neuroscience. We held two separate workshops with the leading neuro- 
scientist to discuss and develop the logic behind the pattern.

During these workshops (Fig. 11), it proved to be very useful to have a paramet-
ric model of the work in progress pattern and do live changes to the pattern. We 
developed a pseudo-code for further development that resulted in the algorithm 
described here. Having a descriptive rather than prescriptive understanding of the 
logic of the pattern helped to find flexible areas in both fields and intersect them.

2.9 Fabrication
All panels will be water jet cut from 1500 mm x 3000 mm sheets of 12 mm thick 
aluminium.

The overall pattern goes around the whole building but is split into two identi-
cal halves. This makes it easier to manufacture by reducing the number of unique 
panels to half, but cannot be seen anywhere on the building, because one half 
is rotated 180 degrees relative to the other.

In total there are 600 glass panels. Every two of these are covered by one 
aluminium panel of double size, which gives 290 unique aluminium panels (Fig. 8).

Each aluminium panel is attached by a number of steel spigots. These spig-
ots are attached to the glass mullions and transoms behind. Spigots on vertical 
mullions transfer dead load as well as wind load. Spigots attached to the hori-
zontal transom take only wind load.
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Figure 11. Design and process review workshop with 
client, neuroscientist, and fabricator.

Figure 12. Section of facade and interior.

(from left to right and top to bottom)

Figure 13. Scaled foamboard mock-up of the full screen.

Figure 14. Scaled 3D printed model of a portion of the 
screen reconstructed in 3D before flattening.
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A key constraint is to achieve a total optimal number of spigots carrying the 
whole pattern. This divided by the number of panels gives an average number of 
4.8 spigots per panel. As all spigots on the outer border carry two adjacent pan-
els, while only one spigot in the centre of a panel carries only itself, the average 
number is 8.8 spigots per panel. The pseudo-code for placement of spigots on 
vertical edges is described by Algorithm 2.

For additional strength against wind load, one spigot is positioned on the top, 
one on the bottom edge, and one on a horizontal line going through the centre 
point of each panel. The initial rule of placing the spigot to the widest branch is 
replaced by a spigot closest to the midpoint of the edge, which gives best struc-
tural performance. All of those spigots are localised in one of the four possible 
locations on a transom. This allows the transoms to have only four different types 
and is therefore cheaper to manufacture.

Because centre-lines are already forced to go through the zones allowed for 
spigot placement, the closest point on them is also within those zones (Fig. 10).

To simplify installation of the panels and to ensure that each panel is supported 
by at least three points not on line, each panel must be made of a single piece. 
This is achieved by having the pattern dense enough, which is controlled by the 
parameter number of branches. This parameter is different for each of the neuron 
types, so slightly different densities within the pattern are achieved. Additionally, 
if there are still any small pieces left, an algorithm removes them completely.

It was calculated that a maximum length of any cantilever must be less than 
500 mm. This is controlled by a Python function that splits all centre-lines against 
all other centre-lines, and if any of the end pieces is more than 500 mm, it shor-
tens it to 500 mm minus a small additional random number to avoid a regular look.

triangular shape and thicker vertical branch (apical dendrite)
connecting this neuron to Layer 1.

Layer 4 (third floor level from the top) is made of combination
of inter-neurons and pyramidal cells. Both neurons in this
layer have larger somas compared to previous layers. We
use 50% of each type, so there is always one pyramidal
cells followed by one inter-neuron. Inter-neurons are
further selected from a group of Martinotti and Basket cells.
Pyramidal cells in Layer 3 are connected to Layer 2 by apical
dendrites, so the cell is forced to be the correct height.

Layer 5 (the very bottom floor level in the building) is made
of large pyramidal cells only. Because the density of neurons
in Layer 5 is smaller, we place cells only to every other
structural point, leaving more space in between. We have 10
different pyramidal cells to choose from and they are forced
to be the correct height to connect to Layer 1.

Layer 1 is generated separately as a number of thin horizontal
branches spanning over the whole width of the building. They
are placed above Layer 2 cells and also create a solid visual
ending of the pattern at the top edge.

After initial generation of centre-points (Figure 5) of cells and
assigning a type of corresponding neuron, random rotation of
each neuron is applied. This rotation is along the z axis of the
neuron and provides further diversity in the pattern when the
same neuron is used more than once - on average each neuron
is used 3 times to reach the total number of 230 neurons. This
rotation is within plus-minus 10 degrees additionally to 180
degrees used for mirroring. Somas are generated separately
as discussed in previous sections.

The final network (Figure 6), which is generated in original
dimensions and is 900 nm in height, is scaled up to 14093 mm
to match the facade’s height. This gives a scale of 15659:1.

To facilitate the search for the right balance between
architectural representation and accuracy, we collaborated
with the client directly, which is the Center for Neuroscience.
We held two separate workshops with the leading
neuroscientist to discuss and develop the logic behind
the pattern.

During these workshops (Figure 11), it proved to be very
useful to have a parametric model of the work in progress
pattern and do live changes to the pattern. We developed
a pseudo code for further development that resulted in the
algorithm described here. Having a descriptive rather than
prescriptive understanding of the logic of the pattern helped
to find flexible areas in both fields and intersect them.

All panels will be water jet cut from 1500 mm x 3000 mm
sheets of 12 mm thick aluminum.

The overall pattern goes around the whole building, but
is split into two identical halves. This makes it easier to
manufacture by reducing the number of unique panels to half,
but cannot be seen anywhere on the building, because one half
is rotated 180 degrees relative to the other.

In total there are 600 glass panels. Every two of these are
covered by one aluminium panel of double size, which gives
290 unique aluminium panels (Figure 8).

Each aluminium panel is attached by a number of steel
spigots. These spigots are attached to the glass mullions and
transoms behind. Spigots on vertical mullions transfer dead
load as well as wind load. Spigots attached to the horizontal
transom take only wind load.

A key constraint is to achieve a total optimal number of
spigots carrying the whole pattern. This divided by the
number of panels gives an average number of 4.8 spigots per
panel. As all spigots on the outer border carry two adjacent
panels, while only one spigot in the centre of a panel carries
only itself, the average number is 8.8 spigots per panel. The
pseudo-code for placement of spigots on vertical edges is
described by Algorithm 2.

Algorithm 2 Placement of spigots on vertical edges
Require: solidity for each vertical edge as a sum of two halves of adjacent

panels (Figure 7)
Ensure: solidity of all edges < 0.5

while next panel edge available do
if solidity of this edge < 0.33 then

assign spigot at 1/3 of the edge length
assign spigot at 2/3 of the edge length

else
assign spigot at 1/5 of the edge length
assign spigot at 1/2 of the edge length
assign spigot at 4/5 of the edge length

end if
find closest point from these points on any center-line → output actual
spigot location

end while

For additional strength against wind load, one spigot is
positioned on the top, one on the bottom edge and one on
a horizontal line going through the centre point of each panel.
The initial rule of placing the spigot to the widest branch is
replaced by a spigot closest to the midpoint of the edge, which
gives best structural performance. All of those spigots are
localized in one of the four possible locations on a transom.
This allows the transoms to have only four different types and
is therefore cheaper to manufacture.

Because centre-lines are already forced to go through the
zones allowed for spigot placement, the closest point on them
is also within those zones (Figure 10).
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A structural analysis of all 290 panels was done (Fig. 9) in General Structural 
Analysis (GSA). An automated link from Grasshopper creates a GSA file that is 
then analysed and gives information about overall displacement. Having this as a 
Grasshopper component allows us to easily define locations of different supports. 
Spigots on vertical edges work as pins fixed in x, y, and z directions. Spigots on 
horizontal transoms are fixed only in x and y direction, thus not taking any dead 
load. Further settings for the analysis are 12 mm thick aluminium and 1430 Pa 
wind load on each face, which is the highest wind in Jerusalem.

The analysis itself is mesh based. For this each panel that is drawn as a 
B-spline surface so far has to be meshed and the mesh needs to be as regular 
as possible. This is again done automatically in Grasshopper as well as finding 
the support location as a closest point on the mesh from a spigot location.

To achieve the target maximum deflection of 15 mm, multiple full cycles of 
geometry generation, panelisation, and analysis had to be done. The interim re-
sults and careful observation redefined the rules for spigot placement and overall 
density as discussed before. This made around 95% of the panels perform well.

To effectively fix the last few percent of panels as well as to incorporate and 
visually integrate openings for the escape windows, which are 12 windows that 
need to be completely clear, manual modifications of the generated surfaces 
were necessary. All surfaces are baked into Rhino, modified, and then loaded 
back into Grasshopper, panelisation and analysis is automated again.

Figure 15. Mock-up of a portion of the screen built on site 
in Jerusalem.
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3. Physical Prototypes
Multiple methods were used for evaluation of the aesthetic and structural prop-
erties of the pattern.

3.1 Foam-Board Zund Cuts
A scaled full-facade model was done from a foam board and cut on a Zund ma-
chine (Fig. 13), which allowed us to quickly and cheaply create 1:1 pattern proto-
type. The whole facade was split into 10 boards of size 1200 mm x 2400 mm. 
This was used to evaluate the overall density, complexity and correctness of the 
pattern (Fig. 13).

3D Prints
Because the very initial raw data are 3-dimensional, few experiments were done 
to visualize the pattern in 3D (Fig.14). This is the same pattern as the facade pattern 
before applying any manufacturing or structural rules. A sample of such structure 
was 3D printed on an SLS machine (Fig. 14).

Mock-up
A full scale mock-up of multiple glass and aluminium panels was done on site in 
Jerusalem (Fig. 15). This shows the final detailing and surface treatment.

4. Discussion
The ability to have a smooth work-flow including a structural analysis and auto-
matic processing of raw scientific data allows content accuracy to be implement-
ed and aligned with manufacturing and architectural constraints.

The overall size of the final pattern is 86,313 mm (width) x 14,093 mm (height). 
As the height of the pattern would be 900 nm, that gives a scale of 15,659:1. 
Minimal solidity of the panels is 10%, average 36% and maximum solidity 61%. 
41% of all vertical edges have two spigots, 59% have three spigots. The total 
number of spigots is 1,403 per half, 2,806 in total. The number of neurons used 
to generate the full pattern is 207, based on 70 unique raw files.

The pattern is designed so it performs well for 1,430 Pa wind load and 15 
mm maximum deflection, fabricated from 12 mm aluminium panels. The mini-
mum width for unsupported branches is 38 mm, otherwise 49 mm. The initial 
pattern before implementing the manufacturing constraints has 8320 branches 
with 39,749 intersections and would need 7,216 spigots. This was reduced after 
geometry modifications by 63% to 2,685 spigots. And this was reduced further 
by 48% after careful spigot location selection to 1,403 spigots.
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The overall process could be further optimised by having a two-way closed 
loop with GSA. In this case the initial strategy was good enough to handle around 
95% of panels.

As the project developed in complexity, more consultants got involved, and 
deadlines approached, the usefulness of the digital workflow became obvious 
and allowed for rapid changes to the design; this meant it was necessary to keep 
the model up to date right through to fabrication.

5. Conclusion
The digital and practical work-flows presented here proved to be relatively pro-
ductive for multiple design and construction criteria to be integrated into a sin-
gle work-flow. It allowed a pattern derived from accurate microscopic scans of 
brain tissue to be generated and architecturally reconstructed with integration 
of structural and manufacturing constraints.
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Abstract
In this paper we focus on transformable structures and more specifically on struc-
tures that can change from a flat shape to a curved shape in a continuous pro-
cess. We present a method for building a mechanism from any kind of curve that 
can be flattened by modifying only one degree of freedom. Such mechanisms are 
based on scissor-pair mechanisms; recently, their technology has been improved 
to be able to match all sorts of curved shapes. We applied this method in a con-
temporary ongoing project at the “Jet d’Eau” in Geneva, a structural footbridge 
spanning 12 meters over a thin lake channel. This footbridge consists of 30 cou-
ples of stainless-steel scissors that can be either flat or raised and in the raised 
position looks like a wave with a sinusoidal geometry. This footbridge resolves 
a public mobility issue and combines wheelchair and gentle mobility with boat 
passing in the lake channel: When the footbridge is horizontal, the deck is flat 
and pedestrians can pass even if in a wheelchair while the boat traffic is closed; 
when the footbridge is raised, the deck becomes stairs so that pedestrians can 
pass on it and boats can navigate underneath.

Keywords: 
scissor mechanisms, transformable structure, curved shape, movable bridge,  
movable footbridge, Geneva
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1. Introduction
There are many different types of movable bridges around the world, most of 
which use basic movements such as translation or rotation. Generally these 
bridges allow only one traffic mode: The pedestrian traffic is stopped when flu-
vial traffic is active and vice versa. Indeed, most movable bridge structures are 
made with discontinued mechanisms, so that the deck is interrupted by a gap 
when the bridge is raised.

In June 2013, an association for the mobility of handicapped people launched 
a project to provide a large public access to the “Jet d’Eau” in Geneva. The aim 
was to build a timber deck 4 m wide to enlarge the existing jetty from the early 
20th century made of stone which provides access to the harbour.

In its place, we developed a movable footbridge to allow the passing of 
wheelchairs and pedestrian traffic in the resting position, while boat-passing 
and non-wheelchair pedestrian traffic remain possible in its raised position. Con-
struction on site commenced in October 2015 and should be finished by the end 
of June 2016. Figure 1 shows two renderings of the footbridge in the resting and 
raised positions.

2. Issue
In order to avoid an interrupted structure with a gap in the deck, we needed to 
develop a mechanical system with continuous transformation of its shape, such 
as stretch movements or homothetic transformations. Our research focussed on 
a fundamental issue: How to build a curved structure that can transform itself into a 
flat structure? The aim was to build a structure with only one degree of freedom 
that can be transformed without stress or damage to its continuity, as shown in 
Figure 2. We focussed our study on structures of constant height.

3. Sources of Inspiration
Mechanical systems with one degree of freedom are rare. The most popular is 
the scissor mechanism found in engines such as cranes, man-lift platforms, ac-
cordion barriers, trivets, and toys.

One of the objects inspiring our structure was the Hoberman Sphere, a small 
toy invented in the 1990s by Chuck Hoberman (Hoberman 1991, US Pat. 4942700) based 
on a pair of scissors that maintain a constant angle while moving and allows the 
creation of expanding circles. Chuck Hoberman carried out several projects using 
this mechanical concept, some of which reached architectural dimensions such 
as the Iris Dome (Hoberman 1991, US Pat. 5024031).
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Figure 1. Top: In the resting position the footbridge is flat and allows wheelchairs and pedestrian traffic to pass. Bottom: 
In the raised position the footbridge is curved and allows boat-passing underneath the bridge as well as non-wheelchair 
pedestrians to pass over the bridge by walking on stairs. Courtesy of Christian Tellols.

Figure 2. The expected transformation must be continuous, dictated by only one parameter.
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The scissor mechanism was developed in 1965 by Perez Pinero (Pinero 

1965, US Pat. 3185164) as a movable theatre structure and rediscovered in 1974 by  
Theodore Zeigler (Zeigler 1974, US Pat. 3968808) for a collapsible structure. It has since 
been intensely studied and improved, in particular by Escrig and Valcarcel (1993, 

71-84), and then by Kassabian, You and Pellegrino (1999, 45-56). It has also been 
widely used in applications for deployable/retractable roof structures. Called 
pantographic scissors by Hanaor and Levy (2001, 211-229), this mechanism led 
to many derived concepts as a pair of scissors where the pivot is in the cen-
tre, a pair of scissors where the arms do not have the same length, a pair of 
scissors where the arms are angulated as in Hoberman Sphere, and a pair 
of scissors where the pivot can slide along one arm in a slot. Not to forget 
all the combinations of the various scissors concepts. Indeed, despite the 
huge range of existing scissors concepts, seldom did they actually lead to a 
concrete project.

In a recent article, X. Chen and L. Liu (Zhang et al. 2016) present a topological 
method for building a scissor structure that matches a target shape as precise-
ly as possible starting from a given source shape. Unlike this global generative 
approach, we propose a simplified approach that allows us to choose a solution 
by exploring different possibilities.

Another source of inspiration is the Rolling Bridge, located in London and 
designed by Thomas Heatherwick in 2004. This footbridge consists of a struc-
ture moved by seven pairs of hydraulic cylinders that can transform themselves 
into a circle by rolling.

This interesting project opens up new possibilities by using engine technol-
ogy and robotics in architecture and structural engineering. 

4. Curve with Scissor Mechanism
First of all, we looked at traditional scissor mechanism whereby the scissor pair 
comprises two arms linked together at a central pivot. Here, the scissor always 
forms a rectangle, with the length of each side changing when the arms revolve 
around the pivot. Since we only studied structures with a constant height, each 
scissor must have the same height h.

When the central pivot is shifted vertically, the scissor changes its shape 
from a rectangle to a trapezium, as shown in Figure 4.

The trapezium is an interesting element that allows us to build curved shapes 
thanks to its two inclined sides.

It is possible to build many different trapezium chains to run along any curve. 
For a standard path p and a common height h for each trapezium, the chain re-
sults upon choosing a starting angle γ for the first element; each following angle 
is then determined by symmetry, see Figure 5.
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Figure 3. Sources of inspiration using a scissor mechanical system. Left: a scissor crane. Middle: a widespread trivet.  
Right: the Hoberman sphere.

Figure 4. Left: the traditional scissor maintains a rectangular geometry while moving. Right: a scissor with the central pin 
shifted down, causing the geometry to change from a rectangle to a trapezium.

p

h

γ

Figure 5. Elaboration of a trapezium chain. A given curve is discretised into a polyline with a constant path,  
the angle γ determining the trapezium chain. Many chains are possible. It is also possible to have a different path p for 
each trapezium.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



228

In order to build the scissor inside the trapezium chain, we have to solve 
an equation with several parameters. Indeed, all scissors are linked by one side 
so they have to fit the same conditions: same height h, path p, and angle a be-
tween both inclined sides.

5. Solution of the Trapezium Equation
Even if each trapezium has a different shape, they have the same height h and 
a base b, which corresponds to the polyline path; only the angle α is different. 
The goal is to find the position of the central pivot C such that, when arm L and 
arm l rotate of θ, their horizontal projections match to form a rectangle (see Fig. 6).

The result of transforming the trapezium into a rectangle led us to build all 
existing scissors possibilities for a given trapezium, even though these possibili-
ties might not be compatible with one another for building a chain. The next step 
consisted of choosing the valid solution among all these possibilities.

The whole family of possibilities is drawn on the left side of Figure 7 for a the-
oretical case. For each angle a, the curve represents the rectangle height h’, de-
pending on the pivot position ratio ρ ; each curve represents a family of scissors 
that have the same angle α and can transform itself into a rectangle.

From these curves we have to choose which ones match the expected height 
and intersect the horizontal line h’ = 1.7 m. Some angles might not intersect this 
line. Typically, on this graph, it is not possible to find the same height h’ for an 
angle a = 6° and an angle a = 40°. This means that, if the curvature of the shape 
leads to a trapezium with both angle values in the same trapezium string, there 
is no way to find a solution.

To solve that problem, it is possible to bring down a curve that does not inter-
sect the expected height h’ by decreasing the trapezium base b and with it path p.

At the top right of Figure 7, several curves are shown for a path decreasing 
from 1.34 m to 0.50 m. When p reaches that last figure, the curve intersects the 
horizontal line h’ = 0.17 m, making it possible to embed the scissor with α = 40° 
into the trapezium chain.

Varying the path of the trapezium makes it is possible to target a wide range 
of angle α and allows it to work on a wide range of curves.

6. Helix with a Constant Path
As an example from the previous section, we apply the method described to a 
helix (see Fig 8).
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Figure 7. Top left: Graphic of the whole string of trapezium possibilities for different trapezium 
angles. In this theoretical case, the graphic is based on a trapezium base b = 0.7 m and a side 
length h = 1 m. Top right: Graphic of the whole string of trapezium possibilities with α = 40° 
for different trapezium bases. Bottom: Images of the scissors in the trapezium position and in 
the rectangle position. 

From these curves we have to choose which ones match the expected height and 
intersect the horizontal line h’ = 1.7 m. Some angles might not intersect this line. Typically, on 
this graph, it is not possible to find the same height h’ for an angle α = 6° and an angle α = 
40°. This means that, if the curvature of the shape leads to a trapezium with both angle values 
in the same trapezium string, there is no way to find a solution. 

To solve that problem, it is possible to bring down a curve that does not intersect the 

Figure 7. Top left: Graphic of the whole string of trapezium possibilities for different trapezium angles. In this theoretical 
case, the graphic is based on a trapezium base b = 0.7 m and a side length h = 1 m. Top right: Graphic of the whole string 
of trapezium possibilities with a = 40° for different trapezium bases. Bottom: Images of the scissors in the trapezium 
position and in the rectangle position.

Even if each trapezium has a different shape, they have the same height h and a base b, 
which corresponds to the polyline path; only the angle α is different. The goal is to find the 
position of the central pivot C such that, when arm L and arm l rotate of θ, their horizontal 
projections match to form a rectangle. 

 

 
Boundary conditions: 
 
l + L > h’ 
 
|CA’| ≥ |CB’|  
 
β2 + θ < π/2  
 
β1 + θ < π/2 
 
 
Rectangle condition: 
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Figure 6. Diagram of the trapezium. By turning θ, the arms L and l form a rectangular geometry. 

The result of transforming the trapezium into a rectangle led us to build all existing 
scissors possibilities for a given trapezium, even though these possibilities might not be 
compatible with one another for building a chain. The next step consisted of choosing the valid 
solution among all these possibilities. 

The whole family of possibilities is drawn on the left side of Figure 7 for a theoretical 
case. For each angle α, the curve represents the rectangle height h’, depending on the pivot 
position ratio ρ; each curve represents a family of scissors that have the same angle α and can 
transform itself into a rectangle. 

Figure 6. Diagram of the trapezium. By turning θ, the arms L and l form a rectangular geometry.
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6 Helix with a Constant Path 

As an example from the previous section, we apply the method described to a helix. 

 

 
 
The helix curve is segmented into a polyline 
with a constant path p = 25 cm. 
 
 
 
 
 
 
A trapezium string is built with a single 
height h’ = 18 cm and each angle of 
trapezium is determined. 
 
The height h’ is chosen according to the 
graphic at the top of Figure 7, to produce a 
solution for every angle αi. 
 
 
 
 
For each trapezium we place the central pivot 
according to the ratio ρ, which is calculated 
based on the trapezium angle α. 
 
The scissor geometry is unique once the 
parameters h and pi have been chosen. 
Angles αi are not chosen, but rather depend 
on the curve geometry. 
 
 
 
 
When one scissor rotates, the whole scissor 
chain flattens. The rectangle height h = 31 
cm. 
 
In this example the first scissors are narrower 
to the left; this could be modified by 
increasing the path in this area. 

 

Figure 8. Construction sequence of the scissor string construction for a helix example. 

 
Figure 8. Construction sequence of the scissor string construction for a helix example.
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Existing bridge

Radius 5.2m

Path of 78cm

Radius 5.2m

Path of 104cm

Radius 5.2m

Path of 104cm

Figure 9. The curve for the scissor string is copied from the shape of the existing bridge, which remains unchanged.  
The height for clear boat passage is a strong requirement, leading to the shape of the curve, which consists of three 
circular arcs with identical radius r = 5.2 m.
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Figure 10. The initial curve permits building 15 trapeziums with same height h = 1.20 m and same angle α = ± 6°.  
The path is p = 74 cm in the middle and p = 104 cm at both edges.
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7. The Curve of the  
Geneva “Jet d’Eau” Footbridge

At the beginning of the project, we had no preconceived idea of what material 
should be used to construct the footbridge. In order to keep the range of pos-
sibilities open, we decided to make all the scissors with the same geometry, in 
particular to allow for moulding process or jig fabrication. 

The fact that every trapezium is identical means having every pair of scis-
sors identical. The scissors in the middle are turned down and the scissors on 
the edges are turned up. One very interesting feature of this footbridge is that 
for the footbridge to be raised the mechanism has to be extended and for the 
footbridge to come back to its flat position it has to be shortened.

Once the scissor string was known, we built a structure from the mechanism. 
Each scissor became a structural beam. This structure must respect standard re-
quirements for footbridges, in particular be stiff enough to carry the usual loads.

8. Static Condition
Supports for a moving bridge can be a decisive issue for the structural design. 
Here the mechanism has only one degree of freedom, so it does not need many 
supports to stand erect. However, in order to provide enough stiffness and con-
trol the deflections, we decided to vertically fix two points at each edge. Of  
these four support points, one has to be fixed and the three others have to slide 
horizontally (see Fig. 11).

The hydraulic cylinder acts as a structural section that can change its length 
by changing the inside pressure. Because of the four support points and the two 
hydraulic cylinders, the mechanism becomes statically indeterminate.

The sliding points are made of bronze wear plates between a rail and the 
scissor support plates. They add a further difficulty to the calculation because 
even if the wear plates have a low friction coefficient, the hydraulic cylinder has 
to fight the friction resistance in order to raise the footbridge.

The finite element model must simulate the friction since it has an important 
impact on the structural behaviour. When the horizontal reaction is lower than the 
friction resistance, the sliding support points become fixed and the footbridge 
changes its support behaviour. The finite element model demonstrates that max-
imum stress in the hydraulic cylinder occurs during the detachment phase at the 
start of the movement.
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120cm30cm

Fixed
point

Figure 11. Diagram of the support system. Because of the fixed point position, the sliding points induce 30 cm of 
translation on the left and 1.20 m on the right.

Figure 12. Optimisation of the structural members for the two positions accomplished with a strain-energy minimisation 
routine. The thickness of the line represents where steel must be placed to improve the stiffness of the whole structure.

Figure 13. View of the final element model made with strand7, coloured with the VonMises stresses for the ultimate  
load state.
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9. Structural Behaviour
While the shape is transforming, the span increases and each scissor rotates, 
so the distribution of stress changes significantly during the rise. The raised po-
sition causes higher stress in the scissors than the horizontal position, though 
for the joining components it is different. The structural design must cover all 
middle positions of the movement; we proceed to a non-linear analysis with 
Strand7 by increasing the length of each cylinder and then analyse the results 
at each increment.

Figure 12 shows the material repartition needed to obtain the best structural 
behaviour. The situation is almost the same for both positions though slightly 
different at the edges. Obviously, all scissors do not work the same, so even 
with the same shape we need to find a way to adapt the resistance differently 
to each of them.

At this point of the project, the materials used in the structure become the 
main concern. For durability reasons we choose a stainless steel suited to out-
side exposure, the lake atmosphere and the Jet d’Eau clouds. We agreed on du-
plex stainless steel 1.4462, which has the advantage of having a good corrosion 
resistance, high toughness to limit wear and high proof strength (Rp0,2 = 500 
MPa) (see Fig. 13).

The scissors plates are linked on each side with transoms Ø88 mm and 
12 mm thick, which create a steel frame for transversal stability. The transoms 
belong to the primary structure and also support the deck and the stair frames.

A model analysis shows that the structure has a low frequency in both posi-
tions, especially for the first lateral mode. The footbridge should thus be sensitive 
to pedestrian traffic excitation, but in reality no such effect can be felt when peo-
ple walk on it in the flat position. In the raised position, the horizontal vibration is 
perceived only at the very top of the stairs. Further measurements showed that 
employing most assemblage in bronze strongly increases the damping ratio and 
limits the discomfort due to the dynamic excitation (see Fig. 14).

The overall weight of the footbridge is about 16 tons, which breaks down 
as follows:

• Scissor plates : 10,130 kg 
• Pin connectors : 800 kg 
• Transoms : 1,220 kg 
• Actuators  : 750 kg 
• Stair and deck : 3,400 kg 

The force in the hydraulic cylinders reaches 11 tons when raising the foot-
bridge; maximum reaction in the support is about 21 tons in serviceability state.
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A model analysis shows that the structure has a low frequency in both positions, 
especially for the first lateral mode. The footbridge should thus be sensitive to pedestrian traffic 
excitation, but in reality no such effect can be felt when people walk on it in the flat position. 
In the raised position, the horizontal vibration is perceived only at the very top of the stairs. 
Further measurements showed that employing most assemblage in bronze strongly increases 
the damping ratio and limits the discomfort due to the dynamic excitation. 

 Raised position Flat position 
First lateral mode 1.8 Hz - 1.7 Hz 2.3 Hz - 1.8 Hz 

First vertical mode 3.6 Hz - 4.4 Hz 5.7 Hz - 7.5 Hz 
Figure 14. Table of the natural frequency of the structure. The first value is calculated from the 
FE model, and the second value is measured in situ. 

The overall weight of the footbridge is about 16 tons, which breaks down as follows: 
g Scissor plates : 10,130 kg 
g Pin connectors : 800 kg 
g Transoms : 1,220 kg 
g Actuators  : 750 kg 
g Stair and deck : 3,400 kg 

The force in the hydraulic cylinders reaches 11 tons when raising the footbridge; 
maximum reaction in the support is about 21 tons in serviceability state. 

10 Hyperactive Structure 

Having hydraulic cylinders in the structural system means that the structure is 
permanently active, like a muscle in a living being. This opens a huge field of innovation for 
structural design called hyperactive structures. 

Figure 14. Table of the natural frequency of the structure. The first value is calculated from the FE model, and the second 
value is measured in situ.

Motor

Hydraulic 
cylinders

Hydraulic 
cylinders

Sensor

Deflection

Processor

If Deflection > Target
               Then Pressure
If Deflection < Target
               Then Pressure

Motor

Figure 15. Scheme of the hyperactive concept. The sensor, the processor, and the motors are part of the structure and 
must be permanently active.

Figure 16. Left: The 2 x 30 mm thick plates. Right: The 60 mm thick plates, which comprise the edge scissors.

Figure 17. The scissors’ colour depends on the thickness value. At the edges, the plates are 60 mm thick and 2 x 30 mm 
thick. In the middle, plates are 40 mm thick and 2 x 20 mm thick.
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10. Hyperactive Structure
Having hydraulic cylinders in the structural system means that the structure is 
permanently active, like a muscle in a living being. This opens a huge field of  
innovation for structural design called hyperactive structures.

One of its first applications is the clear distinction between ultimate state 
and serviceability state. The resistance of the structural element can be designed 
according to the ultimate limit state; the serviceability limit state could be man-
aged separately.

Indeed, in order to respect the serviceability or to reduce the deflection, we 
have to manage the stress inside the hydraulic cylinders because it acts directly 
on the shape. In practice, when deflection is too high, we can increase the pres-
sure in the cylinders to balance the deflection and vice versa (see Fig. 15).

Sensors are necessary to analyse the structure state and to determine the 
deflection value. A post-process state is also necessary to inform the hydraulic 
cylinder, which is commonly used in robotics and in mechanical engineering. 
These technologies can also be used for bridges.

One of the main advantages of this scheme is to provide a lightweight struc-
ture with high performance and reactive behaviour. In his paper “Pumping vs. Iron”, 
Gennaro Senatore et al. (2011) presented some interesting results about this topic.

As explained above, the weak point of such structures is the dynamic be-
haviour. With dynamic excitation, the hydraulic cylinders don’t have time to be 
reactive to stop the vibration. In such a case, a complete dynamic study must 
be done by taking into account the damping, which is very high and helpful for 
these mechanisms.

11. Double Shear Plate
To produce the pair of scissors, we had to find a method providing high accuracy. 
Even a tiny deviation or distortion in a pivot positioning could stop the assembly 
or prevent the mechanism from working correctly. Welds and laser cuttings are 
prohibited in that degree of accuracy as they would distort the steel plates too 
much. Therefore, we chose water-cutting technology, which can cut plates up to 
100 mm thick with a low temperature and thus not cause damage to the form. 
Then, the plates were machined to drill the holes for the pivot pins (see Fig. 16).

 To manage the difference of stress distribution inside the structural scissors, 
we decided to change the plate thickness: More stress implies more thickness. 
In the middle, we put a thin plate to reduce the weight, because this area has a 
major influence on the vertical deflection.

In the end we chose four different plate thicknesses (20, 30, 40, and 60 
mm) for building the structure. Each plate is joined in double shear with the next 
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Figure 18. Exploded view of the fabrication model. Stringers control the vertical position of each stair frame with a slot. 
Each stair frame is linked with two rods to next frame. The frames slide into the slots of the stringer. There is no gap 
between the treads.

neighbour plates; for instance, the 60 mm plate is joined to 2 x 30 mm plates 
in order to transfer correctly the stress and to avoid eccentricity in the pin rods 
(see Fig. 17).

In the middle, the thickness of the plates is reduced to 40 mm and 2 x 20 
mm, respectively, in order to give more lightness in this area and have greater 
influence on the deflection. The middle scissor is different from the others: It is 
a scissor with single shear plates of 30 mm, which allows it to have a fully sym-
metric structure.

12. Stair and Deck
The particularity of the footbridge is the transforming deck. As mentioned above, 
we wanted to allow pedestrians to cross the footbridge even when it is raised. 
To this end, we put a mechanical deck in place which follows the bridge trans-
formation by evolving into a stair. This mechanism comprises two basic parts: 
The first is the stair stringer, which is linked to the scissor with a rod to rule the 
slope of the stair; the second is the stair frame, which slides in the stair stringer 
to reach the correct position. The treads are made of oak planks, and the rises 
are included in the stair frame.

The stair is thus like a sheet lying on the footbridge; it follows the bridge 
transformation without resistance. The stability of the stair frame is provided by 
the rods that link the frames together (see Fig. 18).
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13. Conclusions
The “Jet d’Eau” footbridge of Geneva was specially designed to provide differ-
ent traffic modes, such as wheelchair and gentle mobility, pedestrian traffic, and 
boat-passing. The traffic mode can’t be active at the same time, but the project 
serves to reconcile the needs of all users according to their attendance rates.

The method we developed to build the scissors mechanism can be used for 
any kind of curved shape. In our project we used the sinus shape, though we can 
imagine different shapes for other applications. The method is flexible, since it 
is possible to modify a single parameter, like path or height, in order to discover 
different solutions. The scissors mechanism does not have high stiffness, but 
the deflection can be managed by a hyperactive behaviour and the vibration are 
balanced by the high damping ratio.

This project is an application of technologies stemming from the mechani-
cal field to a civil-engineering task. The use of hydraulic cylinders is rare in civil 
engineering, but we have shown that it is effective for changing the geometry 
of the structure and also for enhancing the structural behaviour. It is relevant for 
the future development of buildings and civil works that can evolve in their forms 
and also adapts to suit multiple needs (see Fig. 19).
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Figure 19.The footbridge in situ during the rise. The movement from flat to raised takes around 90 s.
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Abstract
This paper gives insight into a cross-disciplinary computational workflow de-
veloped and implemented in the recently completed “Sequential Roof” project 
at ETH Zurich. The project is a 2308 m2 freeform, load-bearing timber structure 
consisting of nearly 50,000 members, robotically assembled layer-by-layer into 
trusses. The design and analysis of the highly differentiated structure required 
bespoke computational methods combined into an iterative process to solve the 
complex interrelations between geometry, structural behaviour, and fabrication 
constraints. Here, we describe this process, starting with (1) the geometric defi-
nition of the roof and (2) its structural model representation and evaluation with 
respect to the used connection method. Further we elaborate on (3) a randomised 
vertex population algorithm for the nail connection, and (4) the greedy algorithm 
to determine the necessary modifications. Ultimately, we explain how this com-
putational workflow was implemented in the construction design phase of the 
project and discuss transferability of the approach and the architectural outcome. 

Keywords: 
computational design, computational geometry, robotic fabrication,  
robotic assembly, timber construction, structural design, timber structures
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1. Introduction
1.1 Project Description and Context 
The “Sequential Roof” was developed by the group Gramazio Kohler Research 
at ETH Zurich for the new “Arch_Tec_Lab” building of the Institute of Technology 
in Architecture (ITA) at the ETH Hoenggerberg Campus. The building itself was 
planned and realised as a multidisciplinary research project (ITA 2016). The con-
cept behind the roof’s design was to investigate possibilities and constraints of 
computational design and robotic assembly on a full architectural scale (Willmann 

et al. 2015). Following previous, smallerscale experiments of the group, the design 
concept focussed on using ordinary, low-engineered softwood elements with a 
simple, linear geometry and notch-free joints, to create complex, versatile, and 
highly articulated structures (Gramazio, Kohler & Willmann 2014). 

The roof structure, covering an area of 2,308 m2, consists of 168 individual 
trusses, spanning maximum 14.70 m between steel box beams of the prima-
ry structure (Fig. 1) (Adam 2014). Each timber truss is composed of average of 370 
geometrically unique timber slats, stacked in a layerwise alternating way and 
joined together by nails connecting each two overlapping slat ends. Using a ro-
botic setup, the elements are fabricated and assembled sequentially in a fully 
automated process, where each slat is cut to size and then directly placed and 
joined with the rest of the truss structure (Fig. 19) (Apolinarska et al. 2015). Using simple 
elements that require minimal and fast processing (simple cuts) and focussing 
on full automation in assembly are key features that distinguish the project from 
other recently realised nonstandard timber structures, which make intense use 
of multiaxis CNC woodworking techniques to produce complex, curved elements 
with intricate connections and which are then assembled manually. 

1.2 Computational Workflow 
Such fabricationdriven design addressing a novel construction method radically 
challenges the conventional, phase-based process where the level of detail in-
creases with each planning stage. Here, it was mandatory that design, analysis, 
and execution planning are tightly integrated and developed concurrently be-
cause of the obscure and complex dependencies between geometry, structural 
behaviour, and fabrication details. In consequence, it was not possible to gen-
erate a valid (structurally sound, feasible to fabricate, and architecturally correct) 
solution explicitly from a given set of input parameters. 

With a “heavy” digital model, large data sets, long calculation times, and 
tight schedule to produce a final model ready to fabricate, our strategy was to 
start with a simple and mostly underdimensioned model, and to iterate through 
the loop of analyses and local modifications until all problems were resolved. The 
key challenge was therefore to establish an integrated workflow to facilitate this 
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28.82 m

80.07 m

Figure 1. Isometric overview of the roof. It is composed of 168 timber trusses supported by a primary steel structure.
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Figure 2. A pair of timber trusses with subsystems (sprinkler system, smoke exhaust, electrical, lighting, skylights). 
Insulation and weatherproofing layers are applied directly onto the structure, without additional boarding. Each truss rests 
on steel box beams, with one fixed bearing and the other movable in the longitudinal direction.
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Figure 3. Schematic of the established computational workflow.
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process. In short, each iteration consisted of four steps: First, generate the model 
given the current parameters (see Section 2). Then, perform structural calculations 
and evaluation (see Section 3). Next, generate nail pattern for each connection, 
observing structural and fabrication constraints (see Section 4). Finally, assess 
the results of both simulations and perform modifications (see Section 5). Apart 
from several bespoke algorithmic methods, the workflow involved data manage-
ment and data exchange, error-proofing and evaluation methods.

2. Geometric Design
2.1 Geometry Setout 
The overall undulating form of the roof is defined layerwise by pairs of cubic Bézier 
curves. The curves are discretised by setout points P (Fig. 4), which are then used 
as direct and fix reference for the truss geometry. Their position is derived from 
a possibly uniform triangulation of the truss and locally compromised by inter- 
faces with building components such as skylights, exhaust shafts, sprinkler pipes, 
or primary structure (Fig. 2). With setout points referring to the outer boundary of 
the roof shape, the position of a slat’s axis line L depends on its width w (Fig. 5). 
The given setout points and widths create a geometric stencil for elements in a 
layer. Due to the free-form overall shape of the roof, in each layer the stencil is 
different, and there is a slight shift between slats in neighbouring layers.

2.2 Layering
While the stencil is needed to determine geometry of the elements (axes, node 
points, end cuts of each slat) in each layer, the layering pattern defines which el-
ements actually occur in the truss – it defines the composition of chord and di-
agonal slats through all 23 layer of a truss. For example, structural logic imposes 
continuity of the top and bottom chord, which could here be achieved by concat-
enating the individual elements into a symmetrically layered belts (Fig. 6) (Apolinarska 

et al. 2015). The resulting pattern consists of a repeated sequence of three layers of 
chord slats followed by a layer of diagonal slats. Local exceptions to this pattern 
occur when some slats need to be removed, for example, below the skylights 
(to let more light in) or to let smoke exhaust shafts through the roof structure 
(Fig. 2). In general, the geometric setup is relatively flexible, and its principles could 
easily be adapted to use in other projects.
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Figure 5. Detail of the geometric stencil. With setout points P fixed, the position of the slat's axis L depends on its width w.

Figure 6. Layering pattern. (Apolinarska et al. 2015).
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Figure 4. Setout geometry for a layer: a pair of Bézier curves, setout points P and stencil geometry.
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3. Structural Analysis
3.1 Structural System
Through the layered buildup, the structural system of the timber trusses differs 
slightly from that of a typical truss, where the axes of diagonal and chord members 
usually intersect at nodal points. This is not the case here (Fig. 7), and the resulting 
eccentricity causes considerable shear forces and bending moments. Additionally, 
the load flow in cross direction (which is also wood’s weak direction) is diverted, be-
cause the axes of connecting member do not intersect as they lie in different layers. 
Thus, the connections are modelled as connector-beams. Further, connector-beams 
have to be geometrically decomposed into segments so that the connector is nor-
mal to the shear plane (Fig. 8) to get the right section forces. Together, all these phe-
nomena were challenging to represent and interpret with a beam statics program. 

3.2 Analysis
The structural analysis process consisted of three steps: model setup, calculation, 
and post-processing. The model setup included acquiring the geometry (node 
points and members) into a structural analysis software and defining loads, load 
cases, supports, cross-sections, etc. From the calculation results, the internal 
forces were post-processed to produce twofold output information. The first out-
put information was derived from beam proofs based on buckling, bending, nor-
mal and shear forces, and indicated which slat had to be wider to satisfy these. 
The second output information was the required number of nails per connector 
as a result of the internal forces in the connector beams.

3.3 Connection
The specific structural and fabrication logic of the structure required a connection 
method that would be both geometrically flexible and fully automatable. Further, 
because the static system of the coupled trusses is statically highly indeterminate, 
ductile connections were necessary to transfer loads – a brittle failure of con-
nections could lead to a progressive collapse of a truss. Therefore, a connection 
technique using 90 mm long grooved nails, with a shaft diameter of d = 3.4 mm, 
proved to be both the simplest and the most applicable solution for this project. 
Automated nailing is a fast, cost-effective, and well-established CNC technology 
in timber construction. Compared to bolts, screws, or bulldog connections, re-
sistance of one nail is quite smal; however, due to their relatively small diame-
ter nails can be placed closer together and fit better in the connection’s overlap 
area. In result, the sum of the nails can create enough resistance, more than 
the alternatives. The downside of this connection technique is the exceptional 
complexity that arises from combining multiple layers with different geometries. 
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Figure 9. (left) Minimal distances for nailed connections 
according to the Swiss timber code (SIA 265:2003 Timber 
Structures 2003). For this project, both slats are considered 
loaded, so the edge offset are 6d (cross to fibre) and 15d 
(along fibre). Distances between nails are 5d and 10d 
respectively.
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Figure 10. Interpretation of the spacing rules as elliptic lockout areas and comparison with a rhombic grid layout. 
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The Swiss timber code (SIA 265:2003 Timber Structures 2003) specifies 
rules for nailed connections, including minimum distances to slats’ edges and 
between nails, depending on the fibre direction and the nail’s shaft diameter d, 
as represented by a rhombic grid in Fig. 9. This distribution, however, is inefficient 
if multiple slats are overlapping with different angles between them. Instead, 
the distances were interpreted as a pair of elliptic lock-out areas around each 
nail, with long axes of the ellipses aligned with fibre directions of the two corre-
sponding slats (Fig. 10). The edge offsets, resulting in a polygonal feasibility region, 
were calculated individually for each pair of connecting slats.

Still, the nails in each connection had to observe nails from the layer above 
and below. With a total of 129,840 connector-beams, each with individual geo-
metric conditions, distribution of all the required nails in a reasonable, efficient, 
and compliant way could only be solved with computational methods. The next 
section describes the algorithm developed for this purpose. 

3.4 Testing
The various assumptions mentioned above needed to be refined and confirmed 
by physical tests. First, small specimens consisting of three slats were tested to 
determine shear and bending stiffness parameters for connectorbeam elements 
in the calculation model. Also, connections with asymmetrically distributed nails 
were tested to determine the impact of symmetry on the performance of the 
connection – strongly asymmetric distribution of nails increases the risk of splitting 
of wood fibres due to onesided lateral tension forces. Finally, 15 full-scale trusses 
were load tested to get further assurance in regard to statics, and production 
processes. With the use of statistics the failure mode and the corresponding 
load could be predicted quite precisely. 

4. Nail Placing Algorithm 
4.1 Problem Description
Given the geometry of connecting slats, the challenge for the nail-placing al-
gorithm is to find a solution to how to distribute the required number of nails 
in the connections in a way that is compliant with the spacing rules described 
in the previous section. Moreover, the nails should be distributed evenly 
(symmetrically). Also, a fabrication requirement is that each slat has at least 
one fix-nail at each end – a nail that lies exactly on the slat’s axis line. As the 
trusses are assembled by a robot, the first nail has to be placed when the 
gripper holding the slat is still closed in order to fix the slat in place precise-
ly. The fact that the gripper is still holding the slat in that moment constraints 
the fixnail’s position (Fig. 20).
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to get a robust polygon clipping behaviour, we decided to use a 2D polygon clipping library based on 
Vatti’s algorithm (Vatti 1992; Murta 1997). For this, the lock-out zone ellipses are represented by a 
polygon with 72 vertices. The resolution of the ellipses, and of the resulting shape of the feasibility 
region, is an important parameter in the subsequent algorithm (Fig. 12). 

The nail-placing procedure starts by finding a feasible fix-nail configuration for all layers. After that, the 
remaining nails are distributed. For each layer-node there are two feasibility regions, so first we choose 
whether the new nail should be placed in the upper or lower one. If both feasibility regions are nonempty, 

let 𝛥𝛥	: = 𝑛𝑛& − 𝑛𝑛( (where 𝑛𝑛& = number of nails required, 𝑛𝑛( = number of nails placed). If both connectors 

do not yet have enough nails (i.e. 𝛥𝛥) > 0	 ∧ 	𝛥𝛥- > 0), then the lower of the ratios 𝐴𝐴/𝛥𝛥 (where 𝐴𝐴 = area 
of the feasibility region) wins; otherwise, the higher of		(𝛥𝛥), 	𝛥𝛥-) wins. Next, we randomly choose from 
vertices on the border of the selected feasibility region, restarting the algorithm a few times with different 
seeds. Using randomness helps to avoid bias and thus proved to improve the overall behaviour of the 
algorithm. Next, we evaluate the randomly selected candidates in terms of symmetry and discard 
solutions below the acceptable threshold. The symmetry of a nail pattern with respect to a slat is defined 
as the average of signed distances of the nails to the axis line. From the remaining candidate points, we 
pick the best solution to place a nail. Alternatively, one could restrict the choice of the random vertex to 
the convex hull of the feasibility region. This would automatically solve the dependence on the 
resolution. 

The nail-placing algorithm iterates as long as the feasibility regions are nonempty. It may not be able to 
place all the required nails, or it may fail to place a fix nail, or it may be able to place more nails than 
needed. This can cause problems: Redundant nails placed when solving for diagonal slats can impair 
the completion of the vertex population algorithms in the chord slats. To avoid this, if no solution was 
found after two trials, redundant diagonal nails which intersect the considered feasibility region are 
deleted. A surplus of more than 50% of required nails is also economically undesirable. The superfluous 
nails above the +50% threshold are therefore deleted. The selection is done carefully to maximize the 
symmetry in distribution around slat’s axis.  

 

 
Def VertexPacker(AlreadyPlacedNails, GeometricalSituation, RequiredNails): 
     Generate the initial feasibility areas 
    Loop as long as there is some nonempty feasibility area: 
        Choose either upper or lower connector 
 Pick m random vertices on the border of the feasibility area 
        Discard vertices harming symmetry 
        Pick best vertex 
        Place a nail 
        Recalculate both feasibility areas affected by this nail 
 
counter = 0 
solutions = [] 
 
While counter < 15: 
    counter += 1  
 
    If counter==3 and not solutions: 
        DeleteRedundantNailsOnDifferentLayers(AlreadyPlacedNails) 
  
    packing = VertexPacker(AlreadyPlacedNails, GeometricalSituation, RequiredNails) 
  
    If enough_nails: 
        result = [#redundant_nails_upper + #redundant_nail_lower, symmetry, packing] 
  solutions.append(result) 
 

Figure 12. Nail placing algorithms pseudocode.
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4.2 Splitting the Problem into Sub-problems

Each node, understood as the sequence of connections of 23 layers of slats, re-
fers to 22 pairs (“a” and “b”) of connectors. The nail-placing problem is indepen-
dent for each node. The problem of placing nails in the entire node can be split into 
a set of layer-node nail problems (Fig. 11). By layer-node we denote an abstraction 
that describes all nails going through a certain slat in the node, i.e. those placed 
in this slat (lower connector) and those from the slat above (upper connector).

There are two types of connections: between a chord slat and a diagonal, and 
between two chord slats. The nails inside diagonal slats (in diagonal layer-nodes) 
are placed first (layers 3-4, 7-8, 11-12, 15-16, and 19-20). The remaining nails are 
placed by solving for the chord slat in the middle of the belt (chord layer-nodes in 
layers 1-2, 5-6, 9-10, 13-14, 17-18, and 21-22) – this task is partially constrained 
by the already placed nails from the diagonal layer-nodes. 

4.3 Random Vertex Population
Our first studies to solve the nail spacing problem were based on physical sys-
tems, for example, floating circles (Hockney & Eastwood 1981). However, it soon became 
apparent that the problem is too stacked to get a good floating behaviour. Also, 
the nail spacing task is not an optimisation problem, but one aiming at finding 
a feasible solution.

Therefore, an alternative approach was pursued: Nails are added to the 
solution one by one, placed on the border of the feasibility region. At the begin-
ning, the feasibility region is constructed by edge offsets of the overlapping slats. 
When a nail is placed, and a corresponding nonconstant offset of its lockout zone 
is subtracted (Fig. 13). This means that the resulting new feasibility region may as 
well be disjoint. Experience shows that Boolean clipping in 3D CADsoftware 
lacks robustness (Schirra 2000). In order to get a robust polygon clipping behaviour, 
we decided to use a 2D polygon clipping library based on Vatti’s algorithm (Vatti 

1992; Murta 1997). For this, the lock-out zone ellipses are represented by a polygon 
with 72 vertices. The resolution of the ellipses, and of the resulting shape of the 
feasibility region, is an important parameter in the subsequent algorithm (Fig. 12).

The nail-placing procedure starts by finding a feasible fixnail configuration 
for all layers. After that, the remaining nails are distributed. For each layernode 
there are two feasibility regions, so first we choose whether the new nail should 
be placed in the upper or lower one. If both feasibility regions are non-empty, let 
∆: = nR – nP (where nR = number of nails required, nP = number of nails placed). 
If both connectors do not yet have enough nails (i.e. ∆u > 0 ∧ ∆l > 0), then the 
lower of the ratios A / ∆ (where A = area of the feasibility region) wins; other-
wise, the higher of (∆u > , ∆l ) wins. Next, we randomly choose from vertices on 
the border of the selected feasibility region, restarting the algorithm a few times 

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



251

chord slat above

chord slat below diagonal slatdia
go

na
l s

lat

feasibility region
above

feasibility region
below






Figure 13. A step-by-step example of solving a diagonal layernode. Top left: Initial situation. Shaded areas denote the 
initial feasibility regions created by edge offsets. Top right: Fixnails placed at axis lines. New remaining feasibility regions 
after subtracting the offsets of lock-out areas, including those from nails from other layers not shown here. Bottom left: 
Situation after 10th iteration. Lockout areas of the same colour cannot intersect. In the lockout areas of different colours, 
only the ellipses in the layer they share cannot intersect, which is here the layer of the diagonal slats (ellipses aligned 
with axes of diagonals). Bottom right: Situation near completion. On the right there is still a non-empty feasibility region 
where two more nails could be placed. 

Figure 14. Final distribution of nails in a diagonal layer-node from the example in Figure 13 (isometric view from top).

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



252

with different seeds. Using randomness helps to avoid bias and thus proved to 
improve the overall behaviour of the algorithm. Next, we evaluate the randomly 
selected candidates in terms of symmetry and discard solutions below the ac-
ceptable threshold. The symmetry of a nail pattern with respect to a slat is defined 
as the average of signed distances of the nails to the axis line. From the remain-
ing candidate points, we pick the best solution to place a nail. Alternatively, one 
could restrict the choice of the random vertex to the convex hull of the feasibility 
region. This would automatically solve the dependence on the resolution.

The nail-placing algorithm iterates as long as the feasibility regions are non-
empty. It may not be able to place all the required nails, or it may fail to place a 
fix-nail, or it may be able to place more nails than needed. This can cause prob-
lems: Redundant nails placed when solving for diagonal slats can impair the com-
pletion of the vertex population algorithms in the chord slats. To avoid this, if no 
solution was found after two trials, redundant diagonal nails which intersect the 
considered feasibility region are deleted. A surplus of more than 50% of required 
nails is also economically undesirable. The superfluous nails above the +50% 
threshold are therefore deleted. The selection is done carefully to maximise the 
symmetry in distribution around slat’s axis. 

5. Modification Strategies
5.1 Challenge
Both structural analysis and nail-placing procedure can yield negative results, 
meaning that the model needs some modification. Since the problems proved 
to be highly differentiated, no generalised solutions could be found. Also, as the 
overall form of the structure and the setout points were overconstrained, possi-
ble spectrum of modifications was confined to dimensioning (incrementing the 
slat’s width) and geometric details (extending the slat’s end cut) (Fig. 15). The choice 
of slat sizes was limited to three: 115 x 50 mm, 140 x 50 mm and 180 x 50 mm, 
which is a compromise between the necessary differentiation and economy of 
the fabrication process. 

The problems of the first type – the failed beam proofs (as described in 
Section 3) – are explicit and non-negotiable. They are treated in the first place by 
changing the indicated slats’ sizes as required by structural analysis. The second 
type of problems concerns the connection: Either some of the required nails 
or a fixnail could not be placed. In general, the solution is to change (usually in-
crease) the feasibility area of the connection. These problems are far less trivial 
to solve. One of the reasons is that the problem does not explicitly indicate which 
element to modify – each connection is shared by two elements and in most 
cases changing only one of them is sufficient. Also, increasing the size of a slat 
to solve a problem at one end changes the situation in all of its connections at 
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the other end too. Moreover, the effect of the modification cannot be evaluated 
exactly; this would require repeating the structural and fabrication analysis for 
each considered choice – technically possible, but inefficient. The actual number 
of nails that fit into the initial feasibility region cannot be directly deduced from 
its area (because it depends on the situation in other layers) – an estimate must 
suffice instead. In some cases, the modification does not increase the overlap 
area at all (Fig. 15). Again, modifying the size of a slat changes its axis and moves 
the structural node points. 

5.2 Method
The solving procedure can be applied to each truss individually, which consid-
erably reduces the complexity and speeds up the process. For each truss, first 
we try to solve all fixnail problems. Fortunately, they are rare, and their cause is 
easy to identify and eliminate. Next, we try to solve the “missing nail” problems, 
starting with the most economical method: extending the slat’s end. For each 
connector there is only one possible slat to extend, and the problematic connectors 
are treated in the order according to the number of missing nails. 

For each modification, the new feasibility region is calculated to check if its 
area really increased. For any applied modification, areas of all affected (shared 
by the slat) feasibility regions must be recalculated to estimate the number of 
nails that they could additionally accommodate and to add this amount to each 
connector’s number of nails already placed (nP + nA). 

The remaining “missing nail” problems are solved by enlarging the slat’s 
width. Here, to establish a solving order, we chose a “greedy algorithm” mech-
anism in which the “worst” elements are treated first. The “worst” slat is deter-
mined with a heuristic approach by combining various parameters to sort all slats 
according to four criteria in the following sequence: difficulty (S1), then the sum 
of all nails required (nR) in all connectors (c) attached to a slat (𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&

:
9;6 ), followed by slat’s current size ( , 

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails (𝑛𝑛 ) to the required nails 
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its 

connectors ( 𝑛𝑛9?
:
9;6 ), nails missing (𝑛𝑛@?) in slat’s worst connector (connector with the highest number 

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required 
in its 

 , 

extend end

larger
feasibility 
area

increase 
width no effect

increase 
width

Figure 15. Two possibilities of modifying the overlap zone geometry: by extension and by increasing the size of a timber 
element. Extensions are preferred for the sake of material economy, but cannot be applied to diagonal members (as it 
would increase the eccentricity) and were not allowed in lower chord (for visual reasons) and certain further exceptions. 
Increasing size in chord-chord connections may be ineffective. (Apolinarska et al. 2015).
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followed by slat’s current size (S3=w), and finally nails overload (S4), which is a ratio 
of the sum of missing nails (nM) to the required nails 

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat ( , 
and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails ( ) to the required nails 
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (

connectors ( 𝑛𝑛9?
:
9;6 ), nails missing (𝑛𝑛@?  with the highest number 

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required 
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? . If the worst slat cannot be modified (because it has 

already maximal size) or the modification is not effective, try other slats connected to its worse end. 
After each modification, we sort the list of elements again and remove all “resolved” ones. The process 
iterates until the list is empty. 

 

 . 
Difficulty (S1) is a sum of three values: sum of all nails missing in all its connectors 

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&
:
9;6 ), followed by slat’s current size (𝑆𝑆< = 𝑤𝑤), 

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails (𝑛𝑛?) to the required nails 
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its 

connectors ( 𝑛𝑛9?
:
9;6 ), nails missing (𝑛𝑛@?) in slat’s worst connector (connector with the highest number 

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required 
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? + 	𝑛𝑛A?. If the worst slat cannot be modified (because it has 

already maximal size) or the modification is not effective, try other slats connected to its worse end. 
After each modification, we sort the list of elements again and remove all “resolved” ones. The process 
iterates until the list is empty. 

 

 , nails missing (nkM) in slat’s worst connector (connector with the highest 
number of nails required, and nails missing (nqM) in slat’s worst node (node with 
highest number of nails required in its connectors): 

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&
:
9;6 ), followed by slat’s current size ( , 

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails ( ) to the required nails 
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its 

connectors ( 𝑛𝑛9?
:
9;6 ), nails missing (𝑛𝑛@?) in slat’s worst connector  with the highest number 

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required 
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? + 	𝑛𝑛A?. If the worst slat cannot be modified (because it has 

already maximal size) or the modification is not effective, try other slats connected to its worse end. 
After each modification, we sort the list of elements again and remove all “resolved” ones. The process 
iterates until the list is empty. 

 

 . If 
the worst slat cannot be modified (because it has already maximal size) or the 
modification is not effective, try other slats connected to its worse end. After 
each modification, we sort the list of elements again and remove all “resolved” 
ones. The process iterates until the list is empty.

5.3 Results
Although each truss was processed individually (see example in Fig. 16) and problems 
were considered on a local level, the algorithm yielded consistent solutions 
throughout all trusses, producing similar patterns in similar trusses (Fig. 18), thus 
proving to be sufficiently robust to minor differences in input parameters, such 
as rounding errors. In terms of efficiency, the number of problems reduced by 
over 95% between iterations (Fig. 17). Most of the trusses were cleared after 
already three to four iterations, though, some required as much as seven iter-
ations. With one full iteration costing almost 24 hours of work and calculation 
time, solving the model with as few iterations as possible was favourable. At 
the same time it is difficult to conjecture whether a method converging more 
slowly would yield a solution that is more efficient in terms of material con-
sumption, because with the given slat sizes the size increment is often larger 
than needed, especially for minor problems. In the final model, the wood vol-
ume increased by +13% to 385 m³ compared with 339 m³ of the initial model. 
Nevertheless, if the roof had to be realised with one size only and dimensioned 
to the worst case, the increase would have been an estimated +59% (539 m³). 
It is worth pointing out that, as it is often the case in timber structures, also 
here the connections were the driving factor in dimensioning of the slats. In 
total, 815,984 nails were placed, with an overhead of +45.73% making use of 
the surplus area to increase the stiffness of the connections and improve the 
transferring loads. 

6. Implementation
The entire roof model consisted of 49,858 slat elements (represented by extru-
sions, axis lines, outlines) generated based on 3,808 pairs of input curves. The 
structural representation involved 135,840 node points, 91,286 members, and 
129,840 connector-beams. Handling such a “heavy” and differentiated model 
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Figure 16. Solving steps for an exemplary truss: an initial 
model, after first and after last iteration (Apolinarska et al. 
2015). Corresponding resulting wood volume with respect 
to the three slat sizes: 115–50 mm (light blue), 140–50 mm 
(blue), 180–50 mm (dark blue).

Figure 17. Solving steps for an exemplary truss. Number 
of nails missing (black), placed (grey) and maximal possible 
surplus (light grey) at different iterations.

Figure 18. Final, resolved model of the entire roof structure, colour-coded according to the slat's width (see legend 
Fig. 16) (Apolinarska et al. 2015).
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required a high degree of automation in modelling and an efficient and intuitive 
data management strategy for query, survey, and control. 

The architectural geometric model was generated using custom-made  
libraries based on RhinoCommon SDK of the 3D Modelling software McNeel  
Rhinoceros©. For the structural analysis in the software Dlubal Rstab©, the model 
was assembled with bespoke scripts using API modules that directly access the 
application (RS-COM) to overcome the hurdle of manually setting the extremely 
high amount of individual properties for each element. The post-processing of 
the calculation results was carried out in Excel with help of VBA macros. 

The computational workflow relied heavily on intense exchange of large 
amounts of data, and the output format of the processed data at different steps 
of the workflow could be tailored accordingly, be it a 3D model or a data-set in text 
or spreadsheet format. Conventional representation methods such as 2D plans, 
elevations, and sections were mostly unfit to portray the relevant information. 

Needless to say, error-proofing demanded special consideration, and cross-
checking procedures had to be established. For example, the development of the 
highly complex nail pattern algorithm required an independent control script to 
examine the reported nail pattern results with the geometric solution, by redraw-
ing the fibre-aligned ellipses and checking if they are collision-free. Additionally, 
at all stages the geometry and calculations were inspected at random, including 
visual control, and checked for consistency. 

As mentioned earlier, the final, completely resolved model provided not only 
all calculations and detailing, but also output data for fabrication (Fig. 3). This feature 
is a radical difference to the conventional execution planning process and a major 
step forward to a complete, gapless digital chain. These output data were then 
converted into machine code of the large scale 6-axis gantry robot with which 
the roof trusses were built (Kramer 2016) (Fig. 19). 

7. Conclusions
The project exemplifies the specific modus operandi needed for fabrication-driven 
design, which requires a concurrent collaboration between disciplines that are 
usually involved at different project stages (design, detailing, structural analysis, 
fabrication, and execution planning). It also highlights the importance of team-
work as soon as challenges and risks faced by planners and stakeholders go be-
yond the standard code of practice. 

Overall, although many of the developed methods are very case specific, 
the core ideas of the project, i.e. the computational workflow, should be easily 
transferable to future projects. Still, the established computational framework 
holds a lot of potential for further development, for example by tighter integra-
tion of programming interfaces to simplify data exchange. 
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Figure 21. Interior view of the completed roof. Figure 22. Detail soffit view of the completed roof. The 
varying width of the diagonal slats manifests itself in the 
connections. The shadow gaps between the timber trusses 
allow for building tolerances and shrinking and swelling 
of wood.

Figure 19. Automated fabrication and assembly using a 
6-axis gantry robot (ERNE AG Holzbau) (Willmann et al. 
2015).

Figure 20. Fixing a slat with a fix-nail. After all slats in 
the layer have been placed and fixed, all remaining nails 
are shot.
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Abstract
This paper describes a mesh-based modelling approach that supports the multi-
scale design of a panelised, thin-skinned metal structure. The term multi-scale 
refers to the decomposition of a design modelling problem into distinct but in-
terdependent models associated with particular scales, and the transfer of in-
formation between these models. They are applied in this architectural context 
as a means to manage complex information flows between scales. We describe 
information flows between the scales of structure, panel element, and materi-
al via two mesh-based approaches. The first approach demonstrates the use of 
adaptive meshing to efficiently sequentially increase resolution to support struc-
tural analysis, panelisation, local geometric formation, connectivity, and the cal-
culation of forming strains and material thinning. A second approach shows how 
dynamically coupling adaptive meshing with a tree structure supports efficient 
refinement and coarsening of information. The modelling approaches are sub-
stantiated through the production of structures and prototypes. 

Keywords: 
meshing, discrete models, tree, optimisation, multi-scale modelling
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1. Introduction
Thin panelised metallic skins play an important role in contemporary architecture, 
often as a non-structural cladding system. Strategically increasing the structural 
capacity – particularly the rigidity – of this cladding layer could offer significant 
savings for secondary and primary structural systems. Achievable through the 
specification of geometric and material properties, skin-stiffening techniques 
marked the early development of metallic aircraft (Hirschel et al. 2012), and are cur-
rently applied within the automotive industry, where selective local differentia-
tion of sheet thickness and yield strength combine with locally specific rigidising 
geometries that increase structural depth.

To improve the rigidity of thin-skinned metal structures requires a modelling 
approach that guards against instabilities due to buckling at three distinct scales: 
buckling of the structure, buckling within panel elements which have to carry 
compressive load, and also buckling and tearing that can occur during the sheet 
forming process itself (Nicholas et al. 2016). In this paper we discuss a multi-scale ap-
proach in which a mesh connects distinct models associated with each of these 
scales. A particular challenge is related to the fabrication technique used to form 
the steel sheet. A robotic incremental sheet forming (ISF) process is used to 
form all connections and rigidising geometries in a given panel. The ISF process 
has material implications related to thinning and change in yield strength, which 
means that a panel cannot be accurately modelled as geometrically or materi-
ally homogeneous. This leads to a requirement for multiple mesh resolutions, 
which go beyond that of a typical architectural model, and for effective flows of 
information about both geometric and material properties.

The paper is organised as follows: Section 1 describes the ISF process as 
well as the geometric and material transformations that it implicates. Section 
2 describes the multi-scale modelling approach. Section 3 presents two adap-
tive mesh-based approaches, the first supporting unidirectional information flow 
and the second bi-directional information flow through a coupled meshing/tree 
traversal.

2. Background: ISF Process
The modelling process addresses the design of a thin-sheet steel structure  
fabricated via a specific fabrication method – robotic ISF. ISF is an innovative fab-
rication method for imparting 3D form on a 2D metal sheet, directly informed 
by a 3D CAD model. In the ISF process, a simple tool moves over the surface of 
a sheet to cause localised plastic deformation (Jeswiet et al. 2005) (Fig. 1). The prima-
ry advantage of ISF is to remove the need for complex moulds and dies, which 
only become economically feasible with large quantities (Wallner & Pottmann 2011). For 
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Figure 1. ISF process.

Figure 2. Grain elongation and thinning at selected wall angles.

Figure 3. Increase in yield strength as a result of cold working during the ISF fabrication process.
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this reason, in contexts such as automotive, ISF is explored for its potential to 
dramatically reduce the costs of prototyping.

Transferred into architecture, ISF moves from a prototyping technology to 
a production technology. Within the context of mass customisation, it provides 
an alternate technology through which to incorporate, exploit and vary material 
capacities within the elements that make up a building system.

2.1  Transformative Implications of ISF
The ISF process has effects that are both geometric and materially transfor-
mative. Geometric features can be introduced by locally stretching the planar 
sheet out of plane. These increase structural depth and therefore increase  
rigidisation and can also provide architectural opportunities for connection and 
surface expression.

As the steel is formed, there is an increase in surface area and a corre-
sponding local thinning of the material. It is important to calculate this change 
in thickness so that the material is not stretched too far and tears or buckles as 
the thickness approaches zero. Forming also activates a process of work hard-
ening – a deliberate application of deformation that helps resist further deforma-
tion – with the effect of raising the yield strength of the steel. Depending on the 
geometric transformation, the effects of the material transformation are locally 
introduced into the material to different degrees, depending on the depth and 
angle attained through the ISF process. At an extreme, yield strength for steel 
can almost double, while material thickness can reduce to zero (Fig. 2, Fig. 3). Be-
cause the transformative implications of ISF fabrication are significant, it is very 
important to incorporate them into the design phase.

2.2 Design Application
The context of this research is the application of ISF to the forming of panels 
within unframed, panelised, stressed-skin structures. Stressed skins are light-
weight, thin sheet structures in which the skin is structurally active, and bears 
tensile, compressive and shear loads as well as providing rigidity.

A full scale demonstrator was installed at the Designmuseum Danmark in 
May 2015 (Fig. 4), and prototype panels that also test the meshing methods de-
scribed in this paper were produced afterwards. The panels are produced by 
robotic ISF based on production information drawn directly from the meshing 
methods described in Section 3. The basis of the customised toolpathing algo-
rithm is the established method of a spiral descent (Jeswiet et al. 2005), which can be 
run on different levels of mesh resolution to achieve different aesthetic effects 
(Fig. 5), but extended to vary stepping and tooling speed in relation to wall angle, 
measured from the normal of the mesh face.
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Figure 4. Demonstrator in the Designmuseum Danmark.

Figure 5. Toolpath generated from different levels of mesh resolution.
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3. Method: Multi-Scale Modelling Approach
The design context described above necessitates a multi-scale approach. Multi-
scale models aim to describe a problem by separating it into discrete models, 
typically of different type (E 2011). They leverage that, for some applications, a 
model does not require the full complexity of the object. Each model address-
es a particular feature of the design problem (Nicholas et al. 2012). These models pa-
rameterise one another, either sequentially or simultaneously. A key concern is 
therefore those techniques that enable the information generated within each 
of these models to flow to others.

The modelling framework for StressedSkins defines three scales – macro, 
meso, and micro – that coincide with the considerations regarding rigidity out-
lined above. In addition, the macro-scale encompasses the resolution of glob-
al design goals, overall geometric configurations, a full-scale understanding of 
structural performance and discretisation, and is informed by the available scale 
of production. The meso-scale considers the project at an assembly and sub- 
assembly level, and is concerned with material behaviours tied to geometric trans-
formation, detailing and component-level tectonic expression. The micro-scale 
is concerned with relevant material characteristics at the most discretised level. 
To act as a communicative substrate and efficiently bridge between different 
levels of resolution to capture the required dynamics, small-scale geometry and 
scale-sensitive calculations, the adaptation of a non-structured grid is pursued. 
This mesh supports all relevant outputs for form-finding, analysis, fabrication 
and representation.

3.1 Communication Across Scales  
Through Half-Edge Mesh Structure

The first approach focusses on incrementally refining a mesh subdivision so that 
one mesh can support understandings of coarser topological relationships be-
tween individual panels, granular understandings of local material behaviours, 
and refined geometries for defining digital fabrication drivers and toolpaths. The 
basis of the approach is a half-edge (or directed-edge) mesh data structure. Half-
edge meshes enable the deployment of N-gon faces (rather than more standard 
triangulated or quadrilateral faces). This opens up the possibility for designing 
with more complex topologies.

The sequential increase in resolution is shown in Figure 6. Initial increases in 
resolution are achieved through node insertions related to specific geometries, 
and later refinements by Loop subdivision (Loop 1987). The refinement of the mesh 
maintains anchored nodes, seams, and creases as they are established at differ-
ent levels of resolution. At a first resolution, two layers of pentagonal tiling are 
distributed across a base surface. The nodes of this base mesh are positioned 
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Figure 6. Information flow. Mesh resolution is adaptively increased to support scale specific computational processes.

Figure 7. Calculation of strains and material thinning.
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so that edges are oriented to minimize any global hinge effects using constraint 
based form-finding. At a second resolution, nodes describing low-resolution de-
tails related to connection are added to the mesh. These conical geometries are 
integrated with the panels and connective faces – with inherited data structures 
– into a coarse triangulated mesh. An iterative process of finite element analysis 
performed upon this mesh refines the number and distribution of connection 
elements, which are located in as great a number as possible near high-shear 
forces, and aligned perpendicular to them.

A third resolution introduces new nodes that more accurately describe all 
connection geometries, and the mesh is then subjected to finite element anal-
ysis. The results of this analysis – utilisation and bending energy – directly drive 
the tectonic patterning of the skins, which introduces a fourth resolution. For this, 
utilisation forces within each panel are used to drive the depth of either oriented 
dimples or a non-orientated pattern within the structure.

The complex geometries that result are informed by the calculation of 
thinning and increased yield strength, on the basis of strain measurement via 
circle projection (Fig. 7) and numeric models generated from Vickers hardness 
testing. Empirical testing provided a means to accurately inform the model at 
this scale, as available theoretical models such as the sine law do not yet pro-
vide accurate models (Ambrogio et al. 2005). A final skin fabrication model at a fifth 
scale of resolution is synthesised, and each panel systematically arrayed for 
extracting toolpaths.

3.2 Communication Across Scales  
Through Coupled Meshing / Tree Traversal

The second communication approach is focussed on refining two phases of the 
modelling process: mesh subdivision and data transmission between different 
scales.

As experienced with the first modelling workflow, the geometries produced 
by subdivision can become computationally expensive, whereas their high res-
olution is necessary only locally within each panel, specifically where the out-
of-plane deflection occurs. To reduce the mesh density without coarsening the 
geometry, an adaptive Loop Subdivision algorithm (Pakdel & Samavati 2004) was imple-
mented and further developed to incorporate additional constraints. The subdi-
vision method was extended to support creases (chains of edges which break 
the curvature continuity) and anchor points (points that stay in place during the 
process), which are utilised to efficiently and precisely model the deformation. 
Using this adaptive subdivision strategy, the resolution of a typical mesh used 
in the first demonstrator can be reduced by up to 30%, yet still maintain the 
shape (Fig. 8). Structural analysis occurs at different mesh resolutions/scales: The 
structural efficiency of the global shape is optimised at the macro level, where 
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Figure 8. Face count comparison. From left: original mesh, Loop subdivision, adaptive Loop subdivision.
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Figure 9. Bi-directional data propagation between low and high resolution.

Figure 10. Upstream data propagation result. From left: original mesh, subdivided mesh, strain calculation, results 
propagated up the subdivision tree, colourizing the panels with respect to the maximal strain value.
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the low resolution mesh is sufficient. On the other hand, the plastic deformation 
is computed at the micro-level, being analysed for a single panel at a time. The 
meso-level information accounts for connections between layers and analysis of 
relationships between panels. It is highly desirable to tie the analysis information 
with the discrete model produced by the subdivision algorithm, since the efforts 
to transition of data back and forth between different models/scales should be 
minimised. The ultimate goal is to consider multiple various scale representa-
tions as a single model.

The HNode Class is developed to support continuity of information between 
different resolutions. The modelling framework is based on Grasshopper, where 
the principal collection type is called Data Tree. Contrary to its name, this object 
is not a proper tree-like collection (rather a dictionary), as it doesn’t have a que-
ry method for parent and child nodes. A custom-tailored class provides a better 
foundation to accomplish geometry-data coupling through a recursive tree ob-
ject. The HNode Class (Hierarchy Node) is a type of a tree data structure that 
can be traversed efficiently. As with tree structures, all of the data are stored 
in the root-level node. In our case, the root represents the complete demon-
strator structure composed of multiple panels, which are stored separately as 
the second level of the tree. The third level represents the initial low-resolution 
mesh, where each node keeps information for each mesh face. To keep track 
of different resolutions, the subdivision algorithm introduces new layers to the 
tree: For each subdivided face, multiple children are added (2-4 for adaptive 
loop subdivision), and to keep the tree easy to read and manipulate, the nodes 
of the faces which are not subdivided are given a singular child. Additionally, to 
storing information about its children, an HNode collection can store and/or con-
vey some more information just like a binary tree (Fig. 9). Contrary to that kind of 
structure, the values are decoupled from the topology of the tree (in our case 
the topology is derived from the subdivision process) and come from structural 
analysis at various levels. As the analysis can be done for any of the levels of 
the tree at any time, various upstream and downstream methods of propaga-
tion have been implemented.

One example of upstream data propagation is the minimal wall thickness 
information gained from strains calculation. This process happens at the lowest 
level of the tree, and to visually inspect the results it is easiest to recursively 
query each top-level parent to get the lowest value of each of its children. At this 
highest level, this results in an easy to verify visualisation (Fig. 10).

Two ways of keeping the data up to date within the tree have been tested: 
active and passive. The active way means that the value of dependent parents and 
children is updated automatically each time any value in the tree is changed; the 
passive method requires the user to manually trigger the upstream or downstream 
propagation from a selected level of the tree. During the tests, it came clear that 
the passive method is more adequate for computational efficiency and clarity.
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Figure 11. Various methods of data propagation.

The HNode library is written in .NET, and the implementation wraps it up as 
a data type compatible with Grasshopper. The generic nature of this collection 
type bears a premise of its being useful in other applications, where keeping 
track of dependencies and relationships might not be as easy to achieve with 
the native to Grasshopper Data Tree collection because of the previously stated 
dictionary-like characteristics.
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4. Reflections and Conclusions
This paper examines adaptive mesh-based modelling as a means to support the 
computational design of panelised thin-sheet structures built using the ISF pro-
cess. Two approaches are described: The first is characterised as unidirection-
al and the second as bi-directional. The context of the research exemplifies the 
need for a back and forth between fabrication, design, and analysis. With multiple 
scales of material organisation – multiple parts, highly heterogeneous in terms 
of their shape, their surface geometry, and their material properties, modelling 
necessitates a discretisation for reasons of control, accuracy and workability. 
However, a successful discretisation relies on retaining as many possibilities for 
information flow as possible, and on an efficient and effective organisation of 
that information flow.

The tree-based approach we have described avoids the separate storage and 
lookup of information, as this can be produced directly from the hierarchy. The 
approach is generalisable. For example, although applied here to a technique of 
manipulative fabrication, the methods we described would also support mate-
rial specification and optimisation for additive fabrication, specifically within the 
emerging territory of functionally or mechanically graded materials. Because 
digital fabrication offers increasing possibilities for bespoke material design that 
corresponds to desired performances, complex information flows between de-
sign, specification, and analysis at multiple scales become required.

One could ask why it is necessary to have multiple scales of resolution and 
not simply compute every aspect at the highest level of resolution. Beyond prag-
matic reasons, which include limitations of computation time and legibility, there 
is a greater issue of efficiency. The generation of unnecessary data can render a 
design workflow unusable, or simply displaces effort into subsequent filtering.

The first approach sequentially varies a single mesh topology to manage 
the complexity of bridging scales and functions while maintaining the continuity 
of information flows down scale. However, a realisation of this approach is that, 
for each scale, there is some data that the designer wants to pass up or down. 
This is because a model does not necessarily have the possibility to recognise 
or even correct a problem within the model itself. Instead, geometry needs to 
be passed to another level of resolution for its implications to be tested accu-
rately. Equally, something can be learnt on a lower level that forces adjustment 
on the upper level, which cannot be tested for at the resolution of prior levels. 
This cannot be well addressed by a unidirectional model.

In the second approach described, the bi-directional workflow ties multiple 
scales together in a more consistent and manageable way compared with the 
previous method. The ability to reference the data through common interface 
to other levels makes an element on one level aware of information at any oth-
er level of the tree. This enables adaptation of any particular element based on 
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higher or lower-level information. Future research will connect this bi-directional 
workflow with an automated feedback loop, and develop visualisation techniques 
that allow analysis and comparison at different resolution levels.
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Abstract
In architectural design, parametric models often include numeric parameters 
that can be adjusted during design exploration. The resulting design space can 
be easily displayed to the user if the number of parameters is low, for example, 
using a simple 2- or 3-dimensional plot. However, visualising the design space 
of models defined by multiple parameters is not straightforward. In this paper 
it is shown how dimensionality reduction can assist in this task whilst retain-
ing associations between input designs at a high-dimensional parameter space.  
A self-organising map (SOM), a type of unsupervised artificial neural network, 
is used in combination with Rhino Grasshopper in order to demonstrate the  
potential benefits for design exploration.
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maps, data visualisation

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



276

1. Introduction
Dimensionality reduction (DR) is the study of reducing the number of variables 
that define any system. This is typically divided into two methods, feature selec-
tion and feature extraction. For the former, the task involves selecting a subset 
of variables, typically those that have the greatest influence on the output. Fea-
ture extraction, on the other hand, transforms the data into a new set of lower 
dimensional variables.

Techniques for feature extraction of high-dimensional data sets are well 
known in data-mining for both reducing storage space of complex data and vi-
sualising high-dimensional data sets. Examples in speech (Kumar & Andreou 1998) and 
image recognition (Yu & Yang 2001; Hinton & Ruslan 2006) are now standard references in 
pattern recognition, and research into using DR methods for solving engineering 
design problems (Bekasiewicz et al. 2014) is continuing at pace.

Dimensionality reduction has strong links to research in neuroscience and 
cognition, for example, in mapping sensory experience to associated three- 
dimensional locations in the brain, the so-called somatotopic map (Grodd et al. 2001). 
In AI research, some artificial neural networks attempt to artificially recreate this 
process by mapping complex inputs into a lower dimensional spaces, one ex-
ample being the SOM introduced by Kohonen (1982). This paper therefore inves-
tigates whether SOMs can be used effectively in combination with architectural 
parametric models defined by high-dimensional parameters.

2. Background
Visualising high-dimensional data for human cognition is hard. Examples with-
out resorting to reducing dimensions include the use of colour on plots or by 
combining multiple plots representing different combinations of variables. Due 
to this mixed mode of representation, such diagrams can often be difficult to un-
derstand and get an overall picture of the data set.

With feature extraction, reducing the high-dimensional data can be converted 
to a lower dimensional space. Feature extraction methods can be classified into 
two sets, linear and non-linear. Popular linear methods include K-means cluster 
analysis and principal component analysis (PCA). PCA, for example, transforms 
the data set to a lower dimensional orthogonal coordinate system that max- 
imises variance (Jolliffe 2002).

Whilst linear methods are often comparatively fast, they struggle to main-
tain associations between data that is distributed non-linearly in the high- 
dimensional space. A classic example is in handing the so-called Swiss-roll data 
set, for which PCA in particular is known to struggle (Tenenbaum et al. 2001). Some 
examples of non-linear dimensionality reduction (NLDR) methods that retain 
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non-linear relationships include Sammon mapping (1969), Isomaps (Tenenbaum et al. 

2001), elastic maps (Gorban & Zinovyev 2009), and SOMs (Kohonen 1982).

2.1 Precedents in Architectural Design
In architectural design, DR has been implemented predominantly in spatial anal-
ysis. Coyne (1990) first used the idea of connectionism to display differences be-
tween abstract residential plans. Petrovic and Svetel (1993) generated 3-dimensional 
layouts based on higher dimensional semantic associations. More recent work 
by Derix and Thum (2000) investigated a spatial machine that could build autono-
mous representations of space using SOMs. Methods for the classification of 
architectural plans have been investigated using both PCA (Hanna 2006; Hanna 2010) and 
SOMs (Jupp & Gero 2006; Harding & Derix 2010). More recently, Derix and Jagannath (2014) 
have used SOMs to capture and classify spatial descriptions.

Although these applications have shown the high potential of using DR 
methods in design, they are yet to have a wider impact in architectural comput-
ing. This has in part motivated this research in returning to existing parametric 
modelling tools, offering new ways to enhance their use. The work presented 
here focusses on visualising parameter and not objective space (for example, 
performance criteria).

D

T

Figure 1. Visualising the design space of a simple parametric model with two parameters.
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2.2 Potential for Parametric Models

A subset of parametric modelling tools based on dataflow programming asso-
ciates input parameters and explicit functions to form a directed acyclic graph 
(DAG). The structure of the DAG typically describes a mapping of numbers into 
geometry, setting out a possible design space to be explored when parameters 
are adjusted (Aish & Woodbury 2005). Well-known examples of such DAG-based tools 
used in architecture include Rhino Grasshopper (McNeel and Associates) and 
Autodesk Dynamo (Autodesk).

Visualising the design space of parametric models can help users to under-
stand both the bounds of the model and how each parameter guides variation. 
For low-dimensional models, a simple plot is often sufficient to understand the 
parameter space inherent in the model. Such an example is shown in Figure 1. 
The design space of shapes defined by a set of parametric equations similar to 
Möbius bands is visualised. A parameter (T) governs a number of twists in the 
surface which is then discretised into a hexagonal pattern with increasing den-
sity (D). In this particular case, it is possible to include semantic information to 
each parameter/axis, for example twist and density.

When models begin to increase in terms of independent variables (parame-
ters), it becomes increasingly hard to understand the extent of the model. One 
is sometimes left adjusting different combinations of parameters and observing 
their effect on the output geometry. This is where DR techniques such as SOMs 
can potentially help visualise the bounds of a parametric model definition.
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Figure 2. Each neuron in the map has an associated feature vector at the same dimension as the inputs (a). Learning 
takes place after the ‘winning’ node is identified (b).
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3. Self-Organising Maps
SOMs are a type of unsupervised artificial neural network that can be used in 
reducing the dimensionality of data whilst attempting to retain non-linear asso-
ciations. Samples in the high-dimensional input feature space are presented to a 
map in a lower dimensional map space, with the map learning over time from the 
inputs presented to it.

Typically, the map has either a hexagonal or rectangular topology arranged 
on a 2D plane, although this depends on the application. Each location in the 
map has an associated feature vector (sometimes known as a synaptic vector) at 
the same dimension as the input samples. In the example shown in Figure 2, a 2- 
dimensional 3 x 3 map contains feature vectors in 4 dimensions. Before learning 
takes place, these feature vectors are typically randomised, meaning resulting 
maps for the same set of inputs, although similar, are never identical.

3.1 Learning

At each iteration, the inputs are presented to the map with the node with the 
closest feature vector to each input declared the winner. Determining this dis-
tance can be done using various methods, including finding the Hamming distance 
(binary comparison) or simply taking the dot product for small input dimensions. 
The most common method, however, and that used here is to take the smallest 
Euclidean distance (in feature space) to determine a winning node.

Once identified, a winning node adapts its feature vector slightly towards the 
input at a given rate (winner learning rate), with neighbouring nodes also learning 
depending on a radial function, typically a Gaussian radial basis function. These 
learning rates decay (exponentially) over time, with the map converging as learn-
ing approaches zero. As the map changes, so the inputs move between winning 
nodes, making the SOM more than simply a form of high-dimensional diffusion.

The SOM algorithm has various parameters that govern the nature of learn-
ing in the map. These include:

• Map dimension, size, and topology.
• Winning node learning rate.
• Winning node learning decay rate.
• Neighbourhood learning function (e.g. Gaussian radial basis function).
• Neighbourhood learning decay rate.
• Neighbourhood decay rate (affected neighbours shrinks over time).

Setting these parameters depends on the nature of the inputs and requires 
either manual adjustment based on visual inspection of the final map outcome 
or by using various adaptive methods (Berglund & Sitte 2006). For the applications 
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discussed here, manual adjustment of the parameters were adequate to produce 
suitable maps for visualising parametric model design spaces. A more thorough 
background to the SOM algorithm can be found in Kohonen (2001).

3.2 Reduction to 2D
The chosen map dimension can in theory be any equal or below the input space 
dimension. In this paper, 2-dimensional plots for the map were chosen in order 
to best visualise the design space for human cognition. Figure 3 shows an exam-
ple of a 2-dimensional SOM on a rectangular grid being trained with five inputs. 
Each input is defined by a 3-dimensional vector corresponding to RGB values.

After 25 iterations learning has completed and the locations of the inputs 
on the map are distributed with similar colours being closer to each other and 

Figure 4. 9-dimesional ‘glyphs’ reduced to a two-dimensional map. The final 16 input locations are highlighted.

t = 0 t = 5 t = 25

Figure 3. A 2D self-organising map being trained with five RGB inputs.
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those most different being furthest away. This associativity between inputs is 
maintained, despite a reduction from 3 dimensions to 2. As well as the input 
distribution, the map itself contains a smooth gradient between inputs, revealing 
colours that were not explicitly defined by the inputs.

Although non-linear DR can maintain associativity in the form of map re-
gions, it is important to note that the original orthogonal structure of the data is 
lost. For example, one cannot associate axes to the sides of the 2-dimensional 
map, or in other words the mapping cannot be defined by a linear combina-
tion of the three original variables. Another important aspect is that the whole 
visible spectrum as we know it is not shown; the map can only learn from the 
inputs presented to it.

Figure 4 shows a higher dimensional geometric example with sixteen random 
9-dimensional input ‘glyphs’ being used to train a 2-dimensional map. Glyphs are 
similar to radar or spider plots in that each radial axis defines the value of a giv-
en parameter. The resulting map produces a similar result to multi-dimensional 
scaling (MDS) methods (Buja et al. 2008). In the example shown, in theory the nine 
parameters could in theory control any aspect of a parametric model with the 
resulting geometry located at each map node.

4. Application in Parametric Design
The use of DR methods in architectural design to date is relatively niche, so com-
bining such techniques with popular parametric design software was the motiva-
tion behind developing a tool for use in the architectural computing community. 
Written in C#, a freely available Grasshopper component was developed by the 
author for producing 2-dimensional SOMs with a rectangular topology (Harding 2016). 
The component consists of the control parameters as discussed in Section 3.2. 
Figure 5 shows the use of the component to generate the glyph plot shown in Figure 4.

4.1 Parameter Encoding
In general, parametric design models map numbers to resulting geometry. The 
amount of indirectness in this mapping can vary, for example, a parameter that 
controls the height of a box can be seen as direct and linear – i.e. increasing the 
parameter also gradually increases the height of the output gradually. At the other 
end of the scale, parameters that are seeds for pseudorandom functions result in 
a completely indirect mapping between parameter and final geometry – a concept 
similar to that of continuous functions or smooth fitness landscapes in evolution.

Parametric models that use dataflow programming such as Rhino Grasshopper 
do not typically allow cycles and therefore have a so-called explicit embryogeny 
(Bentley and Kumar, 1999). The topology of the graph in a parametric model is fixed when 
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parameters are adjusted, and this usually helps in maintaining a direct mapping 
between number and form. This is in contrast to chaotic (Lorenz 1963) or complex 
systems such as class IV cellular automata (Wolfram 1986) that have a highly indirect 
mapping between parameter and resulting form.

So-called developmental encodings are generally more indirect than paramet-
ric models, for example, superformulas (Gielis 2003) and compositional pattern-pro-
ducing networks (CPPNs) (Stanley 2007; Clune & Lipson 2011) that vary graph topology. In 
architectural design, Vierlinger (2015) has recently showed how such developmen-
tal encodings can help evolve neural networks that produce drawings in antici-
pation of the user.

The nature of the mapping is therefore an important consideration when 
visualising a design space and will inevitably vary depending on the parametric 
definition. For example, if the parametric model is many-to-one, i.e. two values 
of a given parameter map to the same design (a periodic function, for example). 
In such cases, a method such as shape analysis (Costa & Marcondes 2000) is likely to be 
more appropriate for classifying geometry and forming a feature vector.

4.2 Sampling of Models
As with the examples given in Section 3.3, for high-dimensional parametric mod-
els, a selection of samples (saved parameter states) selected at random from 
the design space can be used to produce a lower-dimensional map. Figure 6 shows 
a tower massing form defined by three parameters with a direct mapping that 
alter the twist, height, and tapering of a box. By using several inputs with nor-
malised parameter values, the resulting 2-dimensional map can offer an overall 
visualisation of the design space inherent in the parametric model.

The spaces between the inputs are interpolated by the map itself. Again, note 
that we have lost the structure of the original 3 dimensions during the process, 

Figure 5. Grasshopper definition with self-organising map component in use.
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i.e. no particular direction now indicates twist, density, or height, rather there ex-
ists regions in the map that have higher values of these parameters than others.

In this example, as the choice of inputs is random, there exists no prevalent 
structure or clustering in the high-dimensional space that requires maintaining. 
However, if particular designs (or parts of design space) are more desirable then 
these can be selected as the inputs to the map. As the specific sampling may 
vary, one must anticipate that linear methods may not be sufficient. Sampling 
such as the Swiss-roll data set (Tenenbaum et al. 2001) requires a non-linear method 
to maintain high-dimensional clustering. This is discussed further in the next 
section.

4.3 Selective Sampling
If certain parameter combinations are preferred by the designer, then there exists 
a bias towards certain clusters in the data. These could be selected automatically 
using an objective function and/or selected artificially. Figure 7 shows the design 
of a structural node as part of the UWE 2016 Research Pavilion. Each node is 
defined by five parameters, two controlling colour and three defining the mesh 
geometry. As opposed to random sampling, seven designs were selected from 
the parametric model by the design team by adjusting parameters in the tradi-
tional way and saving parameter states.

The selected designs were then used as inputs in the SOM. The resulting 
map (Fig. 8) interpolates designs between the inputs as well as locating similar 
designs closer to each other on the map and dissimilar designs further apart. 
Again, although it is not possible to define linear axes on the map (as we could 
in 5-dimensional feature space), associations between designs are evident by 
viewing the map as a gestalt. The associative map gives an overview of the latent 
possibilities within the parametric definition. Without resorting to laborious slider 

Figure 6. Reducing three dimensions (twist, height, and taper) to a plane. Random selection of inputs (a), initial state of 
the map (b) and following learning (c).
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tweaking resulting in user fatigue (Piasecki & Hanna 2011), the map suggests possible 
design combinations that might have been otherwise missed.

4.4 Artificial Selection
Evolutionary algorithms with artificial selection often employ a visual interface 
for engaging with the user. Dawkins’ biomorphs (1986), for example, involve se-
lecting designs which are then crossbred and mutated at each generation. Such 
interactive evolutionary algorithms are known to be useful for exploring design 
problems with no clearly defined goal. At each iteration, SOMs could potential-
ly be used to display the design space to the user as part of a human-computer 
interactive process. In addition, associating a fitness landscape at this lower di-
mensional parameter space could also potentially help better visualise the effect 
of parameters on different performance measures for different designs.

5. Conclusions
In this paper DR has been used in combination with a parametric modelling 
environment in order to visualise high-dimensional parameter spaces. As well 
as creating associations between inputs, the SOM can suggests possible de-
sign avenues beyond that easily achieved by adjusting numeric parameters 
manually. Future research in linking parametric design with DR includes the 
following:

• The use of a hexagonal map topology which is known to improve the per-
formance of the map (Länsiluoto 2004).

• Incorporating fitness plots in order to make comparisons between param-
eter and objective space for architectural designs.

• Incorporate a form of sensitivity analysis to understand effect of param-
eters on the final geometry (i.e. the directness of mapping from param- 
eters to design).

• Incorporating analysis measures as inputs to the map.
• Development of the SOM tool to generate 1- and 3-dimensonal maps.
• Testing of complex parametric models where the ‘curse of dimensionality’ 

can make adequate sampling difficult.

Although popular in other fields such as engineering, machine learning tech-
niques are still relatively niche in architectural design. It is therefore hoped that 
by combining dimensionality reduction methods with mainstream parametric 
modelling software, this can benefit the wider architectural community through 
future experiment and application.
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Parameters:

B: blue colour index
G: green colour index
R: pipe radii
S: central node size (convex hull)
D: mesh pipe density

R

S

D

Figure 7. Structural node joining six elements controlled by five parameters.

0.293
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0.198
0.560

0.180
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0.379
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0.030
0.082

0.903
0.123
0.855
0.758
0.476

0.215
0.584
0.498
0.080
0.993

0.294
0.243
0.503
0.063
0.690

0.455
0.513
0.546
0.375
0.497

Figure 8. A 7 x 7 2-dimensional SOM trained with seven inputs chosen by the design team. The input locations at the 
map when learning has completed are shown.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



286

Acknowledgements
This work is part sponsored by the 2016/17 UWE VC Early Career Researcher Development Award.

References
Aish, Robert, and Robert Woodbury. 2005. “Multi-level interaction in parametric design.” In Smart Graphics, 151–162. 

Berlin Heidelberg: Springer.

Bekasiewicz, Adrian, Koziel Slawomir, and Zieniutycz Wlodzimierz. 2014. “Design Space Reduction for Expedited Multi- 
Objective Design Optimization of Antennas in Highly Dimensional Spaces.” In Solving Computationally Expensive  
Engineering Problems: Methods and Applications 97: 113–120.

Bentley, Peter J., and Sanjeev Kumar. 1999. “Three Ways to Grow Designs: A Comparison of Embryogenies for an Evolu-
tionary Design Problem.” In GECCO, 99: 35–43.

Berglund, Erik, and Joaquin Sitte. 2006. “The Parameterless Self-Organizing Map Algorithm.” Neural Networks, IEEE 
Transactions 17, 2: 305–316.

Buja, Andreas, Deborah F. Swayne, Michael L. Littman, Nathaniel Dean, Heike Hofmann, and Lisha Chen. 2008. “Data Vi-
sualization with Multidimensional Scaling.” Journal of Computational and Graphical Statistics, 17, 2: 444–472.

Clune, Jeff, and Hod Lipson. 2011. “Evolving Three-Dimensional Objects with a Generative Encoding Inspired by Develop-
mental Biology.” In Proceedings of the European Conference on Artificial Life: 144–148.

Costa, Luciano da Fontoura Da, and Roberto Marcondes Cesar Jr. 2000. “Shape Analysis and Classification: Theory and 
Practice.” Boca Raton, Florida: CRC Press, Inc.

Coyne, Richard D., and A. G. Postmus. 1990. “Spatial Applications of Neural Networks In Computer-Aided Design.” Arti-
ficial intelligence in Engineering 5, 1: 9–22.

Dawkins, Richard. 1986. “The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design.” 
New York: WW Norton and Company.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. 2002. “A Fast and Elitist Multiobjective Genetic 
Algorithm: NSGA-II.” Evolutionary Computation, IEEE Transactions 6, 2: 182–197. 

Derix, C., and P. Jagannath. 2014. “Near futures: Associative archetypes Architectural Design.” Wiley Online Library 84: 
130–135.

Derix, C., and R. Thum. 2000. “Self-Organizing Space.” Proceedings of the Generative Arts Conference 3, Milan :1-10.

Gielis, Johan. 2003. “A Generic Geometric Transformation That Unifies a Wide Range of Natural and Abstract Shapes.” 
American Journal of Botany 90, 3: 333–338.

Grodd, Wolfgang, Ernst Hülsmann, Martin Lotze, Dirk Wildgruber, and Michael Erb. 2001. “Sensorimotor Mapping of the 
Human Cerebellum: fMRI Evidence of Somatotopic Organization.” Human Brain Mapping 13, 2: 55–73.

Harding, John, and Derix, Christian. 2011. “Associative Spatial Networks in Architectural Design: Artificial Cognition of 
Space Using Neural Networks with Spectral Graph Theory.” In Design Computing and Cognition ’10, edited by John S. 
Gero, 305–323. New York: Springer.

Harding, John. 2016. “A Self-Organising Map Component.” Accessed March 3, 2016. http:// http://www.grasshopper3d.
com/profiles/blogs/self-organising-map

Hinton, Geoffrey E., and Ruslan Salakhutdinov. 2006. “Reducing the Dimensionality of Data with Neural Networks.”  
Science 313, 5786: 504–507.

Jolliffe, Ian. 2002. “Principal Component Analysis.” New York: Springer.

Jupp, Julie, and John S. Gero. 2006. “Visual Style: Qualitative and Context-Dependent Categorization.” AIE EDAM: Arti-
ficial Intelligence for Engineering Design, Analysis, and Manufacturing 20, 3: 247–266.

Gorban, Alexander N., and Andrei Y. Zinovyev. 2009. "Principal Graphs and Manifolds." In Handbook of Research on Ma-
chine Learning Applications and Trends: Algorithms, Methods and Techniques, edited by Emilio Soria Olivas, José David 
Martín Guerrero, Marcelino Martinez-Sober, Jose Rafael Magdalena-Benedito and Antonio José Serrano López, 28–59.   
Hershey, Pennsylvania: IGI Global.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



287

Kohonen, Teuvo. 1982. “Self-Organized Formation of Topologically Correct Feature Maps.” Biological Cybernetics: 43, 1: 
59–69.

Kohonen, Teuvo. 2000. “Self-Organizing Maps.” Berlin: Springer-Verlag.

Kumar, Nagendra, and Andreas G. Andreou. 1998. “Heteroscedastic Discriminant Analysis and Reduced Rank Hmms for 
Improved Speech Recognition.” Speech Communication 26, 4: 283–297.

Länsiluoto, Aapo. 2004. "Economic and Competitive Environment Analysis in the Formulation of Strategy: A Decision-Oriented 
Study Utilizing Self-Organizing Maps”. Turku: Publications of the Turku School of Economics and Business Administration.

Lorenz, Edward N. 1963. “Deterministic Nonperiodic Flow.” Journal of the Atmospheric Sciences 20, 2: 130–141.

Piasecki, M., and S. Hanna. 2011. “A Redefinition of the Paradox of Choice.” Design Computing and Cognition 2010 : 347–366.

Sammon, John W. 1969. “A Nonlinear Mapping for Data Structure Analysis.” IEEE Transactions on Computers 5: 401–409.

Stanley, Kenneth O. 2007. “Compositional Pattern Producing Networks: A Novel Abstraction of Development.” Genetic 
Programming and Evolvable Machines 8, 2: 131–162.

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. 2000. “A Global Geometric Framework for Nonlinear Dimen-
sionality Reduction.” Science 290, 5500: 2319-2323.

Vierlinger, Robert. 2015. "Towards AI Drawing Agents." In Modelling Behaviour: Design Modelling Symposium 2015, edit-
ed by Mette Ramsgaard Thomsen, Martin Tamke, Christoph Gengnagel, Billie Faircloth, and Fabian Scheurer, 357–369. 
Switzerland: Springer International Publishing.

Yu, Hua, and Jie Yang. 2001. “A Direct LDA Algorithm for High-Dimensional Data – With Application to Face Recognition.” 
Pattern recognition 34, 10: 2067–2070.

Wolfram, Stephen. 1986. Theory and Applications of Cellular Automata, Vol. 1. Singapore: World Scientific.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



288

Force Adaptive  
Hot-Wire Cutting
Integrated Design, Simulation, and Fabrication  
of Double-Curved Surface Geometries

Romana Rust, Fabio Gramazio, and Matthias Kohler

R. Rust, F. Gramazio, M. Kohler 
Gramazio Kohler Research, ETH Zurich, Switzerland

rust@arch.ethz.ch  
gramazio@arch.ethz.ch 
kohler@arch.ethz.ch

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



289

Abstract
This paper discusses a robotic cutting technique – Spatial Wire Cutting (SWC) 
– performed by the coordinated movement of two six-axis robotic arms which 
control the curvature of a hot-wire adopting itself against the resistance of the 
processed material. By escaping from the linearity of the cutting medium, com-
bined with an integrated approach towards computational design, simulation 
and automated fabrication, this technique fosters the efficient manufacturing 
of double-curved surface objects by single cutting procedures and significantly 
expands the set of possible hot-wire cutting geometries. This paper presents a 
custom fabrication-informed computational design and simulation framework. It 
also outlines comparative analytical studies between digitally created SWC ob-
jects and their physically fabricated counterparts. Finally, it concludes with the 
architectural potentials of the discussed technique. 

Keywords: 
computational design, digital fabrication, hot-wire cutting,  
feedback-based automated manufacturing, multi-robot control,  
dynamic simulation
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1. Introduction and Background
Recent technological advances have fostered the relationship between digi-
tal design and fabrication of architectural freeform shapes, opening a cross- 
fertilizing field from which various research directions are evolving. However, 
fabricating bespoke double-curved surfaces with commonly used fabrication 
techniques such as CNC-milling or 3D printing still comes at a high cost due 
to inefficient material use and time consumption (Schipper et al. 2014). The conse-
quences are the simplification and post-rationalization of a specific design 
proposition. Digitally controlled cutting techniques, however, which have be-
come very common in the larger fields of architecture, design and construc-
tion (Pigram & McGee 2011; Rippmann & Block 2011; McGee, Feringa & Søndergaard 2012), offer a fast, 
low-cost and material-efficient fabrication of non-standard volumetric elements 
for diverse applications (such as bespoke formwork components, prototype 
construction, etc.). These elements are created through the repeated move-
ment of a cutting medium (e.g. hot-wire, steel cutting wire, hot-blade; Broek 

et al. 2002 ) through a synthetic material (e.g. expanded polystyrene) that melts 
the material just in advance of contact (thermal cutting). However, depend-
ing on the cutting medium, the range of geometries is limited. The project 
‘BladeRunner’ (GXN 2016) is one of the most recent approaches, in which 
a hot-blade is dynamically bent to cut “surfaces swept out by continuously 
varying families of planar Euler elastica” (Søndergaard, et al. 2016), that reduces the 
geometrical restrictions.

The research presented in this paper focuses on Spatial Wire Cutting (SWC), 
a novel cutting technique performed by two six-axis lightweight robotic arms 
connected through a single hot-wire, which is attached to their end-effectors 
(see Fig. 1). Contrary to the above-mentioned approaches, it operates in transition 
states between thermal cutting and thermo-mechanical cutting to utilize the forces 
opposite to the moving direction to manipulate the hot-wire, which takes up the 
form of a curve. This curve is controlled by the robot’s coordinated movement 
and is constantly altered throughout the procedure. Hence, this technique allows 
to significantly expand the set of possible hot-wire cutting geometries to certain 
double-curved surfaces, in particular sweep surfaces, which can be defined by 
the motion of a changing profile curve along two trajectory curves.

To efficiently control this multi-robotic cutting process, an advanced robotic 
control system is developed that monitors occurring forces during the manufac-
turing process and adapts the velocity of the cooperating arms accordingly. The 
dynamic change of these forces throughout the whole cutting procedure deter-
mine the absolute geometry of the surface being cut. To design those artefacts, 
it is crucial to predict the physical behaviour, as an evolving interplay between 
velocity, heat input, and reaction forces. As such, the project proposes an integral 
approach towards adaptive fabrication, design and simulation.
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Figure 1. Illustration of the SWC cutting procedure, two robotic arms are moving on different path curves shaping the 
wire through material resistance (Rust et al. 2016).

In the next section (Section 2) the process variables and relationships that 
guide the procedure as well as their integration into the simulation framework, 
and further its embedding into the computational design setup, is presented. 
Section 3 outlines comparative studies of four surface objects, which have been 
simulated, fabricated, and 3D scanned. The analysis focusses on simulated and 
measured process data and a quantitative geometrical comparison. Section 4 
discusses the results and addresses strategies to improve the combined simu-
lation framework and fabrication system. The conclusions and outlook are sum-
marized in Section 5.
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2. Fabrication-Informed Design and 
Simulation Framework

The shape of the wire and therefore the resulting surface is determined by forces 
acting on it throughout the cutting procedure. The magnitude of these forces 
as well as the force direction do not only vary along the cut, but also along the  
engaged wire in the foam. Their calculation is dependent on multiple factors 
such as the current speed, the heat input, the actual wire shape and the mate-
rial properties of both the polystyrene and the hot-wire. In order to efficiently 
control the procedure and predict the resulting geometry, a digital model of the 
physical process has to be developed.

2.1 Process Variables
To identify the relationships between the most influential variables, such as heat 
input Q1 [W/m], speed v [m/s], and resulting cutting force, a first series of cutting 
tests was performed. According to Ahn, Lee, and Yang (2003), Q1 and v can be con-
sidered together as the effective heat input Qeff [J/m2] (= Q1 / v). In these tests the 
tension force T was recorded in steady state conditions1, in which it levels off 
(Brooks 2009, 91). Additionally, the deflection2 of the wire about the mounting points 
was logged (using a custom Cardan joint tool head with magnetic encoder sen-
sors and a force sensor in the centre of the axes, see Figure 2 ). Thus, it was possi-
ble not only to map the tension force according to a given Qeff in an exponential 
model (Bain 2011, 176–78), but also the resultant of all forces acting perpendicular 
onto the wire (see Fig. 4). The coefficients ( a, b, c, resp. ā, b̄ ) were found by mod-
el fitting and are material dependent (properties of polystyrene and hot-wire3 ).

B

A

F T

α

left
left

F = F   + F 
left right

F   = T    sin(α)
left left

Figure 2. Cardan joint end-effector with axes (A, B), measuring angle α about axis A.
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Figure 3. Model of relationship between 𝑄𝑒𝑓𝑓 and tension 
force 𝑇 in the steady state per unit of engaged wire length 
(Rust et al. 2016).
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Figure 4. Model of relationship between 𝑄𝑒𝑓𝑓 and 
material force 𝐹 in the steady state per unit of engaged 
wire length.
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2.2 Force Distribution

As the wire is exposed to variable forces, it deforms dependent on the magni-
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the shape. For the fabrication process it is necessary to keep the wire always 
under a certain tension (based on empirical testing 2.0 N at each mounting point 
was defined as optimal value) to achieve a corresponding surface quality and, ul-
timately, to efficiently control the procedure.
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with constant edge length l [mm] ( l = li ) between the nodes. Furthermore, for 
each node i the unit tangent vector t̂i is calculated. Assuming that the unit force 
direction f̂i , the node speed vi and heat input Qi are known, the force vector fi 
acting on one individual node i can be estimated as follows
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To calculate the force distribution for a wire with a given shape of length 𝑠𝑠 at a given moment 𝑡𝑡 in time, 
it is discretized into 𝑛𝑛 − 1 segments and 𝑛𝑛 nodes, with constant edge length 𝑙𝑙 [mm] (𝑙𝑙 = 𝑙𝑙=) between the 
nodes. Furthermore, for each node 𝑖𝑖 the unit tangent vector 𝐭𝐭= is calculated. Assuming that the unit force 
direction 𝐟𝐟=, the node speed 𝑣𝑣= and heat input 𝑄𝑄" are known, the force vector 𝐟𝐟= acting on one individual 
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9. calculate factor r and F(ṽj+1, X̃j+1) according to (11)
10. calculate hj and corrector F̄j+1

11. calculate shape Xj+1 according to F̄j+1

f(Qeff ) = 318.7841e−0.0026Qeff

m positions Pa and Pb on path curves a and b
heat coefficient Ql

foam block as a volume, size and position
equations (2) and (11)

shape X0, forces F0, speeds v0 and node indices in foam

X̄j ... shape of the wire
F̄j ... forces to calculate shape
hj ... step size
vj ... speeds
wj ... indices of nodes in foam

1. get fixed nodes Paj+1, Pbj+1

2. get previous node indices wj that are in foam

3. estimate force direction according to previous shape
4. estimate force distribution according to previous speeds
5. calculate F(vj ,Xj)

6. estimate hj and predictor F̃j+1

7. calculate shape X̃j+1 according to F̃j+1

8. calcuate dj+1 between Xj and X̃j+1

9. calculate factor r and F(ṽj+1, X̃j+1) according to (11)
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where F ( vi ,Qi )Qi)QqQqqqq is the force [N/mm] acting perpendicular to the engaged wire 
length according to equation (2) and ∥ t̂i × f̂i ∥ a ratio between 0 and 1 depending 
on the angle between fi and the edge tangent t̂i. Since the target tension force 
in the endpoints of the wire with tangents t̂ 0 and  t̂ n –1 is constrained to k (= 2 N), 
it is possible to calculate the resultant force Fres, which is the magnitude of the 
sum of all force vectors from equation (3):

4 
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node 𝑖𝑖 can be estimated as follows 
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2.4 Simulation Model 

The simulation model builds upon the simplified physical models as described in Sections 2.1 and 2.2. 
It is employed to predict the physical process to improve the control of the fabrication and to predict the 
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As the wire is exposed to variable forces, it deforms dependent on the magnitude, the direction, and the 
location of those forces, which ultimately influences the shape. For the fabrication process it is necessary 
to keep the wire always under a certain tension (based on empirical testing 2.0 N at each mounting point 
was defined as optimal value) to achieve a corresponding surface quality and, ultimately, to efficiently 
control the procedure. 
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(7)

(8)

According to X0 ( = [ Xuo , Xf ]), the edge length vector pk is calculated and the next 
force density vector q k+1 is estimated by (8), which is again inserted into equations 
(5) and (6) as diagonal matrix Qk+1 , and the linear system in (7) is solved to calculate 
the new coordinates Xk+1 . This process is continued until a certain tolerance is 
reached and the sum of all edge lengths matches the wire length s.
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a)
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c)

Figure 7. a) Entry, b) steady and c) exit phase.
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Figure 8. Measured and simulated process data (speed and angle) from five cutting tests with same path curves but 
different heat input.
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2.4 Simulation Model

The simulation model builds upon the simplified physical models as described in 
Sections 2.1 and 2.2. It is employed to predict the physical process to improve 
the control of the fabrication and to predict the resulting geometry.

The wire moving through the foam is a dynamic system. The boundary condi-
tions are the path curves, respectively the synchronized positions on those curves, 
the size and position of the foam block as a volume, and a defined heat input. As 
mentioned in Section 2.1, the forces F (= matrix of all fi ) in equation (4) are the 
steady-state forces that act at a certain moment. However, the shape is also de-
pendent on the dynamic forces, and therefore the transient behaviour of the wire. 
The total forces F– , used to compute the shape result from all forces that have  
occurred since the entry of the wire into the foam at t0 to the current timestamp tj. 
Therefore, a numerical integration is performed to integrate the forces over time.

The integration model for the simulation is a combination of the explicit 
Euler method with the trapezoidal rule and the predictor – corrector method 
(Heun’s method). The steady-state forces F are a function of the shape and the 
speeds v, F = F (v, X) acting at time tj. The step size is denoted by hj and initial 
forces F–0 = F (t0, X0). In the predictor step, starting from the current forces F–j , the 
next forces F    j+1 are estimated with the Euler method:
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from which the shape   ͠Xj+1 is calculated. In each iteration step, the speed   ̃vij+1 for 
one node i is estimated by r 

∼
dij+1 ( r factor, distances  

∼
dij+1 = ∥ Xij – Xij+1 ∥, Xij posi-

tion of node i at iteration step j ). The secant method is applied to find the factor 
r and the root to the nonlinear equation (11), so that forces F (∼ vj+1 ,    ͠Xj+1 ) acting in 
the moment tj+1 comply equation (4).
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Figure 9. 1) Force vectors and curves from simulation, 2) force magnitudes coloured to visualize the differences and  
3) overlay of surface picture with simulated curves.

a) b) c)

Figure 10. Details from the overlay between simulated curves and surface picture, from a) entry, b) steady and c) exit phases.
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The step size hj is calculated as the reciprocal value to the solution r ( hj = dij / vij ), 
as the time between two iteration steps. After each iteration step, F–j+1 is down-
scaled, so that equation (4) is met and then multiplied by hj ; otherwise, the rela-
tion to the new force vectors hj+1 y ( vj+1 , Fj+1 ) in the next iteration step wouldn’t 
correspond.

2.5 Physical Validation
A series of cutting tests were performed a) to validate the force distribution mod-
el as stated in (3) and b) to verify if the force density method and the calculated 
wire shapes are coherent with the physical shape. Multiple cuts were performed 
with different foam block sizes (300, 400, and 500 mm in width and 1200 mm in 
length), different heat inputs (50–85 [W/m]) and different path curves. The robots’ 
path curves were designed in such a way that all positions lay in the same hori-
zontal plane but have different distances to each other, generating three phases 
that are of interest to the analysis, due to expected distinctive differences in the 
force distribution:

a) Entry phase: the wire starts straight but the wire’s endpoints are contin-
uously moving towards each other
b) Steady phase: the wire is in shape and the endpoints of the wire are 
moving parallel to each other
c) Exit phase: the endpoints of the wire move off each other

Results from the simulation are node positions of the discretized wire, from 
which NURBS curves are created, force vectors (magnitude and direction), esti-
mated speeds and, according to the curves, also estimated angles of the wire’s 
deflection about the mounting points. As such, it was possible to compare the 
measured speeds and measured angles with the simulated speeds and angles 
(see Figure 8). To uncover the wire’s shape from the cut surface, it was illuminated 
from a sloped angle, the distortion of the picture taken was reversed, and the 
simulated curves were overlaid for comparison (see Figure 9).

The force magnitude colouring is an efficient analysis tool for the resulting 
surface and clearly exemplifies what happens inside the foam block. In the entry 
state, the outer nodes of the wire have to move faster than in the centre, produc-
ing higher forces in exit zones of the foam, while in the centre they reach zero 
force. Whereas in the steady zone, the force distribution is almost equal along 
the engaged wire and in the exit zone the reversed picture to the entry zone is 
visible, where the force in the exit zones are low, since the speed is lower than 
in the centre. Low forces can also be recognized on the physical surface, e.g. in 
the detail picture of (Figure 10, c ): Low or zero force means thermal cutting, more 
material melted, producing more rills.
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Figure 11. a) Edge curves, distribution of positions and wire length extension function, b) simulated curves and lofted 
surface thereof, c) extension of tangents to calculate path curves.
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Figure 12. Surface design of different edge curve settings and robotic path curves.
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Figure 13. Force magnitude visualisation on the surfaces.
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Figure 14. Estimated speed trajectories (black) and angles (blue, turquoise) for both robots.
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The results from the comparison of simulated process variables and mea-
sured process data of 20 cutting tests (as in Fig. 8) was very successful. Although 
the shape of the wire in the foam could just be visually compared, the sim-
ulated angle α, as the deviation of the wire about the mounting point had a 
normalized root-mean-square deviation (NRMSD) of just 0.06. The estimated 
speed trajectory also produced very good results and a similar NRMSD of 0.08 
in the cutting tests. Thus, these tests proved physical coherency for the force 
distribution equation (3).

2.6 Computational Design
The procedure creates a specific set of double-curved surfaces. In order to de-
sign within this constrained design space, it is necessary to integrate design 
and simulation. The inputs for the simulation framework, as described in Section 
2.4, are the path curves, respectively the positions on the curves and a defined 
heat input. But there is a counter-intuitive relationship between designing these 
curves and the resulting surface. Therefore, the initial simulation setup was al-
tered to facilitate designing these surfaces: Instead of designing path curves, the 
edge curves of the surface on the foam block are designed, which are discret-
ized into a number of points. Further, a function is created, that defines the ad-
ditional length of wire to the distance between the points Paj and Pbj (see Fig. 11, a).

As such, the simulation calculates the forces for nodes that are constantly 
in the foam, and the fixed nodes are the defined positions on the edge curves. 
However, since the length from one iteration step to the other changes, the nodes 
and their forces have to be redistributed. After all node positions have been cal-
culated and NURBS curves have been created, a surface is lofted through the 
curves (see Fig. 11, b). To generate the path curves, a minimum distance to the foam 
block is defined and the simulated curves are extended at both ends in such a 
way that all curves have the same length (see Fig. 11, c).

This simulation framework was empirically tested and validated in a 2-week 
design and building workshop with students, which focussed on the development 
of novel façade typologies using bespoke cut polystyrene blocks as moulds. It 
was applied to design and generate a parametric model for the aggregation of 
robotically cut prototypes (Rust et al. 2016).

3. Comparative Studies
The potential of the cutting technique can clearly be expressed in cutting freeform 
shapes. Therefore, four different sample surfaces were designed, simulated, fab-
ricated, and 3D scanned to provide an additional quantitative geometrical com-
parison between simulated surface and physical artefact.
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Figure 15. Fabricated objects 1) – 4), 400 x 900 mm (width x length).
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Figure 16. Simulated surfaces and point cloud data from the scanning process. The colours on the surface indicate the 
closest distance to the reconstructed mesh from the point cloud.

Figure 17. Surface detail.
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For the design of these surfaces, the edge curves and the wire length ex-
tension function, as input for the simulation, were designed in such a way to 
provide variability between moving directions and varying distances (see Figure 12). 
The estimated speed trajectories for the robots (see Fig. 14), calculated in the sim-
ulation, served as input for the fabrication procedure, which uses a combined 
feedback-feedforward control to tare the speed according to the force measure-
ment about this estimated speed trajectory. After the fabrication the surfaces 
(see Fig. 15) were scanned and per surface an average over 1 million scan points 
were registered. From these point clouds a surface was reconstructed (Poisson 
surface reconstruction) and the closest distance to the simulated surface was 
calculated (see Fig. 16).

4. Results and Reflection
The comparison between simulated and measured process data, such as angles 
and speed trajectories, was similarly successful (speed: 0.14, angle α : 0.09, angle 
β : 0.06 NRMSD) as in Section 2.5. These results are clearly visible in the surface 
quality (see Fig. 17), proving a very good estimation of process variables and an ef-
ficient adaptive control. The maximum deviation in the geometrical comparison 
was 42 mm, which is still very high in terms of building tolerances. Areas of high 
deviation could be identified where the path curves show high curvature and at 
later moments in the procedure where deviations accumulate.

The simulation model is a simplification and an abstraction to the physical 
process. Factors that have not been integrated may have affected an accurate 
result. Amongst others, for example, the material force model (see Fig. 4) estimates 
the force under steady-state conditions, but actually the temperature of the wire 
is changing and constantly in transition states. These factors were assumed to 
have negligible influence, but small inaccuracies sum up along the process. Al-
though the developed computational simulation framework cannot predict the 
resulting physical surface with absolute precision, the results are visually iden-
tical, and therefore it can be employed for digital design explorations that are 
coherent with their fabrication.

5. Conclusion and Outlook
A fabrication-informed design and simulation framework was presented and 
physically evaluated. It was demonstrated that the project’s combined design 
and fabrication methodology allows for the efficient fabrication of unique and 
differentiated double-curved surface geometries, which brings forward a new 
geometric capability to existing hot-wire cutting techniques. The particular set 
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of geometries imposes a constrained design space, which allows to reveal the 
specific tectonics of the process.

A coherency between digital and physical model was established. A further 
topic of research is to investigate methods to make these two models comple-
mentary, which is already partly achieved by correcting the estimated speed 
trajectory according to the force measurements. Thus, strategies to overcome 
the physical tolerances could either be the improvement of the simulation by 
integrating more physical behaviour or the improvement of the adaptive fabri-
cation control to not only regulate the speed, but also to dynamically adjust the 
path curves to fulfil the desired geometric target. This opens up the question to 
which extent a process needs to be modelled in advance to be able to efficiently 
control it, which means either adapting the digital model to the physical process 
control, vice versa, or even both. Material and process-informed design methods 
are inherently soft design methods. They do not necessarily describe exact ge-
ometry but the constraints and rules that create geometry. A subject of further 
research, which relates to the question above, will be the investigation of such 
a soft control in respect to architectural design.

Endnotes
1 Steady-state conditions are reached at constant speed when the temperature and the cutting force level off.

2 In these tests the deflection, respectively the angle α, was kept below 10 degrees to mainly induce perpendicular forces on the wire.
3 The described experiments were performed with the foam swissporLAMBDA Vento (density: 15 kg/m³) and the material for the hot-wire was 

Kanthal A with a diameter of 0.15 mm.
4 Since the measured data was oscillating in the beginning of the entry phase, the investigated phase was shifted thereafter. RMSD represents 

the sample standard deviation of the differences between the simulated values and measured values. NRMSD is the normalized RMSD ac-
cording to the range of the measured data (= maximum – minimum value).
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Abstract
In this paper we present a novel method for the generation of doubly-curved, 
architectural design surfaces using swept Euler elastica and cubic splines. The 
method enables a direct design to production workflow with robotic hot-blade 
cutting, a novel robotic fabrication method under development by authors of the 
paper, which facilitates high-speed production of doubly-curved foam moulds. 
Complementary to design rationalisation, in which arbitrary surfaces are trans-
lated to hot-blade-cuttable geometries, the presented method enables architects 
and designers to design directly with the non-trivial constraints of blade-cutting 
in a bottom-up fashion, enabling an exploration of the unique architectural poten-
tial of this fabrication approach. The method is implemented as prototype design 
tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting 
of expanded polystyrene foam design examples.

Keywords: 
robotic fabrication, hot blade, digital design, EPS-moulds, cost-efficiency,  
concrete structures
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Figure 1. Louisiana State Museum and Sports Hall of Fame, courtesy Trahan Architects (top).  
Kagamigahara Crematorium, Courtesy Toyo Ito Architects (bottom). 
Copyright, Figure 1a: Trahan Architects. Copyright, Figure 1b: Toyo Ito Architects. 
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1. Introduction
In contemporary architectural practice, a rising number of projects employ ad-
vanced building geometries, which departs from the orthogonality of mainstream 
construction, incorporating digital design tools and manufacturing for the reali-
sation of expressive or dynamic design features (Pottman 2007). A group of projects 
within this category, such as Kagamigahara Crematorium (Toyo Ito Architects, 2006) and 
Waalbridge Extension (Zwart & Jansma, 2015), rely on the doubly-curved geometries, 
which may be constructed either via production of manual formwork, which re-
lies on digitally produced guides to bend plate material in place over large radii. 
Alternatively, large-scale CNC-milling of either foam molds for concrete casting 
or direct milling of construction materials are employed enabling the realisation 
of shorter radii designs with more detail and surface controls. Such projects in-
clude, for example, Spencer Dock Bridge (Amanda Levete Architects, 2010), Louisiana State 
Museum and Sports Hall of Fame (Trahan Architects 2013), Museum Foundation Louis 
Vuitton by Gehry & Associates (Paris, 2014); the Nordpark cable railway by Zaha Had-
id Architects (Nordpark 2007), the Metz Pompidou by Shigeru Ban (Metz 2010). 

However, none of these general construction processes provides a cost- 
effective option for general construction, and projects of this type therefore re-
quire extraordinary budget frameworks for realisation: Manual onsite formwork 
processing in this category is a highly laborious and demanding process, with 
resulting difficulties in cost-engineering to follow. Large-scale CNC-milling on the 
other hand, provides cost transparency due to the digital nature of the process 
– although the mechanical principle of CNC-milling, which subtracts material 
through incremental removal, is inherently slow when applied to architectural 
scale production, and results in exuberant machining times and high costs. 

Recent developments in architectural robotics and digital manufacturing 
have seen the emergence of a number of approaches to diversify the machin-
ing options available, with the purpose of realizing structures of more advanced 
geometries. This includes actuation of a flexible membrane as a casting surface 
(Jepsen et al. 2011; Hesse 2012); dynamic slip-casting for column elements (Lloret et al. 2014), 
as a variant of the additive manufacturing of concrete structures (Khosnevic 1998, Lim 

et al 2012); fabric formwork applied as an alternative technique for the casting of 
advanced designs (Veenendaal et. al 2011); spatial wire cutting (Rust et al. 2015) as well as 
large-scale robotic hot-wire cutting of EPS molds by authors of this paper. None of 
these approaches however, are capable of delivering combined (1) unconstrained 
degrees of freedom which enables general purpose realisation equivalent to that 
of CNC-milling; (2) machining efficiencies which significantly supersedes that 
of CNC-milling; (3) process predictability which ensures the delivery of a pre- 
controlled geometry.
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Figure 2. Bladecutting experiments in progress.  
Top: 18-axis tri-robot hot-blade pilot-cell.  
Below: concrete panel design and cut foam result. 
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2. Robotic Hot-Blade Cutting
In an effort to develop a new manufacturing process which would satisfy these 
criteria, the authors of this paper initiated in 2012 the Bladerunner project, which 
targets the cost-effective production of double-curved foam moulds. The tech-
nique developed in this effort – dubbed robotic hot-blade cutting – employs a 
multi-robotic process, in which an 18-axis cell consisting of 3 industrial manip-
ulators translates a flexible, heated blade through expanded polystyrene blocks 
in a thermal cutting process, while controlling the distance and rotation of end- 
effectors to achieve variable cross-section curves along the trajectory of cutting 
sequences. Pilot production experiments currently under development seek 
to explore and demonstrate the applicability of this method for production of 
pre-fabricated concrete elements under a general CAM paradigm, in which ar-
bitrary design input – understood here as geometry which is conceived with-
out particular regard to the specific constraints of the process – is rationalised 
for hot-blade production using a set of algorithms developed within the project. 
These early developments point to the perspective of a highly time-efficient pro-
duction method, up to 126 times faster than comparable CNC. However, com-
plementary to a top-down process of rationalisation, a second trajectory is also 
possible, in which the geometric constraints of the hot-blade cutting is incorpo-
rated already in the design process, thus operating under a generative design 
paradigm. The work in the following chapters outlines tools and processes that 
can facilitate such an approach.  

3. Designing with Elastica
An Euler elastica is the shape assumed by an elastic rod with planar constraints 
of position and tangents placed only on its endpoints. A planar curve is geomet-
rically determined by an angle function θ (t ), the angle between the tangent and 
some fixed direction. The angle function for the elastica are given by solutions 
of the normalised pendulum equation θ = – sin θ, a nonlinear equation the solu-
tions of which can fortunately be given explicitly in terms of elliptic functions. 

Mathematically, the correct model for an elastica was given by James Bernoulli 
in 1691 (see Truesdel 1983). He approximated the solution for the case that the ends 
of the rod are perpendicular to each other, recognizing that non-standard func-
tions were needed for an analytic expression. The problem was subsequently 
suggested to Leonhard Euler in 1743, who gave all possible shapes for the elas-
tica in his famous treatise on the calculus of variations (Euler 1744).

People have in fact been designing with elastica for centuries, albeit in a phys-
ical rather than mathematical format. Prior to the introduction of computers for 
draughting in the shipping, aviation, and automobile industries, which began in the 
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Figure 3. Use of physical splines for ship-hull manufacturing. 
Copyright: William Sutherland, The Shipbuilders Assistant: or, Some Essays Towards Completing the Art of Marine 
Architecture (London, 1711).
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1950s, the curves needed in the designs were created by tracing the shapes of 
thin wooden rods, known as splines, manipulated by the placement of so-called 
‘ducks’ at various points to create a naturally smooth curve. This practice started 
in the ship-building industry, where the placement of the ducks simulates the 
placement of ribs in the hull of the ship; hence the curve drawn by following the 
spline is an accurate reflection of the natural shape adopted by the planks form-
ing the ship’s hull. The drawing took place at the loft of the shipyard, hence the 
word ‘lofting’, now used in the CAD industry. Going further back in time, splines 
were used for the storage and transmission of designs in ancient Rome, in the 
form of physical templates for the ribs of ships (see Farin 2002). 

When computers became cheaper and more powerful, a desire for elec-
tronic storage and editing appeared. The word ‘spline’ now began to be used 
for piecewise polynomial or rational curves used in design. Paul de Casteljau 
at Citroën and Pierre Bézier at Renault used what are now known as Bézier 
curves to describe the designs. In the USA, Carl de Boor at GM used B-splines 
(basis splines) for the designs. In the aircraft industry, at Boeing, similar devel-
opments took place.

3.1 Design vs. Rationalisation for Hot-Blade Cutting 
For a CAD surface to be produced using hot-blade cutting, it needs to be segment-
ed into suitable pieces and each surface segment then swept by planar curves 
that are subsequently approximated by elastic curve segments.  We described 
this rationalisation process in recent and forthcoming work.  

An alternative to the rationalisation of a CAD design is to provide design 
tools that allow designers to create fabrication-ready surfaces. There are a num-
ber of reasons for doing this: Firstly, the rationalisation of an arbitrary design is 
non-trivial and in general can result in some regions of the surface needing to be 
produced by another method such as milling. Secondly, a design tool can give the 
designer control over the cast-lines between the segments, which will in many 
cases be visible from close range.

 A third reason is the additional complexity arising when we consider a sur-
face created by more than one cut to the same EPS block. For example, consid-
er the surface shown on the left in Figure 4. By cutting the same EPS block twice, 
the second time with a 90 degree rotation, the surface on the left in Figure 5 is 
produced. Now the surface on right in Figure 4 approximates the first surface very 
well at the end-points of the cutting blade, but deviates slightly in the middle. 
Such an approximation is likely to arise in surface rationalisation, because we will 
usually need the patches to fit together with tangent continuity, which requires a 
little more freedom away from the patch edges. Doing the same two cuts with 
the new surface results in the surface on the right in Figure 5, and here we can see 
that the intersection curves are no longer the same as the design. 
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Figure 4 & 5. (right) Matlab generated surface. (left) rotated double cut of the same design.
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Figure 6. Configuration of input data.
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Of course there are solutions for this kind of issue in the rationalisation 
approach, but this scenario illustrates the kind of advantages one has with a 
fabrication-ready design tool.

3.2 Single Block Designs
For the simple case of just one block, we design with curves of the desired length, 
i.e. the length of the cutting tool. During cutting the cutting tool is kept in a hori-
zontal plane perpendicular to the cutting direction. The data needed for the robot 
movement are thus simply the positions of the ends of the blade and the angles 
of its ends relative to horizontal. The positions are given as y , z - coordinates (the 
x - coordinate describes how far the curve is in the cutting direction), see Figure 6. 
In the design space (e.g. Rhino) we know the position of the design curves rel-
ative to the EPS block, so we can obtain the robot data directly from the design 
curves by computing the positions of the endpoints relative to the EPS block, 
and their angles relative to horizontal.

The plugin for the discrete elastica ensures that we get a representation of 
the final design in Rhino, before going to production. In the following, we describe 
the numerical algorithm used to find this solution given end points, tangents at 
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Figure 7. Turning angles.

Figure 8. Turning angles for a discrete elastic.

Figure 9. Examples of a generated and a cut surface.

Figure 10. In blue an exact elastic curve and in black a discrete 
approximation calculated from the boundary conditions shown in yellow.

Figure 11. Transitions between 
elastica.
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3.4 Design Using Multiple Blocks
For the more complex case with several blocks, a more advanced procedure is 
used to ensure a smooth transition from one block to the next. Consider a curve 
design that passed over two blocks (see Fig. 10, left). We need to produce this in two 
cuts – one per block – and we want the two block segments to match at the 
boundary after cutting.

If we run our plugin independently on the two parts of the curve, we would 
automatically obtain the smooth transition, but we would be unable to get the 
necessary data for the robots, since the curves (which are inside the blocks) are 
shorter than the cutting tool, and we have no quick way to extend these while 
preserving the elastic properties. If we simply extend the original curve and then 
use our plugin on parts with the desired length, we do not ensure smooth tran-
sition (see Fig. 10, right).
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Figure 12. In blue Bézier curves, in black their control polygons, and in dashed red elastic curves with the same 
endpoints, end tangents, and lengths.

Elastica GeometryDesign Geometry

Figure 13. A Rhino design tool. Top: three blocks with two tangent continuous curves. Lower left: lofted Bézier curve 
surface.  Lower right: rationalized elastica curve surface.
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 The solution is, instead of finding a discrete representation of the elastic 
curve that models the shape of the cutting tool, we find an analytic math-
ematical description of the elastic curve in terms of elliptic functions. This 
requires a more cumbersome optimisation in order to find the parameters 
that describe the rationalised curve. However, when these parameters are 
found, the entire (infinitely long) elastic curve that contains the required 
segment is known. It is then simple to extend the segment to an elastic 
segment of the length of the blade (see Fig. 11) and from this extract the po-
sition data for the robots.

4. An Alternative Approach:  
Bézier Curves as a Proxy for Elastic

Historically, the use of cubic splines as a design tool was often motivated by 
saying that they are a good substitute for real physical splines. This is justified by 
the fact that, if the speed of a curve is constant, then the square of the curva-
ture is the same as the square of the second derivative, and if the latter is mini-
mised we obtain exactly a cubic spline (see Yamaguchi 1988). Now a cubic curve does 
not have constant speed unless it is a straight line; but if the control polygon of 
a cubic Bézier curve is reasonably well behaved, then the curve is close to an 
elastica. See Figure 12, where 24 Bézier curves are plotted together with elastic 
curves having the same endpoints, end tangents, and length. 

If the angles in the control polygon are not too acute, then there is very little 
difference between the Bézier curve and the elastic curve of the same length 
and end conditions.

Based on this observation, we implemented a design tool in Rhino™ where 
the surfaces and their rationalisation are very close. The idea is that we imagine 
space filled with EPS-blocks and define our surfaces such that the parameter 
curves have exactly one planar cubic piece in each block. As a simple example 
consider Figure 13, where we have three blocks and have defined three Bézier 
curves at both the front and the back of the blocks in  such a way that they have 
common endpoints and tangents, i.e. they form two tangent continuous curves 
(see Fig.14). The surface is defined by a lofting process. We can of course have sev-
eral layers of blocks, and we could also have included more curves in the middle 
of the blocks. The inputs are planar curves with exactly one cubic piece in each 
block, and the surface is defined by lofting.

One can achieve a curvature continuous construction by replacing the se-
quence of Bézier curves by a single planar cubic spline (with simple interior 
knots). Between the knots we have a cubic polynomial, so we if we require that 
the image of the knots is on the block boundaries then we obtain a single cubic 
polynomial piece in each block (Fig. 15).
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Figure 14. The tangent continuous construction. In each 
block we have a cubic Bézier curve and we require that 
adjacent curves have control polygons the first and last 
legs of which form a single line segment. In dashed red we 
have plotted the true elastica having the same length and 
boundary conditions as the Bézier curves.

Figure 15. The curvature continuous construction. A single 
cubic spline curve where the images of the knots are on the 
block boundaries. In dashed red we have plotted the true 
elastic curves that have the same length and endpoints as 
the polynomial pieces. The tangents corresponding to the 
extreme points of the cubic curve are also prescribed.

Figure 16. pre-test cuts from the workshop. From the left: while single, continuously swept surfaces are readily 
achievable through rationalization, the ripple and curvature effect on the right most samples requires careful alignment 
with the blade directions, and hence is difficult to obtain aside from directly controlling it in an elastica-swept surface.

USER 
INPUT

DECISION
POINT

INTERMEDIATE 
RESULT

DATA
SET

DIGITAL
PROCESS

EPS-BLOCK SIZE

OUTPUTSTART

DATA 
MATCHING

SORTING CUT 
GEOMETRY

CUT 
VALIDATION

DATA EXPORT TO 
“MATHEMATICAL 

ELASTICA EXTENSION”

REPRENSENTATION OF 
EULER-ELASTICA CUT 

EPS_BLOCKS

CUT
GEOMETRY

MODE SELECTION
(DESIGN OR PRODUCTION)

EXTRACT 
START-POINT & 

VECTOR ORIENT FROM 
3D-SPACE TO 

XY-SPACE

ORIENT FROM 
XY-SPACE TO 

3D-SPACE

INTERFACE TO 
ELASTICANUM 

PLUGINEXTRACT 
END-POINT & 

VECTOR

CALCULATE 
CURVE LENGTH

GENERATE 
CURVES FROM 

GEOMETRY

INPUT OUTPUTPRE-PROCESSING ELASTICA APPROXIMATION

BLOCK SETUP

GH_PYTHON

Figure 17. Data workflow chart.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



321

If we replace the spline with an elastica having the same length in each block 
as the spline, passing through the images of the knots, and having the same 
tangent angles in the beginning and end as the spline curve, we obtain almost 
the same result. This corresponds exactly to the classical design using a physical 
spline and ducks. We just have to place the ducks at the images of the knots.

5. GH Workflow 
For the development of design experiments as well as participatory workshop 
design sessions, a toolset is developed in McNeel Grasshopper, implementing 
the above approaches. The toolset is linking the full cycle of research, innovation, 
implementation and production, creating a framework for geometric operations 
consistent with the robotic setup. The overall logic of the workflow connects con-
ventional digital modeling approaches with the robotic hot-blade process. This 
requires the identification and rationalisation of geometry types before rebuilding 
the geometry to the accuracy of the robot, EPS-segmentation and tolerances.

The Grasshopper-definition is developed with the purpose of designing with 
rationalisation through Euler elastica. It is a Real-Time process that allows for 
fast interpolations from design to production and ensures a smooth curve con-
tinuity transition from one block to the next. The tool is very flexible and allows 
for large variation of form typologies when designing with single or multiple cuts 
in the design explorations.

The setup is part of a larger digitised workflow; ‘Interpolation of Geometry’, 
‘Euler Elastica Approximation’, ‘Mathematical Elastica Extension’, which is is a lin-
ear process that allows for feedback loops when data or geometry are outside 
of preset conditions and/or needs changes. The Grasshopper tool ‘Design with 
Elastica’ inputs arbitrary surfaces and/or curves, converts them into planar elastica 
curves that describe the cut-direction and the movement of the robot-setup. The 
setup is structured in four overall processes; ‘Global Parameters’, ‘Input’, ‘Process 
(Machine)’, ‘Output (Export)’.

5.1 Global Parameters
The backbone of the setup is the global parameters that are changeable within 
the workflow environment. Its settings, syntax, and data are adapted in both the 
approximation plugin and the extension script while the workflow recalibrates 
when global settings are re-configured or need additional inputs. The global pa-
rameters allow you to toggle between ‘Design’ or ‘Production’ which are value 
bases and changes the resolution of the Elastica approximation.

One block is locally defined by its XYZ-values (dimensions), cut-plane (ori-
entation) and its local location in the XYZ-world-coordinate system and global 
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001
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Cut-Planes and Orientation
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Data-Tree-Structure
Export data-system

004
Cut-Planes (Directions)
Orientation of Blocks 
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Multiple EPS-Block setup (Design Framework)

Cut Plane (0)

Cut Plane (1)
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Figure 18. Work object configuration.

005
Design Framework

007
Multiple Design “Inputs”

Data-Tree-Structure matches Design Framework

008
Brep represntation of 3Dimensional design

006
Geometry for cutting blocks (Design input)

Figure 19. Generation of elastica design surfaces. 

009
Sorting Cut-Geometries

Location and rotation of EPS-blocks in 3D space and block X and Y domain in the plane

Figure 20. Configuration of demonstrator design. 
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location in a multiple-block-system. The block and blade length are interconnect-
ed to each other, if too short, the robot will move into the EPS-block, while too 
large the physical implications will increase and affect the precision.

5.2 Input

A multiple block configuration is developed as a framework for the generation of 
continuous surfaces over several blocks. The ‘block setup’ is framed in a data-tree 
structure that matches and sorts the input designs for each block and subse-
quently for each face of the block (6 sides). The procedure generates a data-list 
for each block containing cut-plane, cut-direction, number of cuts, rotation, and 
location. By defining a clear data-flow from the input step you gain full control 
from design intent till export code and production.

5.3 Preprocessing of Geometry
The pre-processing step first matches each block (nested in a data-tree-struc-
ture representing the design framework and block number within the design 
framework) with cutting geometries related to the blocks design framework. 
The cutting geometry is then sorted according to cut priority, the primary 
cut being closest to the blocks base, and the remaining cuts are checked 
for collision with the primary cut and removed if no collision occurs. The fi-
nal operation generates a number of planar curves for each cut by sampling 
the cut geometries in the X direction of the blocks. The sampling is extended 
beyond the block domain to allow the robots to have lead-in and lead-out of 
each block. The number of sampling points is triggered by the current mode 
selected (design or production).

5.4 Elastica Approximation
To approximate the Nurbs curves we made a Rhino plugin. The ElasticaNum 
Plugin operates on curve start-, end-points, tangent vectors at start- and end-
points, and the desired length of the elastica curve. The ElasticaNum Plugin is 
interfaced through the Rhino command-line and python code using a custom 
data structure. The final operation in the Elastica approximation is reorienting the 
curves back into 3D space.

5.5 Output
The ‘Design with Elastica’ tool generates two outputs that work parallel with-
in the workflow and connect the designer with the final rationalisation output 
while still designing in the beginning of the process. Output one is data-driven 
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Figure 21. Description of production surfaces via swept elastica cross sections.
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Figure 22. Global orientation of constitutive elastica cross-sections.
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exports to the ‘Mathematical Elastica Extension’, while output two is represent-
ing the desired geometry by Elastica Curves. By defining a data-structure a mu-
tual adaptation of data import and export was defined from Input, Process and 
Output. The digitised workflow outputs data from the ‘Design with Elastica’ tool 
to the ‘Mathematical Elastica Extension’ and weave the tools together. To ensure 
a smooth transition from one block boundary to the next, the necessity for data 
conversion is important to perform a mathematical extension that preserve the 
elastica properties.

The setup allows for a real-time design to fabrication workflow and a com-
parison between the Design-Geometry and the Elastica-Geometry are processed. 
While the Design-Geometry is an arbitrary input, the ‘Euler Elastica Approximation’ 
curves are lofted with the setting on tight, which uses square root of chord length 
parameterisation in the loft direction.

5.6 Design Workshop
The developed toolset was subsequently tested in a workshop setting with 16 
participants in the format of the Superform: Robotic Hot-Blade Cutting workshop, 
held March 15–18 2016 in extension to the Robarch 2016 conference at Walsh 
Bay, Sydney. The workshop tasked participants with formal explorations of hot-
blade design potentials, produced through a dual robot setup consisting of 2x ABB 
IRB 1600 manipulators in a MultiMove configuration. The explorations uncovered 
several benefits of working directly in a production-ready geometry: Firstly, the 
exploitation of double (or more) cuts, in which two intersecting surfaces creates 
a sharp crease is a feature difficult to approximate through rationalisation (Fig. 13, 

second row, middle). Secondly, the design of expressive ripple or wave-effects (Fig. 14) 

requires careful alignment with blade-cutting direction and curvature description 
to remain feasible. As such, they exemplify design potentials difficult to achieve 
through linear rationalisation. 

6. Conclusion
A set of methods has been proposed for design generation of surfaces which 
incorporates the constraints of an elastic blade swept mechanically by two or 
more industrial robot manipulators. The methods are implemented as proto-
type design tools in C++, MatLAB, Python, and GhPython to enable interaction 
with non-specialist designers. The toolset was tested with 16 participants in the  
RobArch 2016 workshop: Superform – robotic hotblade cutting. The workshop 
design experiments revealed several design features that would be difficult to 
achieve in pure rationalisation workflows, as a result of the direct incorporation 
of constraints and live design feedback enabled by the framework.  
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Figure 23. Examples of the workshop participants design explorations.  
Design left: Jill Smith & Phil Dench. Design, right: Dharman Gersch.
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Abstract
This paper proposes a novel pre-processing method for industrial robotic 
CNC-milling. The method targets a hybrid machining process, in which the 
main bulk of material is removed through robotic hot or abrasive wire cutting, 
after which regular CNC-machining is employed for removal of the remaining 
material volume. Hereby, the roughing process is significantly sped up, reduc-
ing overall machining time. We compare our method to the convex hull and re-
move between 5% and 75% more material; on most models we obtain a 50% 
improvement. Our method ensures that no overcutting happens and that the 
result is cuttable by wire cutting. 

Keywords: 
piecewise-ruled surfaces, CAD, milling, free form architecture

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



330

1. Introduction
Recent years have seen a dramatic increase in the exploration of industrial robots 
for the purpose of architectural production (Kohler et al. 2014). While predominantly 
still a topic of research, some of these developments have recently matured into 
commercialisation, targeting the deployment of industrial robots for large-scale 
production (Søndergaard 2014). Within subtractive processes, the Denmark start-up 
Odico has been successfully bringing robotic hot-wire cutting to market.

CNC milling is a well-established process in industrial production of, par-
ticularly, foam-casting moulds, but also digitally produced stonework and be-
spoke timber manufacturing. While the process enables a very high degree 
of surface control and design freedom, it is also inherently limited by vast 
machining times for larger-scale applications that require the removal of large 
quantities of material, such as the machining of foam for ship hulls, wind tur-
bine blades, or architectural structures. This adversity becomes significantly 
amplified when applied to hard materials, such as CNC milling of stone (Stein-

hagen et al. 2016). Wire cutting on the other hand, enables a dramatic reduction 
in production times, as volumetric artefacts can be produced in one or few 
swipes (McGee et al. 2013). However, here the precondition is that production ge-
ometries be described via ruled surfaces, which thus constrains the design 
freedom for the benefit of production efficiency. The wire-cutting method-
ology and its implications are extendable to abrasive wire sawing of, for in-
stance, stoneworks, exemplified at the works of the Sagrada Familia cathedral  
(Burry 2016) as well as robotic abrasive wire sawing, as explored by Feringa and 
Søndergaard (2015).

The development of robotic hot-blade cutting (Søndergaard et al. 2016) provides a 
cost-effective and time-efficient manufacturing process for general curved foam 
geometries. However, this process is also constrained by the detail level achiev-
able, and is inadequate for small surface details, while well suited for large-scale 
variations often deployed at industrial and architectural scale. In addition, so far, 
blade cutting is not applicable to non-foam materials.

The three processes milling, wire cutting, and blade cutting (see Figure 1) can 
be viewed as complementary, each covering a particular spectrum within sub-
tractive machining. As such, an extension of the processes is to consider new 
ways for hybridisation.

One such possibility is the combination of milling and wire cutting, in which 
the latter is applied for removal of the initial volume which would otherwise be 
machined in CNC roughing processes. While CNC roughing is generally fast 
compared to CNC finishing, when assuming high target surface smoothness, 
the roughing process can represent substantial machining times when applied 
to voluminous subtractions. Additionally, certain architectural applications may 
enable the omission of surface finishing machining in favour of leaving roughed 
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Figure 1. Different cutting techniques: CNC-milling, hot wire cutting, and hot-blade cutting. 

Figure 3. To the left a ruled surface defined by two curves. To the right a piecewise ruled surface defined by several curves.

Figure 2. Creating an artificial concrete landscape in the urban harbour front of Copenhagen. 
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surfaces for practical or aesthetic purposes. Two projects exemplifying this within 
the BladeRunner production portfolio, can be found in Feringa (2014). There, 212 
m³ of expanded polystyrene foam were milled to achieve a three-dimensional 
guideline shape to be coated in-situ with 70–100 mm of polished spent, giving 
the final shape, see Figure 2. Only roughing processes were applied as for ensur-
ing enhanced binding between the foam core and concrete shell, roughing rep-
resenting approximately 92 direct machining hours.

Given the amount of machining hours spent on roughing, a hybrid approach 
would, for this case, have caused a reduction in processing time of between 
69 – 72%. In light of this finding, work was initiated to find a rationalisation al-
gorithm that would cover any arbitrary three-dimensional shape with a set of 
non-convex ruled surfaces, such as to allow for a maximum of initial volume to 
be removed through wire cutting, while within the same robot cell shifting sub-
sequently to aCNC tooling setup.

For this, we propose a method that combines fast wire cutting and precise 
CNC milling removing as much material as possible using a wire before the precise 
shape is milled. As we allow multiple cuts, the wire-cut surface is a piecewise 
ruled surface, and it can be considered as an approximation or rationalisation of 
the required surface. We can formulate the problem as follows: Given a surface, 
rationalise it with a piecewise ruled surface such that the rationalisation never 
intersects the original surface (no overcutting), and such that it can be manu-
factured by wire cutting. The latter implies that not only the rulings, but also the 
extension of the rulings never intersect the surface.

Usually a mould is composed by several blocks, and we do not consider 
the whole surface, but only a segment contained in a single block. As the final 
shape is milled, we do not need to consider any continuity conditions between 
the piecewise ruled rationalisations of the different segments.

A ruled surface is given by moving a line segment through space while it 
changes length and orientation. As a line segment is determined by its endpoints, 
the two curves described by the end points determine the surface uniquely, see 
Figure 3. A particular class of piecewise ruled surfaces is obtained by letting a poly-
gon move through space while it changes shape, see Figure 3.

If the polygon at all times is on the outside of the original surface and fur-
thermore is planar and convex, then we are certain that the extensions of the 
rulings never intersect the original surface, see Figure 4.

Piecewise ruled surfaces are well known in architecture: Flöry et al. (2012) de-
scribes a method to rationalise free form architecture, focussing on the smooth-
nessbetween rulings, and Flöry and Pottmann (2010) find areas where a good 
rationalisation can be done. Both papers use the asymptotic directions as guides 
for the rulings. In Wang and Elber (2014) large GPU-powered dynamic program-
ming is used to minimise the distance between the original surface and the 
rationalisation.
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The paper by Elber and Fish (1997) constructs a piecewise ruled approximation 
of a free-form surface using Bézier surfaces and a subdivision scheme to get the 
approximation within tolerated error, but global accessibility is not guaranteed. 
In Elber (1995), a free-form surface is approximated by piecewise developable 
surfaces, by using a simple developable primitive and a subdivision technique.

Milling with a cylindrical tool produces piecewise ruled surfaces, so they 
have also been studied in this context. To improve the tool path Chiou (2004) shows 
that the error in the rough milling can be lowered by separating the ruled surface 
into multiple strips. The paper Chu and Chen (2006) constructs a piecewise ruled/
developable rationalisation where a subdivision scheme is used if a tolerance is 
not met. Tool interference is taken care of, but only to the extent of a fixed axis 
flank milling tool. In Cao and Dong (2015) the one-sided Hausdorff distance is used 
to minimise the overcutting.

The paper by Julius et al. (2005) uses an iterative algorithm to automatically 
obtainrationalisation consisting of developable patches. In Jiang et al. (2014) user 
input is used to create a Lobel mesh which has the utility to create developable 
patches.

Our method distinguishes itself by accepting a general free-form surface as 
input and guaranteeing the wire does not cut into the model (overcutting), and 
that the rationalisation is cuttable by a wire.

Figure 4. Planar intersection of the surface and the piecewise ruled rationalisation. If the rulings turn less than 180 ◦ 
then the convexity of the rulings guarantees that the extended rulings never intersect the surface. 
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2. Method
Given a surface f, we want to minimise the distance between it and a piecewise 
ruled spline surface s of the form:

rationalization consisting of developable patches. In [Jiang et al. 2014] user input is
used to create a Lobel mesh which has the utility to create developable patches.

Our method distinguishes itself by accepting a general free form surface as input
and guaranteeing the wire does not cut into the model (overcutting) and that the
rationalization is cuttable by a wire.

2 Method

Given a surface f, we want to minimize the distance between it and a piecewise ruled
spline surface s of the form:

s(u,v) =
k

∑
i=1

h

∑
j=1

βp
i (u)β1

j(v)ci, j , (1)

where c i, j} is the set of control points and βp
i is a B-spline of degree p. Observe

that is a piecewise ruled surface since the basis function β1
j has degree 1.

We now discretize the piecewise ruled surface s by choosing a uniform grid
= 1, . . . ,N, j = 1, . . . ,M, in the parameter plane and we discretize the

original surface f by sampling points fi, j, i = 1, . . . ,N, j = 1, . . . ,M, on the surface.
How the sampling is done is explained in Section 2.3 below. We furthermore make
sure that the v-knots are among the parameter values v j, i.e., we have indices 1 =

· · ·< jh = M such that the knot vector in the v direction is v j1 , . . . ,v jh .
We measure the distance between f and s by the discrete square distance

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2, (2)

2.1 Constraints

We need several constraints in the optimization, which we now describe one by one.

One sided approximation To avoid overcutting the rulings should all be on the
outside of the model. So if Ni, j is the outward normal of f at the point fi, j then we
require that

(s(ui,vi)− fi, j) ·Ni, j ≥ ε1 , for all i, j. (3)

If 0 overcutting is only prevented at the sample points fi, j, but with ε1 > 0 and
sufficiently dense sampling overcutting is prevented. Alternatively, if f is a spline
surface the local (or strong) convex hull property [Piegl and Tiller 2012, P3.22,
P4.25] can be used to guarantee that no overcutting happens.

Planarity and convexity of rulings The piecewise ruled surface s given by (1)
can be considered as swept by a moving polygon and we require that the polygon

, . . . ,s(u i,v jh) is planar for all i. We now let ri,� = s(ui,v j�+1)− s(ui,v j�),
i.e., it is one of the rulings. The difference in the other direction is denoted

(1)

where c = {ci , j } is the set of control points and βi
p is a B-spline of degree p. Ob-

serve that s is a piecewise ruled surface since the basis function βi
1 has degree 1.

We now discretise the piecewise ruled surface s by choosing a uniform grid (ui , v j ), 
i = 1, . . . , N, j = 1, . . . , M, in the parameter plane and we discretise the original 
surface f by sampling points fi, j , i = 1, . . . , N, j = 1, . . . , M, on the surface. How 
the sampling is done is explained in Section 2.3 below. We furthermore make 
sure that the v-knots are among the parameter values vj , i.e. we have indices 
1 = j1 < j2 < · · · < jh = M such that the knot vector in the v direction is vj1 , . . . , vjh .
We measure the distance between f and s by the discrete square distance

rationalization consisting of developable patches. In [Jiang et al. 2014] user input is
used to create a Lobel mesh which has the utility to create developable patches.

Our method distinguishes itself by accepting a general free form surface as input
and guaranteeing the wire does not cut into the model (overcutting) and that the
rationalization is cuttable by a wire.

f, we want to minimize the distance between it and a piecewise ruled
spline surface s of the form:

s(u,v) =
k

∑
i=1

h

∑
j=1

βp
i (u)β1

j(v)ci, j , (1)

where } is the set of control points and βp
i is a B-spline of degree p. Observe

that is a piecewise ruled surface since the basis function β1
j has degree 1.

We now discretize the piecewise ruled surface s by choosing a uniform grid
, . . . ,N , j = 1, . . . ,M, in the parameter plane and we discretize the

original surface f by sampling points fi, j, i = 1, . . . ,N, j = 1, . . . ,M, on the surface.
How the sampling is done is explained in Section 2.3 below. We furthermore make
sure that the -knots are among the parameter values v j, i.e., we have indices 1 =

jh = M such that the knot vector in the v direction is v j1 , . . . ,v jh .
We measure the distance between f and s by the discrete square distance

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2, (2)

2.1 Constraints

We need several constraints in the optimization, which we now describe one by one.

One sided approximation To avoid overcutting the rulings should all be on the
outside of the model. So if Ni, j is the outward normal of f at the point fi, j then we
require that

(s(ui,vi)− fi, j) ·Ni, j ≥ ε1 , for all i, j. (3)

If 0 overcutting is only prevented at the sample points fi, j, but with ε1 > 0 and
sufficiently dense sampling overcutting is prevented. Alternatively, if f is a spline
surface the local (or strong) convex hull property [Piegl and Tiller 2012, P3.22,
P4.25] can be used to guarantee that no overcutting happens.

Planarity and convexity of rulings The piecewise ruled surface s given by (1)
can be considered as swept by a moving polygon and we require that the polygon

(u i,v jh) is planar for all i. We now let ri,� = s(ui,v j�+1)− s(ui,v j�),
i.e., it is one of the rulings. The difference in the other direction is denoted

(2)

2.1 Constraints
We need several constraints in the optimisation, which we now describe one 
by one.

One-sided approximation
To avoid overcutting, the rulings should all be on the outside of the model. So if 
Ni, j is the outward normal of f at the point fi, j then we require that

rationalization consisting of developable patches. In [Jiang et al. 2014] user input is
used to create a Lobel mesh which has the utility to create developable patches.

Our method distinguishes itself by accepting a general free form surface as input
and guaranteeing the wire does not cut into the model (overcutting) and that the
rationalization is cuttable by a wire.

2 Method

Given a surface f, we want to minimize the distance between it and a piecewise ruled
spline surface s of the form:

s(u,v) =
k

∑
i=1

h

∑
j=1

βp
i (u)β1

j(v)ci, j , (1)

where = {ci, j} is the set of control points and βp
i is a B-spline of degree p. Observe

that is a piecewise ruled surface since the basis function β1
j has degree 1.

We now discretize the piecewise ruled surface s by choosing a uniform grid
i = 1, . . . ,N, j = 1, . . . ,M, in the parameter plane and we discretize the

original surface f by sampling points fi, j, i = 1, . . . ,N, j = 1, . . . ,M, on the surface.
How the sampling is done is explained in Section 2.3 below. We furthermore make
sure that the v-knots are among the parameter values v j, i.e., we have indices 1 =

< · · ·< jh = M such that the knot vector in the v direction is v j1 , . . . ,v jh .
We measure the distance between f and s by the discrete square distance

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2, (2)

2.1 Constraints

We need several constraints in the optimization, which we now describe one by one.

One sided approximation To avoid overcutting the rulings should all be on the
outside of the model. So if Ni, j is the outward normal of f at the point fi, j then we
require that

(s(ui,vi)− fi, j) ·Ni, j ≥ ε1 , for all i, j. (3)

If 0 overcutting is only prevented at the sample points fi, j, but with ε1 > 0 and
sufficiently dense sampling overcutting is prevented. Alternatively, if f is a spline
surface the local (or strong) convex hull property [Piegl and Tiller 2012, P3.22,
P4.25] can be used to guarantee that no overcutting happens.

Planarity and convexity of rulings The piecewise ruled surface s given by (1)
can be considered as swept by a moving polygon and we require that the polygon

(3)
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If ε1 = 0, overcutting is only prevented at the sample points fi, j , but with ε1 > 0 and 
sufficiently dense sampling overcutting is prevented. Alternatively, if f is a spline 
surface the local (or strong) convex hull property (Piegl and Tiller 2012, P3.22, P4.25) can 
be used to guarantee that no overcutting happens.

Planarity and convexity of rulings
The piecewise ruled surface s given by (1) can be considered as swept by a mov-
ing polygon, and we require that the polygon s(ui , vj 1 ), . . . , s(ui , vjh ) is planar 
for all i. We now let ri,ℓ = s(ui  , v jℓ+1 ) − s(ui , v jℓ ), i.e., it is one of the rulings. The 
difference in the other direction is denoted wi,ℓ = s(ui+1 , v jℓ ) − s(ui , v jℓ ). The cross 
product ni,ℓ = ri,ℓ × ri,ℓ+1 is a normal to the plane spanned by ri,ℓ and ri,ℓ+1 , see  
Figure 5. If all the normals ni,ℓ , ℓ = 1, . . . , h − 1 are parallel then the polygon is pla-
nar, and if they all point in the same direction then the polygon is convex or con-
cave. We can formulate this condition as

plane spanned by ri,� and ri,�+1, see Figure 5 . If all the normals ni,�, �= 1, . . . ,h−1
are parallel then the polygon is planar and if they all point in the same direction then
the polygon is convex or concave. We can formulate this condition as

ni,�1 ·ni,�2 = ‖ni,�1‖‖ni,�2‖ , �1, �2 = 1, . . . ,h−1 . (4)

or to simplify it a bit

ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 . (5)

To rule out the possibility of a concave polygon we require that the normal ni,�
points in roughly the same direction as wi,�. This can be formulated as

wi,� ·n�,1 ≥
1
2
‖wi,�‖‖ni,�‖ . �= 1, . . . ,h−1 . (6)

or as (5) secures that ni,� points in the same direction as ni,1 we can simplify it to

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)
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wi,�
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1
2
‖wi,�‖‖ni,�‖ . �= 1, . . . ,h−1 . (6)

or as (5) secures that ni,� points in the same direction as ni,1 we can simplify it to

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)
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or to simplify it a bit

ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 . (5)

To rule out the possibility of a concave polygon we require that the normal ni,�
points in roughly the same direction as wi,�. This can be formulated as

wi,� ·n�,1 ≥
1
2
‖wi,�‖‖ni,�‖ . �= 1, . . . ,h−1 . (6)

or as (5) secures that ni,� points in the same direction as ni,1 we can simplify it to

wi,1 ·ni,1 ≥
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‖wi,1‖‖ni,1‖ . (7)
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or as (5) secures that ni,ℓ points in the same direction as ni,1 we can simplify it to

i,� and ri,�+1, see Figure 5 . If all the normals ni,�, �= 1, . . . ,h−1
are parallel then the polygon is planar and if they all point in the same direction then
the polygon is convex or concave. We can formulate this condition as

,� 1 ·ni,�2 = ‖ni,�1‖‖ni,�2‖ , �1, �2 = 1, . . . ,h−1 . (4)

or to simplify it a bit

ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 . (5)

To rule out the possibility of a concave polygon we require that the normal ni,�
points in roughly the same direction as wi,�. This can be formulated as

wi,� ·n�,1 ≥
1
2
‖wi,�‖‖ni,�‖ . �= 1, . . . ,h−1 . (6)

or as (5) secures that ni,� points in the same direction as ni,1 we can simplify it to

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)

s(ui+1,v j�)

wi,�

(7)
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Boundary
Ultimately the rationalised surface s is supposed to be cut from a block, which 
we assume has the form of a box with axis parallel sides, given by a1 ≤ x ≤ a2 , 
b1 ≤ y ≤ b2 , and d1 ≤ z ≤ d2 . So no part of the boundary is allowed to be strictly in-
side the block. We furthermore assume that we will be cutting roughly in the x 
direction. So we require that

direction. So we require that

cx
1, j ≤ a1 , cx

k, j ≥ a2 , j = 1, . . . ,h , (8)

cy
i,1 ≤ b1 , cy

i,h ≥ b2 , i = 1, . . . ,k . (9)

where the superscript denotes the different components of the control points. In our
implementation we start and end with the polygon on the block boundary, so in (8)
the inequlities are replaced with equalities.

Limit the directions of the rulings The rulings are not allowed to turn more than
180◦, and this can be secured if the y-coordinate is a strictly increasing function.
This is the case if it holds for the control polygon, and we formulate this as

cy
i+1, j − cy

i, j ≥ ε2 , (10)

where ε2 is some small positive number. Strictly speaking we only need the differ-
ence to be non negative, but using an ε2 > 0 also prevents any ruling from collapsing
into a single point.

2.2 The optimization problem

(8) (9)

where the superscript denotes the different components of the control points. 
In our implementation we start and end with the polygon on the block boundary, 
so in (8) the inequalities are replaced with equalities.

Limit the directions of the rulings
The rulings are not allowed to turn more than 180◦ , and this can be secured if 
the y-coordinate is a strictly increasing function. This is the case if it holds for the 
control polygon, and we formulate this as

direction. So we require that

a1 , cx
k, j ≥ a2 , j = 1, . . . ,h , (8)

b1 , cy
i,h ≥ b2 , i = 1, . . . ,k . (9)

where the superscript denotes the different components of the control points. In our
implementation we start and end with the polygon on the block boundary, so in (8)
the inequlities are replaced with equalities.

Limit the directions of the rulings The rulings are not allowed to turn more than
180 , and this can be secured if the y-coordinate is a strictly increasing function.
This is the case if it holds for the control polygon, and we formulate this as

cy
i+1, j − cy

i, j ≥ ε2 , (10)

where is some small positive number. Strictly speaking we only need the differ-
ence to be non negative, but using an ε2 > 0 also prevents any ruling from collapsing
into a single point.

2.2 The optimization problem

(10)

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ . (7)

s(ui,v j�)
s(ui,v j�+1)

s(ui+1,v j�)

ri,�

wi,�

Figure 5: The discretized piecewise ruled surface from figure 3. The points
, . . . ,s(u i,v jh) form an instance of the moving polygon. The vector ri,� is a leg in

the polygon, i.e., a ruling. The vectors wi,1, . . . ,wi,h goes from one polygon of rulings to the
next.

Boundary Ultimately the rationalized surface s is supposed to be cut from a block,
which we assume has the form of a box with axis parallel sides, given by a1 ≤ x≤ a2,

≤ b2, and d1 ≤ z ≤ d2. So no part of the boundary is allowed to be strictly
inside the block. We furthermore assume that we will be cutting roughly in the x

Figure 5. The discretised piecewise ruled surface from Figure 3. The points s(ui , v j1), . . . , s(ui , vjh) form an instance of 
the moving polygon. The vector ri,ℓ is a leg in the polygon, i.e. a ruling. The vectors wi,1 , . . . , wi,h goes from one polygon 
of rulings to the next.
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where ε2 is some small positive number. Strictly speaking we only need the dif-
ference to be non-negative, but using an ε2 > 0 also prevents any ruling from col-
lapsing into a single point.

2.2 The Optimisation Problem
We are now able to formulate the optimisation problem

, and this can be secured if the y-coordinate is a strictly increasing function.
This is the case if it holds for the control polygon, and we formulate this as

cy
i+1, j − cy

i, j ≥ ε2 , (10)

where ε2 is some small positive number. Strictly speaking we only need the differ-
ence to be non negative, but using an ε2 > 0 also prevents any ruling from collapsing
into a single point.

2.2 The optimization problem

We are now able to formulate the optimization problem

minimize
c

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2 ,

such that
cx

1, j = a1 , cx
k, j = a2 , j = 1, . . . ,h ,

cy
i,1 ≤ b1 , cy

i,h ≥ b2 , i = 1, . . . ,k ,

(s(ui,v j)− fi, j) ·Ni, j ≥ ε1 , i = 1, . . . ,k , j = 1, . . . ,h ,
ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 ,

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ ,

cy
i+1, j − cy

i, j ≥ ε2 ,

(11)

where

ni,� = ri,�× ri,�+1 , �= 1, . . . ,h−2 , (12)
ri,� = s(ui,v j�+1)− s(ui,v j�) , �= 1, . . . ,h−1 , (13)

wi,� = s(ui+1,v j�)− s(ui,v j�) , i = 1, . . . ,k−1 . (14)

We solve this optimization problem using the interior point method, [Wächter and
Biegler 2005].

(11)

where

Limit the directions of the rulings The rulings are not allowed to turn more than
180◦, and this can be secured if the y-coordinate is a strictly increasing function.
This is the case if it holds for the control polygon, and we formulate this as

cy
i+1, j − cy

i, j ≥ ε2 , (10)

where ε2 is some small positive number. Strictly speaking we only need the differ-
ence to be non negative, but using an ε2 > 0 also prevents any ruling from collapsing
into a single point.

2.2 The optimization problem

We are now able to formulate the optimization problem

minimize
c

N

∑
i=1

M

∑
j=1

‖fi, j − s(ui,v j)‖2 ,

such that
cx

1, j = a1 , cx
k, j = a2 , j = 1, . . . ,h ,

cy
i,1 ≤ b1 , cy

i,h ≥ b2 , i = 1, . . . ,k ,

(s(ui,v j)− fi, j) ·Ni, j ≥ ε1 , i = 1, . . . ,k , j = 1, . . . ,h ,
ni,1 ·ni,� = ‖ni,1‖‖ni,�‖ , �= 2, . . . ,h−1 ,

wi,1 ·ni,1 ≥
1
2
‖wi,1‖‖ni,1‖ ,

cy
i+1, j − cy

i, j ≥ ε2 ,

(11)

where

ni,� = ri,�× ri,�+1 , �= 1, . . . ,h−2 , (12)
ri,� = s(ui,v j�+1)− s(ui,v j�) , �= 1, . . . ,h−1 , (13)

wi,� = s(ui+1,v j�)− s(ui,v j�) , i = 1, . . . ,k−1 . (14)

We solve this optimization problem using the interior point method, [Wächter and
Biegler 2005].

(12) (13) (14)

We solve this optimisation problem using the interior point method as in Wächter 
and Biegler (2005).
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Figure 6. Illustration of the 3 steps that initialise the model into 900 points. Firstly: 10 of the 30 planes are shown, 
Secondly: 12 of the 30 intersection curves. Finally: 300 of the 900 discretisation points are shown.

——————————————————
Model 4 Model 5

Model 1 Model 2 Model 3

Figure 7: Five models rationalized by piece-wise ruled surfaces. Model one has been cut
four times in one directions and four times in roughly the orthogonal direction. The four
other models have been cut four times in one direction.

that object in each case. The results are summarised in Table 1. We normalize all
volumes with respect to the volume of the bounding box, i.e., we use Vol/Vol(BB).
We show the volume of the model, but in the three other cases we show the volume
that needs to be milled away, i.e., (Vol−Vol(Model))/Vol(BB).

So for Model 1 we can see that the volume of the model is 49% of the bounding

Figure 7. Five models rationalised by piece-wise ruled surfaces. Model one has been cut four times in one directions and 
four times in roughly the orthogonal direction. The four other models have been cut four times in one direction.
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2.3 Initialisation

All that is left is to explain how we choose the sampling points fi, j and initialise 
the optimisation.

First the coordinate system is chosen such that outward normal of the sur-
face is roughly in the z-direction, i.e., upward. Then a cutting direction is chosen, 
and we create N parallel planes orthogonal to the cutting direction and uniformly 
spaced. For each plane the intersection curve with the original surface f is found. 
Finally, each intersection curve is discretised into M points. This is illustrated in 
Figure 6, where N and M both are 30.

3. Results
We have run our algorithm on the five models shown in Figure 7. Model 1 was cut 
in two different directions, four times in each directions, while Models 2–5 was 
cut four times in one direction. For comparison we have also calculated the con-
vex hull, and the bounding box.

We have only considered cutting directions parallel to the sides of the blocks, 
but if we consider Model 2, diagonal cuts would be favourable. The depression in 
Model 4 poses a problem for wire cutting: No matter what direction a line at the 
depression has, it will cut into one of the ‘mountains’ at the edge. On the other 
hand, we see that even though we sweep the surface using a polygon with four 
legs the optimisation has put two of the legs on the same line. So we have in 
effect a polygon with only three legs and consequently only need three cuts to 
produce the rationalisation.

If we imagine the surface sitting inside the block and remove the outer part 
we are left with a solid object, see Figure 8. We have calculated the volume of that 
object in each case. The results are summarised in Table 1. We normalise all vol-
umes with respect to the volume of the bounding box, i.e. we use Vol / Vol(BB). 
We show the volume of the model, but in the three other cases we show the 
volume that needs to be milled away, i.e., (Vol − Vol(Model))/ Vol(BB).

So for Model 1 we can see that the volume of the model is 49% of the bound-
ing box volume, that our method has left 4% of the bounding box volume for 
milling, that the convex hull leaves 15% of the bounding box volume for milling, 
and that the bounding box (doing nothing) leaves 51% of the volume for milling. 
We also show how much more volume our method removes compared to the 
convex hull and the bounding box, respectively. That is we show (Vol − Vol(our))/
(Vol − Vol(Model)). For Model 1 this is 76% and 93%, respectively.
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Figure 8: Model 1 with volume shown, the volume is created by intersection the bounding
box with the surface

No. Model Ruled Convex Hull Bounding Box
1 0.4924 0.0374 0.1541 76% 0.5076 93%
2 0.2435 0.1520 0.3380 55% 0.7565 80%
3 0.5914 0.0201 0.0520 61% 0.4086 95%
4 0.3058 0.1379 0.1453 5% 0.6942 80%
5 0.4533 0.0798 0.2294 65% 0.5467 85%

Table 1: In the second column the volume of the model is shown. In column 3,4, and 6
we show how much volume there is left for milling using our method, the convex hull, and
the bounding box respectively. All volumes are normalized with respect to the volume of the
bounding box. In column 5 and 7 we show how much more volume our method removes
compared to the convex hull and the bounding box, respectively.

box volume, that our method has left 4% of the bounding box volume for milling,
that the convex hull leaves 15% of the bounding box volume for milling, and that the
bounding box (doing nothing) leave 51% of the volume for milling. We also show
how much more volume our method removes compared to the convex hull and the
bounding box, respectively. That is we show (Vol−Vol(our))/(Vol−Vol(Model)).
For Model 1 this is 76% and 93% respectively.

4 Conclusion and future work

We have described a novel method that finds a one sided approximation of a free
form surface by a piecewise ruled surface. The method guarantees that no extension
of the rulings cut through the original surface. This allows us to use the method and
wire cutting as a preprocessing step for milling.

Compared to using the convex hull as a preprocessing step we obtain an im-
provent from 5 to 75% and typically around 50%.

For simplicity we have limited ourself to cuts parallel to the coordinate planes,
but relaxing this conditions and allowing any cutting direction will improve the

Figure 8. Model 1 with volume shown, the volume is created by intersection the bounding box with the surface.

Table 1. In the second column the volume of the model is shown. In columns 3,4, and 6 we show how much volume there 
is left for milling using our method, the convex hull, and the bounding box, respectively. All volumes are normalised with 
respect to the volume of the bounding box. In columns 5 and 7 we show how much more volume our method removes 
compared to the convex hull and the bounding box, respectively.
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4. Conclusion and Future Work
We have described a novel method that finds a one-sided approximation of a 
free-form surface by a piecewise ruled surface. The method guarantees that no 
extension of the rulings cut through the original surface. This allows us to use 
the method and wire cutting as a pre-processing step for milling.

Compared to using the convex hull as a pre-processing step, we obtain an 
improvement from 5 to 75% and typically around 50%.

For simplicity we have limited ourselves to cuts parallel to the coordinate 
planes, but relaxing this conditions and allowing any cutting direction will im-
prove the result.

We represent the piecewise ruled surface as a tensor product spline surface 
of degree one in one direction and the planarity condition of the rulings restrict 
the flexibility of the piecewise ruled surface. To overcome this, we can choose 
another representation where we explicitly move a planar polygon through space.

In this work we have assumed that the full architectural model has been seg-
mented into block-sized portions, and we have only considered the piece inside 
a single block. An interesting possibility is to use our method to aid in the seg-
mentation. If we allow for non-convex polygons in the optimisation, we will obtain 
a better fit and we could use the concave vertices to guide the segmentation.

Our system can be incorporated into a design workflow in one of several 
ways. The most obvious use is to simply run the method in order to reduce the 
amount of milling that is required to produce a given piece. However, the design-
er might also wish to create surfaces whose final design will change little when 
our method runs. In this case, we simply ensure that a design which is close 
to cuttable will, in fact, be so. Finally, our method seems to provides a distinct 
design expression with a plurality of intersection curves if cuts are made from 
several directions. We surmise that this could be used explicitly in some cases.
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Abstract
This paper describes the development of an unreinforced, freeform vault consist-
ing of 399 discrete limestone blocks with thicknesses ranging from 5 to 12 cm. 
The vault covers an area of 75 m2 and spans more than 15 m in pure compres-
sion, without mortar between the blocks. We discuss how the design of the vault 
and its individual pieces was entirely driven by constraints related to the fabri-
cation process and to the architectural and structural requirements and timeline 
of the project. Furthermore, we describe the form-finding process of the shell’s 
funicular geometry, the discretisation of the thrust surface, the computational 
modelling and optimisation of the block geometry, and the machining process. 
Finally, we discuss some of the strategies that were developed for dealing with 
tolerances during fabrication and construction. 

Keywords: 
freeform, unreinforced, dry-set, cut-stone, shell,  
computational methods, digital fabrication
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1. Introduction
Throughout history, master builders have discovered expressive forms through 
the constraints of economy, efficiency, and elegance, – not in spite of them. There 
is much to learn from their architectural and structural principles, their design and 
analysis methods, and their construction logics (Block et al. 2014). This paper revisits 
some of this lost knowledge in the context of computational geometry and dig-
ital fabrication applied to the design and construction of the presented project. 
It reports on the structural design, architectural geometry, and digital fabrication 
of an unreinforced, cut-stone vault constructed in the Corderie dell’Arsenale of 
the Architecture Biennale in Venice. The exhibition piece advocates for the logic 
of compression-only forms, not only because of their uniquely expressive aes-
thetics, but also because of their potential to achieve efficiency and stability 
through geometry.

The doubly curved vault consists of 399 individual limestone blocks or voussoirs 
assembled without mortar or other structural connections. The vault stands in 
compression and spans a total area of 75 m2 with three linear supports along its 
boundary and one support in the middle. The structure has a more or less triangu-
lar shape in plan. The unsupported edges between the boundary supports create 
openings that provide access to the space underneath. Located in the centre of 
the exhibition space, the stone vault spans the central walkway between the two 
entrances and wraps around the existing columns. The columns penetrate the struc-
ture’s surface through two large openings, one of which is partially supported (Fig. 1).

The voussoir geometry results from the discretisation pattern or tessellation, 
which determines the stone rows or courses. The exterior surface of the vault is 
called extrados and the interior intrados. The supports are made of 20 mm thick steel 
plates, and designed to distribute the weight of the vault as evenly as possible over 
the floor of the protected building. A system of steel ties connects the steel sup-
ports and absorbs the vault’s horizontal thrust. The ties are necessary because no 
mechanical connections to the floor were allowed. Leaving them exposed shows 
and emphasises that the stone surface structure would not be stable without them.

Figure 2 depicts the design, analysis, and fabrication process of the cut-stone 
vault. The flowchart also serves as an overview of the structure of this paper. 
Section 2 summarises the structural and fabrication requirements for this project 
and defines the specific objectives of the presented applied research. Section 3 
discusses the structural design of the vault, focussing on the initial form-finding 
process and the computational methods developed to generate the tessellation 
and voussoir geometry. Information about the structural analysis of the vault is 
not included in this paper. Section 4 describes the fabrication and assembly pro-
cess. It focuses on the CAM process and the machining strategy before touching 
upon aspects related to the falsework and the actual assembly. Finally, Section 
5 presents the completed structure and provides some concluding remarks.

Figure 1. The Armadillo Vault in the Corderie dell’Arsenale at the 2016 Architecture Biennale in Venice, Italy.
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2. Structural and Fabrication Requirements
The design of the vault and its individual pieces was entirely driven by constraints 
related to the fabrication process and to the architectural and structural require-
ments and timeline of the project. In this section, we describe the structural and 
fabrication requirements in more detail.

2.1 Structural Requirements
First of all, the vault required an appropriate funicular overall shape that allows 
it to stand in compression without mortar or connections between the individ-
ual stone blocks. The form finding process of this funicular shape is briefly de-
scribed in Section 3.1.

In addition, to comply with the prescribed weight limitations on the floor of 
the exhibition space in the protected building, the thickness of the stone shell 
had to be reduced to the absolute minimum. As a result, the thickness of the 
voussoirs at midspan of the large unsupported arches is only five centimetres, 
which is the minimum thickness required to avoid spalling of the stone and allow 
the integration of sufficiently large registration notches. High degrees of dou-
ble curvature ensure that stable states of compressive stress can be developed 
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Figure 2. Flowchart summarising the structurally informed, fabrication driven, computational design process of the cut-
stone vault. An online video documenting this process can be watched here: https://vimeo.com/167868985.
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within the tight stone envelope under all loading conditions (self-weight, point 
loads, earthquake loads, etc.).

The total weight of the vault is approximately 23.7 tons, which is less than 
the load due to a crowd of people occupying the exclusion zones around the sup-
ports. To prevent too much of this weight from accumulating at the central sup-
port and also for aesthetic reasons, the overall shape of the vault is intentionally 
shallow. As previously discussed, the resulting outward thrust at the boundary 
supports is resisted by an internal system of ties. The vertical reaction forces 
are spread over a sufficiently large area by the footings such that the pressure 
underneath averages below the prescribed 600 kg/m².

Note that, due to the reduced thickness of the structure, the load-transfer-
ring surfaces between the voussoirs are small (Fig. 3). Since there is no mortar 
between the voussoirs, which could compensate for tolerances, these interfac-
es had to be flush and therefore precisely cut. This high degree of precision was 
(structurally) not required for the surfaces on the intrados and extrados.

Finally, the voussoirs were arranged in a staggered pattern and their load-trans-
ferring interfaces aligned to the force flow, to ensure sufficient interlocking, and to 
prevent sliding failure. Small male/female notches were added to these interfaces. 

a

cb d e

Figure 3. One voussoir lifted from the stone surface. Note that lifting a stone out of the structure would not be possible in 
reality because of the registration notches. (a) Flat extrados surface. (b) Doubly ruled, load-transferring surface. (c) Curved 
surface on intrados, generated with rough-cuts. (d) Registration notch. (e) Planarised, non-load-transferring side surface.
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They served primarily as registration marks during assembly (Fig. 3). Section 3.2 
describes the design of the staggered voussoir pattern, and Section 3.3 the gen-
eration of the actual voussoir geometry.

2.2 Fabrication Requirements
The fabrication requirements resulted, on the one hand, from constraints of the 
CNC-machining process, and, on the other hand, from practical considerations 
regarding assembly. Due to the strict time constraints and high number of vous-
soirs, the main goal for the fabrication process was to limit the average cutting 
time. Additionally, the required precision of all bespoke stones demanded a high-
ly accurate fabrication process.

All voussoirs for this vault were processed on a 5-axis router OMAG Blade5 
(Generation 3) using a circular saw blade (Ø 81 cm) and customised profiling 
tools (Fig. 4). For the chosen limestone, the blade allows a relatively fast cutting 
procedure using, for example, a maximum feed rate of 445 cm/min for a 10 cm 
deep cut (Rippmann et al. 2013). However, such cuts are geometrically constrained to 
planar surfaces (Fig. 4b). In contrast, the profiling tools can be used to process 

X (440 cm) 

C (0° - 360°)

B (25°- 90°)

Z (200 cm)

Y (305 cm)

(a) (b)

(c)

Figure 4. (a) 5-axis router OMAG Blade5 (Generation 3) with marked axes X, Y, Z, C and B. (b) Circular saw blades can 
only make planar cuts. (c) Profiling tools can create ruled surfaces.
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ruled surfaces efficiently, but operate at 5 to 10 times slower feed rates (Fig. 4c). 
Specifically, the use of circular blades demands a convex cutting geometry along 
the interfaces to avoid self-intersections with the blade trajectory and thus un-
desired cuts in the final voussoir.

In subtractive manufacturing processes, the three-dimensional treatment 
of a workpiece from all sides demands the flipping of the partly processed 
stone block and its precise re-referencing on the machine bed. To avoid this 
time-consuming procedure, and potential tolerance issues, all voussoirs were 
designed such that their extrados is planar. Hence, they could be cut from 
cuboid blanks that were mounted with one planar face against the machine 
table. After the exposed surfaces of the workpiece have been machined, this 
untreated planar face equals the extrados of the processed voussoir (Heyman 

1997; Clifford & McGee 2013).
An additional measure to reduce the machining time of the voussoirs was 

to successively cut side-by-side grooves (with a larger step size than the blade’s 
thickness) to approximate the doubly curved intrados surface. Usually, the re-
sulting fragile fins are first knocked off manually to then continue with finer mill 
passes to obtain a smooth surface finish. We decided to stop after this first 
step and to use the “unfinished”, rough, but nonetheless precise, aesthetic as a 
strength by carefully aligning these grooves with the force flow (see Section 3.2).

The maximum allowed weight of the voussoirs was limited to 45 kg on the 
top and 135 kg close to the supports. This constraint resulted from the fact that 
no heavy equipment, such as mobile cranes, could be used on the construction 
site, and thus ensured that all pieces could be handled safely by the masons as-
sisted only by lightweight hoists mounted on the scaffolding.

3. Structural Design and Architectural 
Geometry

The design of an unreinforced, discrete, dry-set, cut-stone vault with complex 
geometry is a complicated process. Essentially, it can be summarised by the fol-
lowing steps. First, a thrust surface is designed through a form-finding process. 
This surface is taken as the middle surface of the cross-section of the vault. The 
intrados and extrados are created as offsets of this middle surface according to 
a local thickness, defined by the live loading cases. This stone envelope is then 
discretised into voussoirs following a tessellation pattern taking into account the 
fabrication and assembly requirements. Finally, the stability of the discretised ge-
ometry under different loading conditions can be verified with discrete element 
modelling. In this section, we describe the design of the thrust surface (Sec-
tion 3.1), the tessellation design (Section 3.2), and the generation of the vous-
soir geometry (Section 3.3).
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3.1 Form Finding

The funicular shape of the vault is the result of a form-finding process based on 
thrust network analysis (Block & Ochsendorf 2007). As a first step, preliminary design alter-
natives were sketched using RhinoVAULT (Rippmann et al. 2012). From this, a mesh was 
obtained and then refined, based on functional and aesthetic considerations. The 
updated mesh served as a target for a “best-fit” procedure that finds the closest 
possible network of compressive forces under the given loads (Van Mele et al. 2014).

During the form finding process, only the self-weight of the vault was con-
sidered. As discussed in Section 2.1, the allowable self-weight was dictated 
by the requirements of the site and the constraints imposed on the assembly 
process. A corresponding thickness distribution was computed based on expe-
rience, aesthetic considerations, and common sense. As depicted in Figure 5c, the 
thickness varies from 12 cm at the central support and the bottom leg, to 5 cm 
at the highest points and at midspan of the large unsupported arches.

The layout of force directions for the horizontal thrust in the network was 
derived from the geometric and structural features of the three-dimensional tar-
get geometry, and represented by the form diagram in Figure 5a. The best-fit algo-
rithm was used to find the specific distribution of forces along those directions 
that maps the three-dimensional network as close as possible to the geometric 
target. During this process, the geometric target was updated to be able to find 
solutions that better distribute stresses along the supports and introduce more 
double curvature. The force diagram in Figure 5b is the final “best-fitting” distribution. 
Figure 5d is a visualisation of lumped stresses at the nodes. It shows that stresses 
are extremely low and do not even exceed 0.1 MPa. Note that this is two orders 
of magnitude below the compressive strength of the selected stone, which is a 
Cedar Hill limestone with a compressive strength of 22 MPa.

Finally, the resulting thrust network can then be converted to a mesh that, 
after subdivision and smoothing, represents the middle surface of the stone en-
velope of the vault.

3.2 Tessellation Design
The design of the tessellation geometry is subject to a comprehensive set of 
constraints derived from structural and fabrication requirements (Section 2), and 
from aesthetic considerations regarding tectonics and rhythm. Basically, the tes-
sellation pattern must be staggered to ensure an interlocking voussoir arrange-
ment and properly aligned to the force flow to prevent sliding failure, particularly 
along the unsupported boundaries.

The design of the tessellation pattern starts with the definition of course lines 
on the thrust surface. The thrust surface is represented by a quad mesh (Fig. 6a), 
whose faces are aligned with the layout of forces defined during the form-finding 
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process (see Section 3.1). This mesh gives a first indication regarding the orien-
tation, singularities and spacing of the course line layout. The actual design of 
the courses was created manually from a set of geodesic curves on the thrust 
surface. Custom design and monitoring tools were used to help control the pre-
defined minimum and maximum spacing of the courses such that, for example, 
the allowed weight of the average voussoir per row was not exceeded, while 
maintaining local alignment to the force flow (Fig. 6b).

A set of vertical lines was then generated per course aligned with the force 
flow. These lines define the side-by-side cuts resulting in the rough break-off edg-
es on the intrados of the structure. A particular challenge was the alignment of 
cut lines from one course to the other such that the force flow becomes global-
ly apparent (Fig. 6c). Constraints pertaining to the blade width and minimum and 
maximum allowable break-off widths had to be taken into account. The continui-
ty of the cut lines was achieved by transferring the endpoints within one course 
to start points within the next. Given the varying geometry of the vault and the 
above-mentioned constraints, a strategy was developed for the gradual insertion 
or removal of additional cut lines.

Subsequently, an initial tessellation topology was defined by choosing more 
or less equally spaced vertical joint lines from the rough-cut pattern. The use of 
alternating boundary conditions for neighbouring courses guaranteed an initially 
staggered configuration. Locally, especially close to singularities, this tessellation 
topology was further modified manually. A more balanced staggering with larger 
overlaps between voussoirs was then created through an automated procedure 
that maximises the distance between joints of neighbouring courses. Ideally, the 
voussoirs of neighbouring courses are thus staggered by half of the length of 
one voussoir (Rippmann & Block, 2013; Rippmann 2016). In this iterative solving procedure, 
the vertical joint lines were automatically aligned with the local rough-cut pattern.

The final tessellation geometry was created by making all faces convex (Fig. 6d). 
This was achieved by scaling the vertical joint lines based on a user-defined scale 
factor and proportional to the course height. As a result, the degree of convexity 
increases towards the top, forming smoother transitions around the singularities.

3.3 Voussoir Geometry
The voussoir geometry was generated based on the tessellation of the thrust 
surface (Fig. 6d) and the chosen thickness distribution (Fig. 5c). The geometry of 
each of the surfaces of a voussoir (i.e. the intrados and extrados surfaces, the 
load-transferring side surfaces, and the non-load-transferring side surfaces) was 
determined by the limitations of the fabrication process and the limited amount 
of time in which the voussoirs had to be produced.

Each voussoir is convex and has a flat extrados surface. The non-load-trans-
ferring side surfaces (the surfaces transverse to the course lines) are also flat. 
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1 m 5 kN

5 cm 

12 cm 

0.006 MPa 

0.096 MPa 

(a) (b)

(c) (d)

Figure 5. (a) The form diagram lays out the directions of horizontal forces in the three-dimensional thrust network. (b) 
The force diagram contains the force magnitude along each of the directions in the form diagram. (c) The distribution of 
thickness. (d) The stress in the surface resulting from the distribution of force and thickness.

The intrados surface of the voussoirs is curved like the intrados of the vault. It 
is created with parallel cuts by a circular blade leaving fins that are hammered 
off. The primary load-transferring surfaces (the surfaces aligned with the course 
lines) are ruled, because they are cut with a cylindrical profiling tool that creates 
the (male and female) notches.

Since the surface of the vault has areas with negative Gaussian curvature (i.e. 
in some areas it is anticlastic), it is not possible to create a connected flat-panel 
discretisation of the extrados with only convex faces (see Krieg et al. 2014; Li et al, 2015; 

Pottmann et al, 2015). Therefore, the extrados surface of each of the voussoirs was 
planarised individually creating a disconnected discretisation of the exterior of 
the vault.

The planarisation process is summarised in Figure 7. First, disconnected planar 
faces were based at the normal of the centroid of the original, smooth extrados 
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surface (Fig. 7a). Note that this created large, erratic deviations from the original 
curved extrados at the corners of the voussoirs. These deviations were not aes-
thetically pleasing and significantly increased the weight of the vault. Therefore, 
in a second step, the planar faces were allowed to rotate around the normal at 
the centroid and move slightly up and down. The normals at the corners were 
allowed to rotate as well (Fig. 7b). During this procedure, the tessellation of the 
intrados was kept fixed. This means that the vectors connecting corresponding 
top and bottom corners of the voussoirs were no longer perfectly aligned with 
the normals of the thrust surface. However, this deviation was limited to 5 de-
grees from the original normal vector (Fig. 7b). Finally, in a post-processing step, 
the non-load-transferring faces were planarised, without changing the geometry 
of the load-transferring faces, and the notch lines were added.

After this optimisation process, the stepping from one stone to the next 
was between two and five cm in all locations. The lower bound was introduced 
to maintain a uniform and balanced appearance. The final configuration gave the 
vault a slightly rough, scale-like exterior that contrasts its smoothly curving in-
terior surface.

(a) (b)

(c) (d)

Figure 6. Overview of the tessellation design: (a) the mesh representing the thrust surface, (b) the course lines, (c) the 
rough-cut pattern on the intrados, and (d) the final tessellation of the thrust surface and aligned rough cuts.
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4. Fabrication and Assembly
The fabrication and assembly of the cut-stone vault is a combination of tradition-
al and digital methods, aimed at constructing the designed geometry with very 
high precision. The geometry of each voussoir is digitally processed and G-code 
is generated for CNC machining. The stones are cut using three different CNC 
machines to achieve a result that has very small tolerances and the desired fin-
ish, while keeping to a very tight schedule. The vault is assembled much in the 
same way as traditional masonry vaults were. Each voussoir is fully supported 
by a custom-made falsework. The stones are manually set, using shims, starting 
from all sides at the bottom and converging towards the “keystones” at the top.

4.1 CAM Process and Fabrication

The fabrication process of each voussoir starts with cutting a cuboid blank from 
a rough block of limestone (Fig. 8a). Its dimensions are defined by the bounding 
box of the voussoir. To save time and material during the cutting process of all 

(a) (b)

(c) (d)

Figure 7. Overview of the design of the voussoir geometry: (a) disconnected, planar faces based at the centroids of the 
tessellation cells on the extrados create a rough, scale-like exterior with large deviations at the corners; (b) by rotating 
the faces and corner vectors a more balanced stepping from every voussoir to its neighbours is created; (c) deviation from 
allowed minimum and maximum corner stepping before normal adjustments (red voussoirs are outside of the imposed 
bounds); and (d) deviations afterwards.
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blanks, the 399 bounding boxes from the vault’s voussoirs are categorised in 55 
different sizes. The Pellegrini Single Wire Saw CNC machine is used to cut stone 
plates, which are then cut transversally and longitudinally according to the pre-
defined ashlar sizes using a 3-axis blade-saw CNC machine.

The final shape of each voussoir was cut with the 5-axis CNC machine. To 
speed up the process, two cutting areas on opposite corners of the machining 
table were used, such that an already finished voussoir from one cutting area 
could be replaced while the next stone was being cut in the other area. Vacuum 
pods of different sizes and heights were used to hold the blanks in position and 
to keep the cutting tool from colliding with the table (Fig. 8b). Once the blank was 
in position, the side edges were cut with a circular saw (Ø81 cm). The result is 
a planar approximation of the final side edges. The next step is to shape the top 
face of the blank, which corresponds to the vault’s intrados, by a series of side-
by-side cuts (Fig. 8c). To save time during the cutting process of these grooves on 
top of the blank, the saw changes the direction of its trajectory each time it fin-
ishes a cut, tracing a zig-zagging path. Then, the fragile fins that result from the 
gap left between cuts are knocked off manually with a hammer.

To control the visual appearance of the pattern formed by the leftovers of the 
fins, the lead-in and lead-out of the circular blade was varied to create shallower, 
incomplete cuts at specific locations on the intrados (Fig. 9a). At these locations 
the fins would break off slightly higher (Fig. 9b), creating a balanced distribution of 
“highlights” on the rough, but overall smoothly curving surface.

The interfaces were finished using three different profiling tools (Fig. 8d). A 
simple cylindrical tool was used to finish the interfaces without registration notch. 
A tool with a 12 mm diameter semi-circular ridge was used to cut the female 
edges and one with a 12 mm diameter semi-circular groove to cut the males. To 
prevent potential tolerance problems, all side cuts were made following a right-
to-left direction. With this cutting strategy, the tool always entered from the 
same side, and the rotation of the tool in relation with its trajectory was always 
the same as well. The resulting tolerances of the cutting process with the 5-axis 
CNC machine are between 0.4 and 0.8 mm.

The G-code of each voussoir was generated using dedicated CAM software 
after importing the cutting geometry of the voussoirs from Rhinoceros. This im-
ported geometry contains the surfaces that define the shape of the voussoir and 
additional geometric elements used to define the cutting paths.

4.2 Falsework and Assembly

The voussoirs are assembled on top of a custom falsework consisting of standard 
scaffolding towers that support four marine-grade plywood waffle structures, one 
for each vault support (Fig. 10a). To minimise the amount of required material, the 
waffles are designed on separate orthogonal grids aligned to the main directions 
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(a) (b)

Figure 9. The break-off depth of rough-cut fins can be influenced by controlling the lead-in and lead-out of the circular 
blade to create a pattern of highlights on the intrados. (a) Distribution of highlights. (b) Example of different break-off depth.

Figure 8. Fabrication process: (a) The stones cut at the bounding boxes of the voussoirs. (b) Placement of the voussoir 
bounding box cut on the milling bed. (c) Rough cuts with a circular blade to create the intrados. (d) Processing of load-
transferring side faces with custom-made tool to create the notch lines. (e) Adjacent stones test-assembled to verify 
alignment of rough-cut lines.
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of each support section. The elements in the longitudinal support directions are 
placed as perpendicular to the voussoirs as possible to increase stiffness. While 
non-orthogonal, geometrically complex waffles (Schwartzburg & Pauly 2013) could poten-
tially be stiffer and lighter, the assembly time and complexity would be imprac-
tical and infeasible considering the tight schedule.

Each voussoir was placed on the waffle using shims, which allowed correct-
ing the position and inclination of the voussoirs. The position of each stone was 
controlled with the registration notches and assessed by verifying the perfect 
alignment of the interfaces. In addition, total stations were used to measure the 
four corner points of the flat extrados of the voussoir, and compare them with 
the point cloud taken directly from the digital model (Fig. 10c).

Separate crews worked simultaneously on the different supports, starting 
from the bottom and working their way up to the “keystone” rows (Fig. 10b). This 
meant that imperfection and construction tolerances were accumulated at the 
top. The geometrical differences between the designed and the as-built vault 
were resolved by creating “keystones” that fit perfectly in the built geome-
try. The custom “keystones” were cut once all of the other voussoirs were 
placed and the correct shape for them had been measured on site (Fig. 10d). 
Note that an alternative solution is to assemble from the top down, thus tak-
ing the imperfections at the supports by grouting (Ochsendorf et al. 2016). However, 
considering the complexity of the support conditions caused by the loading 
limitations on the floor of the exhibition space, this type of corrections was 
not possible here. 

5. Conclusions
This paper presents an overview of the structurally informed design and fabrica-
tion of the Armadillo Vault, a cut-stone vault presented at the 2016 Venice Archi-
tecture Biennale. The project was realised under extremely tight time and site 
constraints that drove the structural and geometrical design as well as the fab-
rication process.

The paper shows how a complex design and fabrication process is only 
possible with the aid of an integrated computational setup. The interaction and 
feedback from all of the steps in the process described above were an essential 
component to achieve such results, and to ensure a sound structure and very 
small construction tolerances.

The experience of the stone masons also informed the process, especially 
in the configuration of the keystone rows and the accumulation of imperfections 
in these last voussoirs. The high precision of the entire fabrication process de-
scribed above minimises these errors, but does not completely eliminate them, 
or the need for a solution to tolerances. Therefore, manual adjustments during 
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assembly by the stone masons were needed due to the accumulation of toler-
ances. The execution of such manual adjustments can be facilitated by simpli-
fying the voussoir geometry. For example, by optimising the geometry of the 
interfaces for planarity.

The resulting structure (Fig. 11) is a demonstration of how material and fabri-
cation constraints are not equivalent to limited design possibilities, but can be 
the starting point for expressive and efficient structures.

Figure 10. Assembly process: (a) Plywood waffle structure on top of standard scaffolding towers. (b) Voussoirs are placed 
starting from the supports. (c) The position of voussoirs was assessed using total stations, measuring the corner points 
of the flat extrados. (d) The keystones were cut after all other stones had been placed and the required geometry to 
compensate for the accumulation of tolerances could be determined.
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Abstract
This paper presents an important step towards the integration of structural 
concerns in the CASTonCAST system for the design and production of shell 
structures built from precast stackable components. This step consists of 
studying the application of prestressing for assembling the components and 
providing stiffness to the shell. This was tested in the realisation of a 1:10 
prototype of a post-tensioned shell structure built from precast stackable 
components. This prototype is also the first one to be built in concrete using 
the CASTonCAST system.

Keywords: 
shell structures, precast concrete, prestressing, architectural freeform surfaces, 
strut-and-tie models
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1. Introduction
Between the 1920s and the 1970s, impressive reinforced concrete shell struc-
tures were built using the cast-in-place construction technique. After this  
period the construction of reinforced concrete shells declined due to the high 
costs associated to the intense labour required in the construction site and the 
high costs of formwork and scaffolding (Chilton 2000). During the last decades, the 
demand of freeform shapes in architecture has accentuated these problems, 
making the production of such curved structures in concrete more inefficient 
and unsustainable. For this reason, it is important to develop methods for the 
production of freeform shell structures which reduce the economic and en-
vironmental costs. Nowadays, new methods for producing efficient complex 
structures in concrete are being developed. It is worth mentioning the novel 
techniques for casting concrete building elements using flexible formwork (West 

2001; Orr et al. 2011), flexible moulding systems (Schipper 2011; Pronk et al. 2009; Raun & Kirkegaard 

2012), and additive manufacturing technologies (AM) such as D-shape (Dini 2006), 
Contour Crafting (Khoshnevis et al. 2004), Concrete Printing (Lim et al. 2009), and Smart 
Dynamic Casting (Lloret et al. 2015).

An alternative to these methods is the CASTonCAST system (Enrique et al. 2011; 

Enrique et al. 2016) (Fig. 1). This system deals with the design and production of architec-
tural freeform shapes from precast stackable components. The system consists 
of two complementary parts:

(1) A novel manufacturing technique of complex building components 
which relies on producing a series of components in stacks by using the 
previous component as a mould for the next one.

(2) A new geometric method, which emerges from the constraints of the 
manufacturing technique, for the construction of freeform shapes by the 
connection of stackable solid tiles.

The system presents the following advantages: First, it eliminates the need 
for costly complex moulds. Second, the method allows one to transport the 
components to the construction site in stacks. This avoids the need to manu- 
facture supporting structures for each component. Finally, the labour at the 
construction site consists in placing the components on a reusable scaffolding 
and assembling them. This increases the speed of erection and reduces the 
construction costs.

This research has the aim of applying the CASTonCAST system for the design 
of freeform shell structures. The first step in this direction consists of studying 
the way the components are assembled together and the shell gets stiffness. 
Attracted by the efficiency in construction of precast segmental bridges and 
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inspired by built works such as the Jubilee Church designed by Richard Meier & 
Partners Architects, this research studies the application of prestressing in the 
CASTonCAST system for assembling the components and providing stiffness 
to the shell. In this paper this approach has been tested in the realisation of a 
1:10 prototype of a post-tensioned shell structure built from precast stackable 
components (Fig. 1).

Figure 1. 1:10 Prototype of a post-tensioned shell structure built from precast stackable components: stacks of 
components (above) and post-tensioned shell (below).
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2. Prototype
The prototype is composed of 60 stackable concrete components of size 25 x 
8-12 x 2.5-6 cm, arranged in a matrix of 5 by 12. These are assembled by a net-
work of 17 post-tensioning steel cables of 4 mm diameter. The total size of the 
prototype is 140 x 140 x 2.5-6 cm, and its weight is approximately 135 kg. Since 
the components at real scale are meant to be around 2.5 m length by 1.2 m 
wide, we can say that the prototype is constructed approximately at a 1:10 scale.  
However, at real scale the thickness of a shell structure should be between 5 
and 25 cm.

2.1 Geometry
The shell was designed using the CASTonCAST geometric method (Enrique et al. 

2016). This method allows the construction of freeform shapes by the connection 
of stackable tiles which represent building components manufactured one on top 
of another. To achieve this, the same group of tiles must be able to be arranged 
in two clusters: stack and strip. The key of the method relies on simple requi-
site: for two tiles to be joined in two different clusters, both tiles must have two 
congruent surfaces between them (Fig. 2).

The shape of the shell was designed with the intention that its main sur-
faces have regions with both positive and negative Gaussian curvatures. During 
the design process it was important to control two main aspects in order to en-
sure that the components could be easily produced: First, the thickness of the 
shell had to be between 2.5 and 6 cm. Second, the curvature of the top surface 
of the components should not be too complex. To control these two aspects, a 
stack-to-strip modelling process was followed. This consists on modelling a stack 
of solid tiles and later arranging them in order to construct the resulting strip.

For modelling the stack, first the generating curves were created (Fig. 3). 
These curves represent a series of transversal sections of the shell, and there-
fore they define both the thickness and the curvature of the shell. This shows 
that there is an interesting relationship between the change of thickness and 
the global curvature of the shell. In this process, it was necessary to respect 
the range of admissible thicknesses previously defined. Since at real scale the 
range of admissible thicknesses is larger than at the prototype scale, the de-
sign space is also wider.

Then, the angle between the generating surfaces of the stack was defined 
(Fig. 3). This affects the curvature of the shell along the strips. In order to get more 
variation of the curvature along the strip, the shell was constructed from two 
stacks with a different angle between their generating surfaces. As Figure 3 shows, 
both stacks are linked. For this, the back face of the last tile of the first stack 
and the front face of the first tile of the second stack must be congruent. This 
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allowed joining the two shell patches corresponding to each of the stacks giving 
shape to the shell. Both the generating curves and the generating surfaces were 
manipulated until the desired shape was obtained.

Finally, once the shape of the shell was defined, the tiles of the stack were 
subdivided by a series of transversal planes into smaller tiles. This step allowed 
controlling the appropriate size of the components and the curvature of the top 
surface of the components.

2.2 Structure

A study of the structural behavior was developed in order to check the internal 
forces in the prestressed shell. In this study, two conditions had to be fulfilled: 
First, the effect of prestressing had to ensure that no internal tensile forces ap-
pear in the mass of concrete of the shell; this was important for ensuring that 

a
b

a

b

Figure 2. Stack and strip of two tiles

Generating 
curves

Generating 
surfaces

Figure 3. Geometric modelling of the shell.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



370

the precast elements were appropriately compressed and also to prevent cracks 
from appearing. Second, the magnitude of the internal forces had to respect the 
yield conditions of the material. The available parameters to achieve this were: 
the shape of the shell, the thickness, the position of the supports and the amount 
of prestressing force.

The study was conducted using the Load Path Network Method (Enrique 

and Schwartz, 2016). LPNM is an equilibrium-based method for the generation of 
three-dimensional strut-and-tie models based on the lower-bound theorem of 
the theory of plasticity (Muttoni et al. 1997). This method allows one to construct 
and visualise possible paths of the internal forces in equilibrium in a given 
structure. Using this method, a scheme of a possible spatial configuration of 
the internal forces in equilibrium within the designed shape was modelled 
(Fig. 4). For this, first a possible load path of the self-weight was modelled. 
This path of internal forces shows that the shell takes advantage of its three- 
dimensional shape for distributing the internal forces by means of a network 
of compressive and tensile axial forces. In this step, the initial shape and the 
position of the supports had to be slightly modified in order to reduce the 
magnitude of the internal forces.

Then, a simplified network of prestressing cables was modelled. In order 
to fulfil the conditions defined before, the magnitude of the prestressing force 
in the cables needed to be larger than the largest tensile force of the first load 
path, and, at the same time, it had to respect the yield strength of the concrete 
mass and the steel cables. In this case, the required prestressing force in the 
cables was equivalent to 40% of the admissible tensile strength of a steel cable 

Figure 4. Study of the internal forces in the prototype using the Load Path Network Method. Compression in blue and 
tension in red.
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of 4 mm diameter. By superimposing the two systems of forces the mass of 
concrete of the shell remained only under compressive forces.

The equilibrium solution chosen might not be the one describing the real 
structural behavior of the shell; however, according to the lower-bound theorem 
of the theory of plasticity, the modelled solution of internal forces guarantees 
the structural safety (Muttoni et al. 1997).

2.3 Production

The CASTonCAST manufacturing technique (Enrique et al. 2016) consists of casting a 
series of components in stacks using the previous component as a bottom mould 
for the next component. The main steps for the production of this prototype were:

1. Production of the lateral moulds
For the production of a stack of components, moulds for the flat lateral faces 
of the components are required. Like the components, these lateral moulds 
are stackable. Thanks to this, they can be manufactured together by cutting 
their stackable parts from flat sheets of material (Fig. 5). This reduces the ma-
terial waste and the production time. For the production of this prototype, 
a total of 10 flat sheets of timber of size 83 x 45 x 1 cm were required for 
producing lateral moulds of the 60 components.

The assembly devices were fixed in the lateral moulds. These are fe-
male-male stainless steel pin joints and two plastic tubes connecting the 
opposite faces of the mould for inserting the post-tensioning cables.

Figure 5. Production of the lateral moulds.
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2. Production of the bases
The first component of the stacks did not have a bottom flat surface. Due to 
this, it was necessary first to manufacture bases. These were produced us-
ing lean concrete. For further prototypes, the bases will be produced from 
reusable materials in order to reduce the material waste.

3. Casting the components
For casting one component, first the mould was filled with concrete and later 
the top surface of the components was shaped manually using a bricklaying 
trowel (Fig. 6 left). To do this successfully, it was necessary to control during 
the design process that the curvature of the top surface of the components 
was not too complex. In addition, it was important to control the concrete 
rheology and workability.

The concrete mixture used contained a cement-sand ratio of 1:2 and a water- 
cement ratio of 0.6. Due to the small scale of the components, no gravel nor 
steel reinforcement was used. However, polypropylene fibres were added to the 
mixture in order to reduce the width of the cracks and improve the resistance to 
shrinkage during the curing.

Once the concrete had hardened, a thin plastic layer was applied on the top 
surface of the component in order to prevent that the material of the next compo-
nent adheres to it. (Fig. 6 centre). This can also be achieved using a standard demould-
ing spray. Then, the next lateral mould was fixed in order to start the casting of 
the next component (Fig. 6 right). Each new component could be cast approximately 
12 hours after casting the previous one. In order to reduce the production time, 
the stacks were cast by layers, starting by casting the first component for all the 
stacks, then, the second one for all the stacks, and so on.

Figure 6. Production of the components: casting (left), placing the separation layer (centre) and placing the next lateral 
mould (right).
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Due to the manual production process, which at real scale must be carried 
out by skilled workers, the quality of the surface finish was that of handcrafted 
products. This finish could have been smoothed and improved by applying an 
optional surface polishing. Although the final quality of the surface finish may 
be rougher than when the components are cast using a mould, this method of 
manufacturing the components allows one to eliminate the need of producing 
complex non-reusable moulds and therefore reduces largely the material waste.

Figure 7. Longitudinal post-tensioning of the components.
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2.4 Assembly

The assembly of the components was solved by means of two combined sys-
tems: female-male steel pin joints located in the lateral faces of the components 
and a bidirectional network of post-tensioning cables. The steel pin joints served 
to match the components precisely and make the shell stiff against shear forc-
es. The bidirectional network of post-tensioning cables was in charge of joining 
the precast concrete components, providing stiffness to the shell structure and 
preventing cracks from appearing.

The post-tensioning process was done in two phases: longitudinal and trans-
versal post-tensioning. The longitudinal post-tensioning consisted of assembling 
the components of adjacent stacks belonging to the same level. This process 
shaped two large stacks composed of six stackable post-tensioned curved beams 
each (Fig. 7). Since the components are stackable, the first curved beam could be 
post-tensioned directly on top of the bases and the subsequent curved beams 
could be post-tensioned on top of the previous ones. Thanks to this, there was no 
need of building custom support devices for the assembly process. This feature 
reduces the economic cost and the material waste involved in the manufacturing 
of such supporting structures.

After the longitudinal post-tensioning, the 12 curved beams were assembled 
together on top of a simple scaffolding (Fig. 8). This was composed of four MDF 
panels of 2 cm thickness which were produced using a CNC machine. Only two 

Figure 8. Assembly sequence.
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of these panels had a curved edge following the curvature of the shell in order 
to help placing the beams in their exact position. The beams were assembled 
by joining the back face of each beam with the front face of the next one. Due 
to inaccuracies during the fabrication process, it was required to slightly sand 
the steel pin joints with an electric circular saw. This showed that the production 
process requires a high level of precision. After connecting all the beams, these 
were assembled by means of five transversal post-tensioning cables. Finally, the 
shell was decentred and supported by a steel frame (Fig. 9).

At real scale, the longitudinal post-tensioning would take place at the manu- 
facturing plant in order to reduce to time of erection at the construction site. 
Then, the stacks of post-tensioned curved beams would be transported to the 
construction site where the shell would be assembled. One of the two stacks 
of post-tensioned curved beams of the prototype, without the bases, built at 
a real scale would weight around 20-30 tons and would be 12.5 m long. This 
means that a four-axis trailer 14-16 m long with a valid loading capacity of 30-50 
tons could transport the full shell to the construction site in two trips, carrying 
in each trip one full stack composed of 30 components. Once at the construc-
tion site, the curved beams would be placed on a scaffolding built from stan-
dard reusable elements. In this way, the construction of costly non-reusable 
scaffolding would be avoided.

Figure 9. Post-tensioned shell built from precast stackable components.
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3. Conclusions and Further Research
The results of this study show that bringing together the CASTonCAST system 
and prestressing has a great potential for the design and production of freeform 
precast prestressed shell structures. However, in order to apply the system at 
real scale, the next questions must be studied:

1. Geometry
The geometric method is currently being extended to the strip-to-stack ap-
proach in order to study how to efficiently tessellate a given freeform shape 
into stackable tiles.

2. Structure
At the moment, the structural analysis is used to check the structural be-
haviour of a modelled shape, but it does not actively participate in the de-
sign process. For this reason, the link between geometry and structure must 
be strengthened. 

3. Fabrication
The production of the components at real scale is currently being investigat-
ed. This step involves solving important aspects such as controlling the rhe-
ology of the concrete mixture, shaping the top surface of the components, 
manufacturing the bases, adding steel reinforcement and testing the sepa-
ration layer, among others.

4. Assembly
Further research needs to be done in order to study ways of assembling the 
shell on site only with the use of reusable standard scaffolding.
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Abstract
Although initially intended for academic purposes, the research shown in this 
paper was drawn towards the development of hollow lightweight conical com-
ponents to materialise rotational parabolic domes. The starting point is a projec-
tive interpretation of an Archimedean property of rotational paraboloid planar 
sections. This is used to discretise the parabolic surface with a set of tangent 
ellipses obtained via planar circle-packing algorithms. The ellipses are then mate-
rialised with components composed of three truncated conical surfaces, which 
may be composed of several laminar materials. The geometry and economy of 
the material, the good structural behaviour, the simple solution for fabrication 
and assembly, and the tests on a full-scale prototype prove this component to 
be an efficient self-supporting system for wide-span structures against the use 
of solid boundary rings, not only for rotational parabolic domes, but also for a 
possible translation to other types of surfaces. 

Keywords: 
rotational parabolic dome, Archimedes, computational design,  
architectural geometry, design optimisation, power diagram
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1. Introduction
The use of computation, in contrast to computerization (Terzidis 2003), in architectur-
al design has definitely opened a new paradigm in architecture. The focus of this 
new design strategy has moved from the object to the process itself. Algorithms 
acquire the role of the new means of representation as the language that trans-
lates human thinking into the power of combination of computer-based process-
es, with implications both in architectural practice and in the academic sphere.

Although postgraduate courses on computational architectural design have 
become commonplace, many architecture schools still run a mainly conventional 
syllabus for their bachelor-degree courses, which forces students to initiate their 
training in one paradigm and to end up having to change it for the postgradu-
ate training or professional practice, with the acute inconvenience that this may 
impose. This is the reason why ever more university lecturers and schools are 
becoming involved in the preparation of architectural geometry (Pottmann et al. 2007) 
courses to implement the computational paradigm at the beginning of the un-
dergraduate period, which is exactly when students mould their way of thinking, 
conceiving, and expressing their architectural work (Menges and Ahlquist 2011).

Ideally, these courses should cover competences in mathematics, geometry, 
computation, algorithmics and digital fabrication in order to provide students with 
a meaningful workflow to foster their motivation and consequently their learning. 
However, integrating an introduction on these disciplines in a single geometry 
course for beginner university students is not an easy task. In addition to the 
drawbacks of working at this stage, a new problem arises for the faculty if the 
course is designed to be guided by an original and attractive task that consistently 
includes the desired competences and without assuming impossible-to-achieve 
goals. This constitutes the design of a project or the ideation of a system appro-
priate for the aforementioned purposes.

This paper is intended to show the research carried out within the described 
context in order to provide a consistent architectural system that matches the 
needs of the new conception of architectural design for the initial stages of the 
undergraduate training period by integrating the newly required competences 
with traditional geometrical contents which provide competences further to those 
being rendered under the use of the new digital tools.

In this search among the variety of possibilities for an architectural system 
that holds appropriate contents for first-year students, three themes stand out 
as playing a major role in the research results shown in this paper. Although they 
appear to be classic geometry topics to be included in a geometry course under 
the paradigm of computational design, they remain under consideration due to 
two main factors: their benefits in understanding architectural history and con-
ventional compositions, and their possible contributions towards the new para-
digm. These themes include:
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• Working with classic surfaces, which provides essential contents and com-
petences that enable the student to address surfaces of a more complex 
nature at a later stage. In the case of this paper, rotational paraboloids.

• Understanding projective relationships, not only for representational 
purposes, but also as a source of composition and as a method to gen-
erate simpler algorithms for solving three-dimensional problems. In this 
case, a discretisation method based on a projective interpretation of an 
Archimedean property of rotational paraboloids is used.

• Using developable surfaces to materialise double-curved surfaces and 
complex compositions. This includes the use of digital fabrication for 
planar sheets of material, subsequently manipulated to form the three- 
dimensional shapes. In this case, elliptical and irregular conical surfaces to 
generate a lightweight component to populate the parabolic surface over 
the previous discretisation method.

The combination of these three topics, originally intended as part of a ped-
agogical plan, resulted in the constructive system developed in this paper: the 
use of hollow lightweight components made up of conical surfaces to materi-
alise a specific discretisation of rotational paraboloids. The aim is to get econo-
my of material, good structural behaviour, and ease of assembly to conform an 
efficient system for wide-span structures against the use of solid boundary rings 
for rotational parabolic domes.

Figure 1. Photograph from the interior of the Archimedean Pavilion prototype, composed of inclined rotational parabolic 
domes materialised with lightweight conical components.
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2. An Archimedean Property of  
Rotational Paraboloids

Archimedes of Syracuse (287–212 B.C.) provides the background to this work. In 
his work “On Conoids and Spheroids”, which can be consulted on Heath’s trans-
lation into English (Archimedes 1897), among other topics, Archimedes proves the 
properties of various planar sections of rotational paraboloids. A projective inter-
pretation of a theorem included in this work provides the starting point.

2.1 Archimedes’ Proposition as a Projective Property
In “Proposition 12” of “On Conoids and Spheroids” Archimedes states that the 
planar section of a paraboloid of revolution, produced by a plane neither parallel 
nor perpendicular to the axis, is an ellipse. He then identifies the position of the 
major axis and proves that the minor axis is equal to the perpendicular distance 
between the two lines, parallel to the axis of the paraboloid, which pass through 
the extremes of the major axis.

Although it obvious that Archimedes does not refer to the definition of the el-
lipse as a projective property of the paraboloid, he uses lines parallel to the axis of 
the paraboloid (rays) and the orthogonal distance between them to define the minor 
axis. In terms of normal projection, it could be stated that the axes of the ellipse, on 
the surface of the paraboloid, are projected onto a plane perpendicular to the axis, 
with the same length; that is, the projection of the ellipse is a circle (Gentil Baldrich 1997).

In other words, by using the parallel projection defined by the direction of 
the axis of the paraboloid, any circle on a plane perpendicular to the axis of the 
paraboloid is projected onto the paraboloid’s surface as an ellipse, which is a pla-
nar curve. This property, which is a particular case of a generalised theorem for 
rotational quadrics (Martin-Pastor, Narvaez-Rodriguez, & Hernandez-Macias 2016), means, among 
other things, that any circle-packing arrangement can be projected onto the pa-
raboloid to obtain a discretisation of the surface based on planar elliptical faces 
tangent to each other at various points of the boundary.

2.2 Discretisation of Rotational Paraboloids
From the materialisation point of view, the previous theorem can be applied in 
several ways, not only for the whole circular base of the paraboloids, but also for 
any bounding area on the perpendicular plane. Additionally, there is also a variety 
of possible ways to materialise any initial discretisation: elliptical planar faces, 
polygonal planar faces, elliptical rings, elliptical arc-based frames, etc.

Whatever the arrangement chosen, it must be taken into account that ellips-
es increase their eccentricity the further away they are from the vertex of the 
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Figure 2. Top-left: Archimedes’ definition of the minor axis of the ellipse (oblique planar section of the paraboloid) as the 
perpendicular distance between the lines parallel to the axis of the paraboloid passing through the extremes of the major 
axis. Top-right: Projective interpretation; the normal projection of the ellipse onto a plane perpendicular to the axis of the 
paraboloid is a circle. Bottom-left: with same normal projection, the projection of circles onto the paraboloid’s surface 
as ellipses. Bottom-right: Discretisation of the paraboloid’s surface with planar elliptical faces stemming from a circle-
packing algorithm.

Figure 3. Left: Discretisation of the dome with elliptical rings and generation of the cones by extruding the ellipses to 
the centre of the base of the dome. Middle: Offset surface to trim the apex. Right: Thickening of the conical rings as an 
immediate solution to acquire rigidity.
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paraboloid due to the increase in the slope of the surface, and hence the algo-
rithm used for packing must implement control of this deformation by selecting 
the appropriate radii for the circles, in accordance with their position with respect 
to the centre of the paraboloid and the material and constructive constraints of 
the project.

This paper focusses on the design and analysis of a specific materialisation 
of rotational parabolic domes, which uses the resultant elliptical rings as the start-
ing point. From the possibilities of materialising these ellipses, the one chosen 
is based on the construction of conical surfaces by extruding all the ellipses to 
a common apex. This is a principle that was already used by other authors in ap-
plications to spherical surfaces, such as the Packed Pavilion (Leidi et al. 2010) (Beorkrem 

2013). However, further to the discretisation method and the fact of working with 
parabolic surfaces, there exists another circumstance which differentiates this 
research from the Packed Pavilion: the way in which the resultant elliptical cones 
are rigidified to provide global stability to the structure.

The immediate solution to providing rigidity to a conical surface, regardless 
of its material, is to thicken the surface up to the desired strength. Nevertheless, 
this solution can be prohibitively expensive due to the considerable amount of 
material needed, and it would impose a major increase in weight in real architec-
tural applications beyond the construction of prototypes. Therefore, the objective 
is to conceive a more efficient system to rigidify the conical surfaces, whose use 
remains feasible in real architectural practice.

3. Lightweight Conical Components
The methodology used for conceiving a lightweight conical component can be 
related in different stages. The starting point is the design itself of a rigid geo-
metrical shape from the elliptical cones. Once designed, the feasibility must be 
proved from two points of view; first the structural behaviour, and second the 
fabrication and assembly constraints. Finally, an optimisation process to mini-
mise the amount of material is desirable. The main considerations of this pro-
cess, together with the results obtained, are explained in the following points.

3.1 Geometry and Rigidity
Instead of adding material to the initial conical surface, sheets of material could 
be considered and a satisfactory three-dimensional shape could constitute an 
increase in the mass moment of inertia of the cross-section of the ring, and con-
sequently provide a higher rigidity to the ring. In the search for a simple arrange-
ment with the use of developable surfaces, the solution adopted consists of a 
set of three conical surfaces, which make up a triangular cross-section on the 
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Figure 4. Top row: Initial discretisation, extrusion of four sample conical surfaces and the resulting truncated conical 
surfaces produced by the section with an offset surface. Middle row: Rigidification of the truncated conical surface by 
generating a component with two new cones with collinear vertices with the original cones. Bottom row: Reproduction of 
the previous rigidification for the four sample conical surfaces and the resulting dome by applying the process to all the 
elliptical rings.

Figure 5. Left: Photograph of the unrolled conical surfaces before assembly. Right: Result of the conical component after 
assembly and the emergence of the desired structural rigidity.
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ring; the initial lateral surface of the elliptical conical ring, and two new cones, 
whose vertices are collinear with the original cones, and whose bases are coin-
cident with the two existing bases of the initial truncated conical surface.

There are two major considerations to bear in mind when designing the com-
ponent. The first is that of the triangular cross-section of the ring, which can be 
parameterised in the model according to various factors, such as the inner span 
desired (for lighting or other purposes) among others, but the most important 
factor is that relative to the rigidity of the component and the stability of the 
whole structure. As the mass moment of inertia of the cross-section strongly 
affects the rigidity of the component, the first factor to take into account must 
be the forces acting over the ring and provision of the cross-section matching 
the resistance needs. The second consideration is the aforementioned increasing 
eccentricity of the rings as they are further from the vertex of the paraboloid. In 
addition to the aesthetic repercussions, this also has implications on the struc-
tural behaviour. Both considerations are analysed in the following point (structural 
behaviour and optimisation). 

The simple bending and assembly of low-rigidity sheets of polyethylene 
provides an idea of the effectiveness of the system due to the emergence of a 
surprising rigidity of the component just after the assembly of unrolled surfac-
es, whose initial rigidity is not enough to avoid the deformations due to their 
own weight. As many other emergent phenomena in nature (Weinstock 2010), the 
emergence of a good structural behaviour, out of simple low-rigidity elements, 
is by itself a first index of the efficiency of a system. In addition, active bending 
is also a sign of economy of material use (Lienhard et al. 2013). However, in the next 
point this will be technically tested.

3.2 Structural Behaviour and Optimisation
Once the component is designed, the first property to prove from the structural 
point of view is its rigidity, and the amount of material necessary to acquire it, 
compared to the solution of a solid boundary ring resulting from the thickening 
of the initial conical surface. A finite element analysis of the two components 
was therefore carried out over two equal sets of rings composed of steel sheets, 
with different eccentricities and subject to the same loads. The results are clear 
and enough reason to reject the solid boundary ring for its use in many architec-
tural applications:

• The first test assigns the same amount of material and the same axial force, 
2 kN, to the two systems. In the case of the lightweight conical component, 
a sheet thickness of 0.5 mm keeps the deformation under 1 mm, whereas 
a 1.5 mm-thick solid boundary ring (the same amount of material) reaches 
inadmissible values, thereby producing the collapse of the rings.
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Figure 6. Top: Comparison of the solid boundary ring with the lightweight conical component (triangular cross-section). 
The rings analysed are made of steel and have a diameter of 1.2 m. Against the same loads, when the amount of material 
is the same, the deformation of the lightweight conical component is insignificant compared to the solid boundary ring. 
To perform the same deformation, the lightweight conical component needs a sheet of 0.5 mm thick whereas the solid 
boundary ring needs a plate of 30 mm thick (about 20 times more material). Bottom row: Comparison of the behaviour in 
groups of the lightweight conical component according to the eccentricity and the orientation of the ellipses. 

 
• The second test strives towards finding the necessary amount of material 

such that both systems perform the same deformation against the same 
axial force of 2 kN. The lightweight conical component suffices with the 
thickness of 0.5 mm, whereas the solid boundary ring needs a thickness 
of 30 mm to match the same deformation. This contains up to 20 times 
more material than the lightweight conical component, thus having a weight 
twenty times heavier.

After testing the effectiveness and economy of the material of the light-
weight conical component, the optimisation of the design is desirable in order 
to render the system even more efficient. There are numerous factors that carry 
influence, some of which are intrinsic to every component, due to their geom-
etry, while others are produced by circumstances external to the component, 
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such as the value and the direction of the loads acting upon it, the position of 
the component within the whole structure, the number of tangency points with 
the adjacent components, etc. All these factors should be taken into account for 
every project in which the system is used, and it is always necessary to perform 
a customised optimisation to obtain the best results. Nevertheless, in order to 
facilitate the initial design and to take certain variables into account in the pa-
rameterisation, an additional analysis was carried out to facilitate the following 
conclusions being drawn about three important factors illustrated with the ex-
amples of deformation diagrams and the Pareto curves for the multi-objective 
optimisation (minimum material and minimum deformation):

• Eccentricity of the components and loads. Due to the constant existence of 
eccentricities of the initial ellipses, it is important to analyse the main in-
fluence of this factor in the structural behaviour. The diagrams show how 
the behaviour differs along the two different axes of the elliptical compo-
nents. Two conclusions can be drawn in this sense: (1) The more eccen-
tricity there is involved, the more widely different is the behaviour along 
each axis. (2) The loads parallel to the major axis are better supported than 
the loads perpendicular to this axis and are also better supported by com-
ponents of a more eccentric nature than by those less eccentric with the 
same diameter.
Taking into account that the most eccentric ellipses are located near the 
boundary of the base and linked to the ground, due to the nature of the 
discretisation method itself, and as long as the axis of the dome is vertical, 
then this factor turns out to be beneficial for the spreading of the forces. 
Since the axial forces concentrate as they approach the ground, this is 
where the most eccentric components lie.

• Cross-section of the components. The triangular section of the components 
is crucial for the success of the system and has a determining influence 
on the optimisation of the structure. On the one hand, there are three 
tests, each of which has a set inner radius of the component, a set area 
of the cross-section and a range of different proportions of the cross- 
section. The result in the optimum section, minimum amount of material 
and minimum deformation, varies depending on the inner span, although 
the values range around the equilateral section, for which the same amount 
of material supports a greater load than in the other cases. However, not 
only does the optimum depend on the proportion of the section, but also 
on the ratio between the area of the triangle and the inner span of the 
component measured in a perpendicular direction to the cross-section 
considered. 
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Figure 7. Feasibility of the system with three different wide-span design examples stemming from rotational paraboloids. 
The maximum deformations of the component system shown (finite element analysis) are for lightweight conical 
components executed with 0.5-mm-thick steel sheets and subject to the dead load of its own structure. Top row: Dome 
with a diameter of 20 m with a maximum deformation smaller than 1 mm. Middle row: Roof of 30 m x 30 m only resting 
on its four corners, with a maximum deformation of 8 mm. Bottom row: Pavilion with a diameter of 20 m resting on three 
boundary segments, with a maximum deformation of 4 mm.
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The Pearson correlation coefficient between that ratio and the deforma-
tion of the component for a set external force is -0.98. Hence, for a set 
triangular section, there is better behaviour if the perpendicular inner span 
of the component is shorter. Since the triangular section of an eccentric 
component is variable along the boundary, the determination of the opti-
mum turns out to be more complex than it may seem at first sight. Never-
theless, for a circular component with a constant equilateral cross-section, 
the optimum ratio between the height of the triangle and the inner span 
of the component is about 1/4.5.

• Number of connections with adjacent components. This factor seems to be 
obvious, but is still worth mentioning; the more connection points there 
are evenly spaced along the boundary, the more stable the component 
becomes. This is a factor that can be controlled via the initial circle-packing 
algorithm, in an effort to avoid non-triangular gaps between components.

3.3 Fabrication and Assembly Constraints
As far as digital fabrication and assembly of isolated components are concerned, 
this system, based on the use of laminar materials, is simple to execute and is 
normally fabricated from standard sheets or panels cut with a laser cutter or 
CNC milling machines. As in many other systems, the success of the construc-
tive system relies on achieving consistency between the model for the structural 
analysis and the real execution of the components. In this sense, after the ex-
perience of constructing a full-scale prototype (the Archimedean Pavilion) there 
are three types of joints to execute with special care:

• Surface seam. When preparing the detailing algorithm for the digital fabrica-
tion, the unrolled development of the three conical surfaces involved must 
accomplish two important conditions. (1) The origin surface seam must 
be placed at a common location for the three surfaces to have a common 
origin for all the issues occurring on all three surfaces. (2) Additionally, the 
location of the seam must not coincide on high-curvature segments and 
should finally be executed obliquely to the generator of the surface. This 
ensures the continuity of the surface curvature after bending the sheet. 
The joint itself could be executed in many ways, but in this prototype an 
internal joint strip with rivets is the chosen solution.

• Joints between the component’s surfaces. The most important property in the 
theoretical model that must be preserved in the execution is the conti-
nuity of this joint. In practice, this joint should be welded, in the case of 
weldable materials, or performed to work continuously. Maybe in the case 
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Figure 8. Finite element analysis to draw conclusions about the structural behaviour. Top row (1): Eccentricity tests and 
deformation graphs according to the position of the components. Three middle rows (2): Variable cross-section tests for 
three different inner spans and the graphs with the Pareto curves to determine their optimum. Bottom row (3): Tests on 
the constant equilateral cross-section with variable inner span. The optimum is a ring with equilateral cross-section and 
with an inner span of between 4 and 5 times the height of the triangle.
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of wooden panels, a fingerjoint could provide a good solution, although it 
has yet to be tested by the team for these components.

• Connections between various components. Although the theoretical model is 
analysed with a continuous joint along the tangency line between adjacent 
cones, the practice has proved that this continuity is not as important as 
the previous continuity. It may be substituted by two bolts with nuts at 
the extremes of the tangency line, as long as there is a rigidifying element 
between the two points and the screws are tightened sufficiently to pro-
voke a strong contact and friction between the two components.

 
It is also worth mentioning that glazing or panelling is feasible for the system. 

The plane containing the external ellipse of the components can be extended 
until it meets its neighbours, thus facilitating the creation of a 3D irregular mesh 
of planar faces which also has projective relationships with the initial circle pack-
ing; the projection of the mesh edges onto the circle packing plane results in a 
2D Voronoi power diagram (Aurenhammer 1987).

3.4 Full-Scale Prototype
The teaching experience mentioned at the beginning of this paper was finally 
concluded with the installation of a full-scale prototype: the Archimedean Pavilion. 
Although the design remains part of the research carried out by the lecturers, 
students have participated in the process since the onset. They solved, with the 
help of their tutors, all the geometrical problems: parametric definition, through 
propagation-based systems (Aish & Woodbury 2005), to explore the design space com-
posed of inclined rotational paraboloids; parametric definition to discretise the 
parabolic surfaces; parametric definition for the detailing and digital fabrication, 
assembly of rings, and the setting up of the installation.

Due to budget limitations, facilities available, and safety reasons, the material 
chosen for the prototype was high-density polyethylene (HDPE) in sheets of 1 mm 
thickness. The main advantages of this material include the laminar behaviour for 
the assembly process, similar to that of metal sheets or thin wooden panels in 
real applications, the cost, the lightness, the ease, and safety of use, since the 
manipulation and processing was wholly carried out by students and lecturers, 
and finally the possibility of testing all the assembly and setting up processes 
on a 1:1 scale upon a pavilion of about 10 x 6 m. On the other hand, this mate-
rial presents certain properties that render it as non-appropriate for installations 
intended to last: non-linear deformation, variable behaviour according the tem-
perature, and, mainly, creep or cold flow, which causes it to continue deforming 
when exposed to high levels of stress over long periods.
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Figure 10. Generation of a mesh of planar faces containing the external ellipse of the components for glazing or 
panelling. Top: Geometrical operations to generate the mesh, projective relationship and the resulting glazing over the 
components. Bottom: Top view of another example of the same process including circle packing (red), 2D Voronoi power 
diagram (green), and 3D mesh over the circle packing (middle). Pictures of the result without and with the components.

Figure 9. Two pictures and a photograph of the connections between components, including the drilling for the screw and 
the opening to operate on it.
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4. Conclusion
The implementation of the paradigm of computational design in architecture 
at the beginning of the undergraduate training period, integrated into a ge-
ometry course, fosters the search for simple and ingenious geometrical solu-
tions which may result in discovering applications for architectural practice 
in the real world.

The discretisation of rotational parabolic domes, based on the projective 
interpretation of the Archimedean property of oblique planar sections of the 
paraboloid, provides an appropriate framework to materialise this type of dome 
through the use of hollow lightweight conical components and facilitates the 
subsequent glazing or panelling.

In general, lightweight conical components provide an efficient system to 
materialise rotational parabolic domes. However, each component is rendered 
still more efficient under the following summarised conditions:

• When the axis of the rotational paraboloid is vertical.

• When the main loads are parallel to the major axis of the initial ellipses.

Figure 11. Left: Pictures of the composition with inclined rotational paraboloids which make up the space of the 
Archimedean Pavilion. Right: Picture of the resulting discretisation and materialisation with lightweight conical 
components.
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Figure 12. Photographs of the assembly and result of the Archimedean Pavilion.
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• When the cross-section of the component is similar to an equilateral trian-
gle and the inner span of the component, measured perpendicular to the 
cross-section, is approximately between four and five times the height of 
the triangular section.

• When there are several connections with adjacent components and these 
are evenly spaced along the boundary of the component.

In the fabrication and assembly process of the components, three types of 
joints must be carefully and accurately executed in order to match the theoretical 
conditions of the analysis, and consequently to ensure their expected behaviour; 
the seam of the surface, the joints between the surfaces of the component, and 
the connections between different components.

The materialisation system based on lightweight conical components pro-
vides economic use of material, good structural behaviour, and ease of assembly 
to form an efficient system for wide-span structures as opposed to the use of 
solid boundary rings, not only for parabolic domes, but also for a possible trans-
lation to other types of surface discretisation.
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challenges. He also specialises on the application of small robotics within the office. Josef studied as a Fulbright scholar 
at the University of Pennsylvania, where he received his MArch degree, and at the Czech Technical University. Josef is 
enthusiastic about bridging computer science or other sciences with architecture. Josef worked as a researcher or a tutor 
at UPenn, USC, UCL, and AA Visiting School.

Roberto Narváez-Rodríguez holds degrees in both Architecture and Building Engineering and a master’s degree in Engi-
neering. He has worked as a senior lecturer and a researcher at the University of Seville (Spain) since 1999. He lectures 
in both undergraduate and graduate courses and has been recognised with various awards on Excellence in Teaching and 
Architecture. He has published several articles, given workshops, lectures and presented papers in several cities. His 
main research interest lies in the integration of architectural geometry and digital technologies at the earliest stage of 
the undergraduate training period.

Paul Nicholas holds a PhD in Architecture from RMIT University, Melbourne, Australia. Having previously practiced with 
Arup Consulting Engineers from 2005 and AECOM/Edaw from 2009, Paul joined the Centre for Information Technology 
and Architecture (CITA), Copenhagen, Denmark, in 2011. Paul’s particular interest is the development of innovative com-
putational approaches that establish new bridges between design, structure, and materiality. His recent research explores 
sensor-enabled robotic fabrication, multi-scale modelling, and the idea that designed materials such as composites neces-
sitate new relationships between material, representation, simulation and production.

Toke Bjerge Nørbjerg is a PhD student at the Department of Computer Science and Applied Mathematics, Technical Univer-
sity of Denmark. He received his Cand. Scient. degree (MSc) in mathematics from the University of Copenhagen in 2013. 
Toke’s research concerns surface rationalisation in architecture, combining differential geometry, numerical optimisation 
and computational mathematics. His work forms the basis for a novel fabrication method for free-form surface designs.

Esben Clausen Nørgaard is a Research Assistant at the Centre for Information Technology and Architecture, Copenhagen, 
Denmark. He is a trained civil engineer with a specialty in architectural design from Aalborg University in 2014 and joined 
CITA following graduation. His primary research interest lies within prototyping, fabrication, and rationalisation. Since 
joining CITA, his primary focus has been on fabrication with industrial robots and how these can be used to create rela-
tionship between traditional craftsmanship and digital environments.

Mark Pauly is an associate professor at the School of Computer and Communication Sciences at EPFL. Prior to joining 
EPFL, he was assistant professor at the CS department of ETH Zurich since April 2005. From August 2003 to March 2005 
he was a postdoctoral scholar at Stanford University, where he also held a position as visiting assistant professor during 
the summer of 2005. He received his Ph.D. degree (with distinction) in 2003 from ETH Zurich and his M.S. degree (with 
highest honors) in 1999 from TU Kaiserslautern. His research interests include computer graphics and animation, geometry 
processing, architectural geometry, shape modelling and analysis, and computational geometry. He received the ETH medal 
for outstanding dissertation and was awarded the Eurographics Young Researcher Award in 2006.

Mariana Popescu is a PhD researcher at the Block Research Group (BRG) and within the NCCR - Digital Fabrication at ETH 
Zurich. She holds a Bachelor and Master’s degree in architecture from Delft University of Technology and has a strong 
interest in innovative ways of approaching the fabrication process and use of materials. Her current research focusses 
on knitted stay-in-place formwork for complex concrete structures. Previously, she was part of the start-up Hive Systems, 
developing a platform for complex interactive environments using distributed algorithms, and has been working as a par-
ametric design specialist at Zwarts & Jansma Architects in Amsterdam.

Helmut Pottmann is Professor of Applied Geometry and Director of the Centre for Geometry and Computational Design at 
Vienna University of Technology. From 2009-2013, he was director of the Geometric Modelling and Scientific Visualisation 
Centre at King Abdullah University of Science and Technology. His research interests are in Applied Geometry and Visual 
Computing, in particular in Geometric Modelling, Geometry Processing and most recently in Geometric Computing for Ar-
chitecture and Manufacturing. He has co-authored two books and more than 200 refereed articles.

Mette Ramsgaard Thomsen is a Professor and Head of Research Centre at the Centre for Information Technology and 
Architecture (CITA), Copenhagen, Denmark. Her research centres on the intersection between architecture and computer 
science. During the last 15 years her focus has been on the profound changes that digital technologies instigate in the 
way architecture is thought, designed and built. At CITA she piloted a special research focus on the new digital-materi-
al relations that digital technologies bring forth. By investigating advanced computer modelling, digital fabrication, and 
material specification, CITA has been central in the forming of an international research field examining the changes to 
material practice in architecture.

Gernot Riether is an Associate Professor at the College of Architecture and Design at the New Jersey Institute of Technol-
ogy (NJIT), USA. In his Digital Design Build Studio he and his students develop and test new digital design and fabrication 
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methods. Previous projects from this studio include the AIA Pavilion in New Orleans, the Nuit Blanche Pavilion in Paris, 
the MAINX24 Pavilion in Chattanooga, and Urban Blanket in Atlanta. Riether’s research has been exhibited internationally 
and is featured in prominent publications such as Architectural Record and DETAIL. Riether’s studio has been funded by 
the AIA, the Austrian government, non-profit organisations, the industry, and universities.

Matthias Rippmann has been a member of the Block Research Group (BRG) at ETH Zurich since 2010, where he received 
his doctorate. In 2015, he joined the National Centre of Competence in Research (NCCR) Digital Fabrication at ETH as a 
postdoctoral fellow. He conducts research in the field of structurally informed design and digital fabrication and is lead 
developer of the form-finding software RhinoVAULT. He studied architecture at the University of Stuttgart and the Uni-
versity of Melbourne. He worked in Stuttgart at Behnisch Architekten, LAVA, the Institute for Lightweight Structures and 
Conceptual Design, and Werner Sobek Engineers. In 2010, he co-founded the architecture and consultancy firm Rippmann 
Oesterle Knauss GmbH (ROK).

Christopher Robeller is an architect and postdoctoral researcher at the Timber Construction Laboratory IBOIS at EPFL Lau-
sanne. Christopher received his architecture diploma with distinction from London Metropolitan University in 2008 and 
worked at ICD Stuttgart from 2008-2010, where he developed integral timber plate joints for the award-winning ICD/ITKE 
Research Pavilion 2010. Since 2011 he is working at IBOIS and received a doctoral degree from EPFL in 2015 for his thesis 
entitled Integral Mechanical Attachment for Timber Folded Plate Structures. His research was published in journals and 
conferences such as Bauingenieur, ACADIA, RobArch and AAG, where he received the Best Paper Award 2014.

Elissa Ross is a Senior Associate at MESH Consultants Inc. She holds a PhD in mathematics from York University (Toronto) 
where her research focussed on the rigidity and flexibility of periodic (repetitive) structures. She has additional expertise 
in computational geometry, graph theory, and tilings/patterns, and a long history of collaborative and interdisciplinary pro-
jects. At MESH Consultants Inc., Elissa conducts research in architectural geometry, adds to the breadth of the geometry 
consulting services, and develops in house tools for 3D geometry applications.

Romana Rust studied architecture at TU Graz, Austria. With the diploma thesis “Integration of Digital and Physical De-
sign Methods”, which was awarded at both the GAD Awards 2012 and archdiplomaˇ13, she completed her architectural 
studies in 2012 with distinction. Together with Kathrin Dörfler, she founded the architecture collective dorfundrust. Since 
2013, she is a PhD researcher at Gramazio Kohler Research at ETH Zurich focussing on adaptive fabrication techniques 
and their integration with computational design frameworks that place materiality as an a priori agent in the formulation 
of architectural building elements.

Simon Schleicher is an Assistant Professor in the Department of Architecture at the University of California, Berkeley. His 
transdisciplinary work draws from architecture, engineering, and biology. By cross-disciplinary pooling of knowledge he 
aims to transfer bending and folding mechanisms found in nature to lightweight and responsive systems in architecture.

Joseph Schwartz obtained his Diploma in civil engineering from ETH Zurich in 1981 and his doctoral degree in 1989. His 
dissertation was awarded the ETH silver medal. From 2001 to 2008 he was professor at the Lucerne University of Applied 
Sciences and Arts. Since 2008 he is Full Professor of Structural Design at the Department of Architecture at ETH Zurich. 
He is co-author of “Design of Concrete Structures with Stress Fields” (1996) and “Mauerwerk” (1998). From 1991 to 2001 
he was associate partner of a consulting office in Zug. Since 2002 he is owner of a civil engineering office in Zug.

Tobias Schwinn is a Research Associate and doctoral candidate at the Institute for Computational Design (ICD). In his 
research he focusses on the integration of robotic fabrication and computational design processes. Prior to joining 
the ICD in January 2011, he worked as a Senior Designer for Skidmore, Owings and Merrill in New York and London 
applying computational design techniques to parametric form-finding, rationalisation, complex geometry, automation 
and environmental design.

Martin Self is Director of Hooke Park and Programme Co-Director of the March Design + Make programme based at Hooke 
Park, the Architectural Association’s Woodland Campus. Holding degrees in aerospace engineering and architecture theory, 
he worked as a consultant engineer at Ove Arup & Partners between 1996 and 2007, where he was a founding member of 
its Advanced Geometry Group. Projects at AGU included collaborations with architects including Alvaro Siza, OMA, UN-
Studio, and Shigeru Ban, and artists Anish Kapoor and Chris Ofili. He has taught students in realising design-build projects 
at the Architectural Association since 2005.

Shen-Guan Shih is a Professor at Department of Architecture, National Taiwan University of Science and Technology, since 
1994. He is interested in interdisciplinary research combining information science, architecture, and more. In recent years, 
he has participated in developing building-code checking systems for the Taipei city government. He also does research 
and teaching regarding generative modeling for building design.
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Daniel Sonntag is a Research Associate at the Institute of Building Structures and Structural Design (ITKE) at the University 
of Stuttgart and has worked several years as a structural engineer for Knippers Helbig Advanced Engineering. His main 
research interests lie in the field of structural optimisation of segmented shells.

Asbjørn Søndergaard is an architectural researcher and technology entrepreneur working in the field of digital fabrication 
in its relation to architectural design. He is Chief Development Officer and co-founding partner of Odico Formwork Robotics, 
an advanced technology enterprise focussed on industrial scale development and application of architectural robotics. He is 
also a Ph.D. research fellow at Aarhus School of Architecture, and his ongoing doctoral research focusses on the coupling 
of structural optimisation with digital manufacturing. His work centres on the development of new manufacturing interfaces 
for the realisation of topology optimised architectural structures, explored through the fabrication of full-scale prototypes. 

Dave Stasiuk is the Director of Applied Research at Proving Ground, a technology consultancy for architects, engineers, 
and manufacturers which focusses on the development of advanced computational tools that facilitate data-driven design 
and project collaboration. His academic research exists within the larger framework of CITA’s “Complex Modelling” pro-
ject, which investigates the digital infrastructures of design models and examines concerns of feedback and scale across 
the expanded digital design chain. His work concerns adaptive reparameterisation, focusing on the dynamic activation 
of data structures that allow for model networks to operate holistically as representational engines in the realisation of 
complex material assemblies.

Kasper Hornbak Steenstrup is a PhD student at the Department of Computer Science and Applied Mathematics, Technical 
University of Denmark. He received his Cand. Scient. degree (MSc) in computer science from the University of Copenha-
gen in 2013. His research focus is on geometry processing and numerical optimisation where he has public several paper 
adding architectural design.

Chengcheng Tang received his PhD in Applied Mathematics and Computational Sciences at King Abdullah University of 
Science and Technology (KAUST) in 2015, under the supervision of Professor Helmut Pottmann, after obtaining a corre-
sponding master’s degree in 2011. Before joining KAUST, he received his bachelor’s degree in Materials Physics from Jilin 
University in 2009. Chengcheng is interested in applied geometry and computational design. He has published in venues 
like SIGGRAPH, ACM TOG, and AAG. He will join Stanford University as a postdoctoral scholar with Professor Leonidas 
Guibas in summer 2016.

Eilon Vaadia is the Director of the Edmond and Lily Safra Centre for Brain Science at the Hebrew University of Jerusalem. 
He was trained as a postdoctoral student at the Department of Biomedical Engineering of Johns Hopkins University. He 
was among the founders of Interdisciplinary Centre for Neural Computation and headed the ICNC Ph.D. program for 8 years. 
He was the Chairman of the Department of Physiology, a member of the Hebrew University Senate and a member of the 
HUJI Executive Committee. He was selected as the Jack H. Skirball Chair in Brain Research in 2005.

Tom Van Mele is Co-director of the Block Research Group (BRG) at ETH Zurich. He created and maintains the BRG compu-
tational framework, specifically focussing on the development of robust data structures and solvers for structural design 
and optimisation. He also manages BRG’s web-based teaching and research platforms. His main research interests are 
geometry-based form-finding and analysis methods, three-dimensional collapse of masonry structures, and flexible form-
work systems for concrete shell structures. In 2008, he received his PhD from the Department of Architectural Engineering 
at the Vrije Universiteit Brussel in Belgium.

Johannes Wallner is Professor of Geometry at Graz University of Technology since 2007. He received his Ph.D. in 1997 from 
TU Wien under the supervision of Helmut Pottmann. His research interests are in applied geometry, in particular discrete 
differential geometry and also nonlinear refinement processes. In the last decade he has been interested in the relation-
ship between geometry as a mathematical discipline, on the one hand, and freeform architecture, on the other hand. He 
has co-authored and edited three books and about 100 articles.

Yves Weinand, architect and civil engineer, obtained his degree in architecture in 1986 at the Institut Saint-Luc, Liège, 
Belgium. After working as an independent architect in Helsinki, New York, and Brussels, he combined work with studies 
at the EPF Lausanne, graduating in 1994 with a degree in civil engineering. From then on, he took part in teaching and 
research in the field of engineering as an assistant to the Chair of Structural Studies at the Faculty of Architecture at the 
Polytechnical Institute of Rhein-Westfalen, Germany. Since 1996, Yves Weinand has been the proprietor of the Etudes 
Weinand Bureau, engineering and architectural consultants in Liège. In 2004, he was appointed Associate Professor and 
director of the Laboratory of Timber Constructions, IBOIS, at EPF Lausanne. He participated in numerous competitions, 
juries and exhibitions, both within and outside Belgium, and has designed and carried out projects which always combine 
architecture with civil engineering.
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Samuel Wilkinson joined Foster + Partners in 2014 and is an environmental design analyst in the Specialist Modelling 
Group. He has been involved with initiating and coordinating various academic and industrial research initiatives, focus-
sing on technology development of robotics and additive construction. He has also worked to develop large-scale robotic 
3D concrete printing in the construction sector with an industrial research consortium, and on conceptual design research 
for an autonomous multi-robot additive construction system for a Mars habitat.

Andrew John Wit is the Assistant Professor of Digital Practice within Temple University’s Tyler School of Art in Philadel-
phia, PA. Additionally he is a co-founder of WITO*, “Laboratory for Intelligent Environments”, where he creates projects 
that fringe design, technology and robotics. Prior to his current appointment, Professor Wit taught courses and led work-
shops in architecture, urbanism, and robotics in both in the U.S. and in Japan. Andrew earned his Bachelor of Science 
in Architecture from the University of Texas at San Antonio, and his Masters in Architecture from M.I.T., where he also 
researched in the Media Lab’s “Smart Cities Lab”.

Mateusz Zwierzycki is a Research Assistant at the Centre for Information Technology and Architecture, Copenhagen, Den-
mark. He is an architect, designer, Grasshopper user, and co-author of the projektowanieparametryczne.pl (the first Polish 
website about parametric tools in architectural design), author of the Starling, Squid, Anemone and Mesh Tools plugins for 
Grasshopper and many more disassociated scripts scattered all over the Grasshopper community. He is also the founder 
of the Milkbox group, long-time workshop tutor, teacher, and parametric design populariser.
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