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Cauchy Stresses:

(a) A solid under displacement constraints and external loads;
(b/c) Internal stresses in a constrained and loaded solid

Cauchy Stress (“True Stress™): t=t(P,n)= Alj\Toi_i =—t(P,—n)

It can be shown that t(P,n)=T(P)n

where 1 s the Cauchy Tensor Field

In an implicit Cartesian basis (e;) 1=12,3 [T|= [O‘ij} where O =6 't<ej)

Over the surface: Tn=f



Equilibrium
For any finite portion of the body QcB _[ f dA+ Ib dv =0
o0Q Q
j TndA+ Jb dv =0 (Integral Equilibrium Eguation)
oQ Q

Using Gauss Divergence Theorem: j divwdV = I YndA
Q 0Q

where Y s either a scalar, vector or tensor freld

we have I(diVTT +b)dV =0, VQcB

Q
e all _ (Ditterentral
and since this must hold for Q) dvT" +b=0, vP<B Eqwﬁén’am
Tn=f, VPeoB Equation)
3 0o
where divT' = Z Le
-1 OX;

j
Equdibrium of moments around three coordinate axis provides T =T'

So the transposition symbol can be omitted in the equilibrium equation,
expressing both force and moment equilibrium!



Theorem of Virtual Work

divT+b=0 VPeB

A body is 1 liorium, 1f, and only F
ody 1s in equilibrium, if, and only { Tn=f VPedB,

Thus, for any virtual displacement OU compatible with the boundaries (Su=0 in 0B,)

su-(divT+b)=0 VPesB
[ou-(divT+b)dv =0 véu
Q

Applying Green’s divergence Theorem for the first term:

[ou-(divT")dv = [ su-(Tn)dA-[T:SEdV
Q oQ Q
Thus equilibrium can be expressed by .[T :OEdV = I ou 'tdA+I5U -bdVv, Véu
Q oQ Q

That s oW, = oW

ext !

You

5E—1

=3 [5 F+6F' } = OE" /s the tensor of virtual displacements

o(ou
SF=Véu= {%} 15 the gradient of the virtual transformation



Plane Strvess State

A solid under plane stress state

Equilibrium:

VP e B,

| OX

o,=0
z'XZ:z'yzzO = T
b =f =0

80X+ Txy+bX=O
OX

0 0

T, Gy+by=0



Parametric Surfaces

B, = constant

0, = constant

A parametric surface can be described by a position vector field Y =T (01, 92)

(we'll refer to an implicit Cartesian coordinate system (x,4.z), so that no
distinction will be done between covariant and contravariant base vectors, as it
would be required for more general curvilinear coordinate systems...)

Some solids can be described by parametric surfaces, given h=h (491, 0, )

Such that:  YPeB : X,=r(6,6,)+12e,(6,6,)
h h .
h . -, — == p
wnere z e[ 9’ 2} ,//‘i}]h _\
and: O<h< Prin /r(al,ez) \i 2l



Parametric Surfaces

Keeping Qﬂ =constant, f=2,1

we define an in infinite set of coordinate curves, with associate tangent vectors

g = or 0, =constant, a =1
“ o0, 6, =constant, « =2

In general, Hga H #=1
9, %9,

A unit vector field, always normal to te surface, is given by Q, = ———

|9, %9, |

Differentral area elements are given by  0A = Hgl x{, H =(9,%9,)-9, =detG

Where G:[aij:|’ 8, =0,-0,, 1,]=123 i the METRIC TENSOR



Parametric Surfaces

A differential displacement over the surtface is given by

2
ar =46, + ;=2 0,0
06, 8 =}
or
where Jd, =—
00,

2
(squared) length of an infinitesimal displacement: (ds)2 =dr-dr = Z g,:9,d60,d0,
a,p=1

2 2
Denoting aaﬂ =0, 'gﬂ a, =12 we have (dS)2 = ZZa{w dHadQﬂ

a=1 =1

FIRST FUNDAMENTAL FORM
OF THE SURFACE’



Normal Curvature

We consider a curve drawn onto
the surtace, parametrized by the

T - arc-length:
YcQ : r=r(s)

. dr v
The curvature of ¥ isgiven by T=—=—=IT—
ds p p

;\gs dg3

And since g, Lt Vs .. g,=——=1=

. T 1
So that, in any case J;-T= (— -jr =
P P



Normal Curvature

Thus K = 1 @G may now be posrtive or negative, depending on the curve being

concave or convex with respect to the surface orientation!

A
/ \

[

\
|
. _dg, & ag, 46, dr & or dg, & dé,
% = s 289 ds T Z00, ds = 2.8
1 1 | & 09,
K=—=0,"T= g -—— (dg dbg
p (dS)ZLZ;/;[ 5‘9ﬁj ﬂ]
99,
Denoting b, =b,, =0, - — a,p=12
06,

Z b, p dé_ d ) “SECOND FUNDAMENTAL FORM OF THE SURFACE’
1>
'0 Z Z a_,déo d 0 ‘FIRST FUNDAMENTAL FORM OF THE SURFACE’

K =



Principal Curvatures

1 b,d6?+2b,d0dd, +b,dg B(d6,do,)
p @a,d0"+2a,d0do,+a,do,” A(d6,do,)

Expanding these forms K =

We arvive at | Ax—B =0 , which always holds!

Therefore L(AK—B)zﬂIH—A OK — B =0 a,f=12
odé, odé, od6, odé,
Furthermore, in the divections for which k is extremum: ai—’; =0 a,pf=12
.. C .. ) ) OA 0B
That is, in the direction in which k is extremum: ——x——=0 a,f=12
odé, odé,

(a11d01 +a12 deZ)K_bll dgl _b12 d92 =0

Proceeding with the derivations:
(a,d6, +a,,db,)x—b,d6 +b,dd, =0



Principal Curvatures

Or, in matrix form: {Kaﬂ by xa, —by }{dgl} — {O} )
ka, —b, xa, b, ||db, 0

Ka11_b11 Ka12_b12}]20

This system has non-trivial solutions only if  det H
Kay, —b, K&, —b,
‘Characteristic equation’ (anazz ~ay,’ )K2 ~(@uby, — 28,0, +by8,, )k + (b11b22 ~b,’ ) =0

Roots are: Koo =Ky £ K — K

_ b11bzz B b122

where: Kg =K K, = 2 Is the GAUSSIAN CURVATURE
a,a,, —a,

1 1a1b _2a1b1 _|_b1a /s the
and where: K, = ~(x, +’<n):§ = T MEAN CURVATURE
a11azz _a12




Principal Curvatures

Ks(P)>0
U

The point is ELLIPTIC

Ke>0 VPeQ
U

The surface is
SINCLASTIC

Relationships between Gaussian
and Mean Curvatures:

The point is PARABOLIC

K =0 VPeQ
U

The surface 1s SIMPLE
or DEVELOFPABLE

Ks(P)<0
U

The point is HIPERBOLIC

Ks<0 VPeQ
U

The surface is
ANTICLASTIC

—




Principal Directions & Curvature Lines

Substituting k, and k, in (*) we find the two mutually orthogonal divection (¢, , D )/
for which the curvature radiuses are extrema;

These directions are called PRINCIPAL DIRECTIONS, and curves that follow the
principal dirvections are called CURVATURE LINES.

7o show that indeed ¢ L @, , we consider that along the coordinate lines A0, =0
(since 6, =constant), so for can/az‘ure lines we have

0]
aﬂdﬁf+a12d9 blldﬂ* b,dd, =0 s i {aﬁxl ~b, =0
(a12d‘91+azzd55\2’(u_blzdel"'bzzd‘%—o oKy —b, =0
0 0 alZ(Kl _Ku):O

Now, if K, #K, = d,=0,-0, = 0= 0, 1 g, - that is, mdeed the curvature lines are
mutually orthogonal!

There result simplified expressions for the principal K = b, . _ b,,
curvatures, when the coordinate lines are curvature lines: ' a, I a
1 22

i# K =k, %20 , the vicinity of the point is locally spherical,
and all divections are principal ones.



Curvature Lines

Determination of the Curvature Lines may be complicated, by assuming they are
known, they may be taken as coordinate lines, respect to which the equilibrium of
membranes is simpler to express;

We also keep the arc-lenght along the curvature lines as parameter, thatis 0, =¢,

P= P(Sx.S_‘)




Curvature Lines

« [t can be shown that necessary s e, =0
and sufficient conditions for 00, .
coordinates lines be curvature 1 ge o a=l2ip=21
lines are: €2 0
i 5

*  Reciprocal conditions are: %-e ;=0 a=12;8=21

a

Torsion ;
e e
The TORSION of a curve is defined such that GSa = GSﬂ = —@e,




Torsion

Curvature lines do not present any torsion, since the previous conditions require that,
for them:

oe,
&,

0 ; a=12;8=21

(a) Lines with torsion

(b) curvature lines (without torsion)



Euler’s Theorem & Curvature Tensor

The curvature of a line making an angle ¢ with a curvature line is
K =K, COS’ ¢+, Sin° ¢
Eulers Theorem highlights the tensorial nature of the curvatures around a point...

The components of the Surface Curvature Tensor on a point, in an Intrinsic
orthogonal coordinate system are given by:

oe,,
s, =K0; (a,8=12)
K —@
y K: K = 1
that s LA

K\, K\ are the eggenvalues of K and @, 9, its eggenvectors



DIVERGENCE OF A SURFACE TENSOR

2

2
if T is resolved as a SURFACE TENSOR T=T(s,s,)=) > T, e, ®e,
a=1 =1

(wWhere we consider orthogonal coordinates lines with arc-length parameters S,
-- not necessarily curvature lines! )

8T
Then its divergence vector s diIVT = Z [Z 3 je + ( K : T) €,
p=1 OSg

a=1

where K (S the Surface Curvature Tensor

and where the scalar product between tensors K and T :

K:T=tr(K'T)= ZZ:ZZ“ KosTos

a=1 =1



Equilibrium of Membranes - /

(a) External and boundary loads in a membrane,

: (6) A transversal cut showing
with h<<1 (constant);

the varration of 033

(usually disregarded!)
Equilibrium of Forces:

hTnds = j bA
0Q Q
Applying the divergence theorem [ j h-divT + bj dA=0 ,VQ
Q

h-divT+b=0 VPeQ (Equilibrium of Forces)

T=T" (Equilibrium of Momentum)



Equilibrium of Membranes - /

Remembering the expression of the divergence of a surface tensor equation
And denoting the external loads as

b=-be, —be, - pe,

h((aall + arlzjel +(az-12 + ao_zzjez +(K :T)g e3J_ flel - f262 — P€, =0

> Stmular to a plane stress state

h ( K : T) =P  Surface stresses equilibrate transversal load by
means of curvature!



Equilibrium of Membranes - If

The previous derivation might seems too much abstract, so we recast the
membrane equilibrium in a more ‘engineering’ approach:

(a) External and boundary loads (6) a membrane element under a
m a membrane; surface strvess freld

We consider O,, and Toup constant through thickness h. and
define the Surface Stresses [N/m]:

Ny, =ho,, i N,,=N, =hr,

aa ax



Eqa/Y/ér/Zrm of Mem branes - If

/ @ «N,  We again consider coordinates lines with
length parameters S,

] (not necessarily curvature lines!)
N, =—-N? +dN,

//
—o

2\

N1 = Nllel + leez

We define: {
Nz — N21e1 + szez

Forces: dN,ds, +dN,ds, +bds,ds, =0  (*)
And express Equilibrium:
Momentum: Np, = Ny
dN dN fax
Dividing (*) by ds,ds, Lt —24Db=0 )

ds, ds,



Equilibrium of Membranes - I/

dN ON oe, ON oe
Now: 5 L — dd (Nlle1 + N12e2) — . Le +N, —+—*2e,+N,—*%
S, S, S, 0s, 0S, 0S,
But s, 1®3  an s, = — L,

ON ON oN
Therefore 1 _ 2 U 21248 4 (kN..—0oN..)e
dSl s, 1 dSl 2 ( 1Ny =@ 12) 3

.. oN OoN oN
Likewise 2 -~ 2o 47 2a 4 (k. N.. —oN., )e
ds, s, 1 ds, 2 (2 2 — @ 21) 3

Substituting in (**):

ON,, ON,, ON,, ON,,

e, + e, +(k1N11 —¢N12)e3 +—2e +—%e, +(k2N22 —gpN21)e3 +b=0

0S, ds, 0S, ds,



Differential Equilibrium in Membranes

Denoting b = _b1€1 — b2e , — Pe, - considering that N,,=N,,
and collecting the terms according to the intrinsic basis:

aNll + aN12 — b1
0s, 0S,
J aN12 + aNZZ — b2
0s, 05,
N, N
= —2 —2¢N, =p
1P P

-

3

Simular to a plane

[ strvess state!

“General Membrane Equation”

If &, are principal divections: ¢ =0

3

Similar to a plane

[ stress state!

oN,, N oN,, _b,
06 06,
| ON,, N oN,, b
)
0g 06,
Ny + Ny, - p
L P P

“General Membrane Equation
tn_Principal Directions”




Differential Equilibrium in Membranes

If the membrane is under a uniform and isotropic stress freld
( b =b,=0
Ny =Ny =0y - ,
ho [ 1 1 j . Equation of Laplace-Young or
A =

= = - + -
Nip =Ny =0 o Py “Soap Films Equation”

I\

Rewriting: h60£p| * Pu j: 2ho K,, = p
P P

In particular, for a spherical membrane, of radius r and thickness t:

r
/ \\‘_,’ KM —_— — i O'O -_ p_
A\ r 2t



Mimnimum Surfaces (Plateu’s Problem)

The Area of a Surface () with a prescribed closed boundary is given by

A=[dA=[]g,xg,]d6, d6,
Q Q

We seek a surface () Spanned by a vector field X Such that N Is a minimum.

In other words, for every compatible perturbation OU around X

oa = A
OX

ou=0, Vou

X

Thus the 15¢ order condition for X To be a minimum is

oA

= =0
OX

.
With the equality constraint (XP - X ) =0, VP € 0Q
Where X, Spans the prescribe coordinates

Analytical solutrions for this nonlinear equation maybe rather difficult!



Soap Film Analogy

We recast the problem of area minimization in a more nonlinear mechanics fashion:
SA= _[(5J JdA=0, Véu around X’
Q

- : 8(5u)
_ (S the Jacobran of the _ * *
where 0 =1 (5F) deformation gradient oF =1+ ox” from X to X +6U

*

Measured with respect to X

The configuration X That minimizes the functional A  also fulfills the above equation ¥ SU

We can always consider coordinate systems for which €, =Q; , normal to

So that oF, =0

And therefore  SA= [ tr(SF)dA=0= [(5F,+06F,)dA=0 Vou
o o



Soap Film Analogy

We now consider the problem of finding the membrane geometry x*

Compatible with a self-equilibrated Cauchy surface stress field —~ T*
(zero external loads, except reactions along the fixed boundaries)

Static equilibrium always requives  OW,,, = oW,
But since we assume that external loads arez evo (except at fixed boundaries): OW,; =0
Therefore, for self-equilibrated surfaces: OW,, =0, Vou

When deformations are measured from the equilibrium configuration X

This condition can be recast as  SW_ =h I T :6FdA=0, Vdéu
Q*

o(ou)
ox*

Where h is the membrane thickness and  OoF =1 +



Soap Film Analogy

We now particularize this condition for a homageneous and isotropic Cauchy surface
stress field, such that, in the chosen basis (with €; =0, )

~

1
T =5/ 0 =ol, VPeQ*
0

o - O
o O O

Even (f the membrane presents non-zero deformations in the tmnsversa/ direction,
that is 5F,, # 0, the virtual work developed by the stress field T* is given by

oW, =oh [ 1:6F dS =ch [ (5F, +5F,)dA=0, Vsu
* Q*

. o) e . . * *
Comparing to the condition to minimum area we conclude that X = X

That is, the geometry compat/b/e Lo an auto-equilibrated, homogeneous and (Sotropic
Cauchy surface stvess freld also complies to the condition of minimal area!




Consequence for Minimal Surfaces

o . Ny | Ny
Considering the Membranes’ Equation + =p

P P

And taking into account that for minimum surfaces {

N11 = sz = |\lo
1 1
We have No(—-i'—]:()
P P
Thus P, = P

Or, in words, minimal surfaces have zero mean curvature K,, with negative or zero
Gaussian curvature K., that is, they are either anticlastic or flat!

©  Soap films are minimal surfaces, when p=o.

«  Strictly speaking, a soap bubble is not a minimal surface, although it is associated
to a similar minimization problem (“minimize the area for a given volume)).



Ex. 8 - Hyperbolic Paraboloid

Show that a hyperbolic paraboloid (“hypar” )surface (S NOT a minimum surface.

Hypars are usually mentioned as minimum surfaces in the literature about tension
structures, and in fact they are practically indistinct to the minimum surface with the
same boundary. The analytical expression of the true minimal surface was given by
Sewarz in 1890, and is quite more complicated than the hypar expression!

H.A. Schwarz, Gesammelte mathematische Abhandlungen, 2 vols. Springer,

Berlin., 1890,



Catenord

The soap film analogy provides a shorteut to deduce the shape of the catenoid, that
15, the shape of a mirumal surface connecting two circular rings of radius R, with
center on the save axis, and apart of each other by a distant A.

Symmetry requives that the solution is given by the rotation of a generatrix curve
y=y(2)

and that this curve is symmetric at mid-distance between the rings that is,

y'(0)=0



Catenord

We consider the vertical equilibrium of a slice of the surface bounded by to vertical
radial planes, with and infinitesimal vertical strip spanned by horizontal angle d o

We denote Y (0) =Yy . So far an unknown constant value.

Using the soap analogy, we know that every cross section of the membrane is under a
uniform surface stvess ol . where t is the membrane thickness.

Thus vertical equilibrium of a vertical slice from z=0 to z(y) requives:

ooty,da =(otydea)cosd

And since cosf =—=, /
We have \/7



Catenord

y 1
y-vs Yo

Rearranging:

Integrating along z: J‘ — Y = 'fidz -‘.cC
VA Yo Yo

du
From standard calculus j =1In (u +4u?-a’ )

Ju? —a? B

y=u .. du=y'dz

a=yY,

Thus, making

Z
Vertical equilibrium reguives: N ( Y+ y° - y§ ) = y— +C
0



Catenord

Denoting: 1= A
Yo
We successively write: In ( Y, (77 +n’° —1)) L C
Yo
In y0+ln(77+\/772—1):i+c
Yo
In(n+\/n2—1):i+C—ln Yy _‘.c
Yo Yo

Remembering the inverse hyperbolic relationship:

In (77 + \/ﬁ) =arcosh(77)

We have: arcosh (lj _f.c
Yo Yo



Catenord

Also denoting: 1= A
Yo
Z
We successively write: In ( Yo (77 ++/1° —1)) = y— +C
0
In(77+\/772 —1):i+C—In Y, - L.c
Yo Yo

Remembering the inverse hyperbolic relationship:
In (77 +n’ —1) =arcosh (1)

We have:  arcosh (lj -Ltic

Yo Yo

0

That is: Y=Y, cosh [i + C*}



Catenord

Imposing the boundary condition

y(0)=Y,=Y,cosh(C") .. cosh(C)=1 . C"=0

y =Y, cosh (ij
Yo

That is, the generatrix curve of the minimal surface connecting two circular rings is a
catenary, and the surtace itself is the catenoid!

h
Def}nmg the ratio A= E we have y(gj — yO COSh [j—Rj =R
Yo

Which provides Y, for a given ratio A

It can be shown that the only surfaces of revolution which are also minimal surfaces arve the
catenoids (Struik, 1950), as it is easy to conclude from the above development , since no
particular restrictions have been set for y =y (z)




Goldschmudt limrt

The maximum ring separation for a catenoid with equal lower and upper radiuses (s

h<h, =1.3254868R

lim —

This s known as Goldschmidt limit (1831).

Carl Wolfgang Benjamin Goldschmidt, ‘Determinatio superficier minimae rotatione curvae data
duo puncta jungentis circa datum axem ortae’, Gottingae, MDCCCXXXI.

h=1.32R h=1.33R

2R




A family of conordss:




EX. 92— Catenord

Analytically determine the area of a catenoid bounded by two parallel and coaxial
rings of radius R=1m, separated by a distance h=1im.Compare to numerical results
obtamed by divect area minimization and DRM.

Consider different degrees of discretization and check convergence of the numerical
vesults to the analytical one.

Try to find the Goldschmidt limit, considering numerical models with separations just
below and above h,,=1.32R

Show that for distances h>1.056R, the area of the catenoid is actually greater than
the area of two independent circular discs bounded by the rings (the solution for the

minimum area problem with two separate discs is know as Goldschmidt discontinuous
solution).
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