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Review
Actinomycetes are excellent sources for novel bioactive
compounds, which serve as potential drug candidates for
antibiotics development. While industrial efforts to find
and develop novel antimicrobials have been severely
reduced during the past two decades, the increasing
threat of multidrug-resistant pathogens and the develop-
ment of new technologies to find and produce such
compounds have again attracted interest in this field.
Based on improvements in whole-genome sequencing,
novel methods have been developed to identify the sec-
ondary metabolite biosynthetic gene clusters by genome
mining, to clone them, and to express them in heterolo-
gous hosts in much higher throughput than before.
These technologies now enable metabolic engineering
approaches to optimize production yields and to directly
manipulate the pathways to generate modified products.

Actinomycetes as sources for novel drugs
For more than 70 years, actinomycetes (order Actinomy-
cetales) have been recognized as important sources for
bioactive natural compounds. From the roughly
18 000 known bioactive bacterial compounds, more than
10 000 were described from bacteria of the actinomycete
genus Streptomyces [1]. Many well-known antibiotics, such
as tetracycline, erythromycin, vancomycin, and streptomy-
cin, originate from the secondary metabolism of actinomy-
cetes. Beyond antibiotics, other medically useful natural
products that were isolated from this group of bacteria
include the immunosuppressant rapamycin, the antican-
cer agents doxorubicin and bleomycin, the anthelmintic
avermectin, and the antifungal compound nystatin.

The traditional approach to small-molecule discovery from
microbial sources such as actinomycetes has generally in-
volved cultivation of the microbes under different growth
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conditions, extraction of the metabolites, and analysis of
the extract for bioactivity (e.g., antimicrobial activity) in a
chosen assay. Once a bioactive extract is identified, a more-
detailed analysis is performed, normally involving chroma-
tography-based separation of the individual constituents, to
identify the specific bioactive molecules. Very often, however,
this enormous effort leads to the rediscovery of known mole-
cules, a fact that dampened enthusiasm for natural product
discovery from actinomycetes over the past two decades.

Although this general strategy is still applied today,
several recent developments have renewed enthusiasm
for natural product discovery from actinomycetes. Genome
sequence analysis from multiple actinomycetes indicates
that each bacterium can produce approximately 10-fold
more secondary metabolites than has been detected during
screening efforts before the availability of the genome se-
quence data. For this reason, actinomycetes continue to be
promising sources of novel bioactive compounds [2]. In ad-
dition, the availability of new metabolic engineering strate-
gies now provides alternative approaches to streamline and
accelerate the discovery and production of bioactive natural
products from microbial or metagenomic sources. Metabolic
engineering is a well-established discipline that systemati-
cally engineers microbial strains for the overproduction of
natural and non-natural chemical compounds that are use-
ful to mankind [3] (Figure 1). Although similar rationales
can be applied to actinomycetes, engineering actinomycetes
is more difficult than engineering model organisms, such as
Escherichia coli and Saccharomyces cerevisiae, because acti-
nomycetes possess more diverse genomic content and bio-
chemical machinery [4] (Figure 1). We review tools and
methods recently developed for the effective metabolic en-
gineering of actinomycetes, and discuss how these tools
enable the generation of microbial cell factories for the
production of antibiotics and other secondary metabolites.

Genome mining for the detection and identification of
secondary metabolite biosynthetic gene clusters
The protein machinery responsible for the biosynthesis
of secondary metabolites in bacteria is encoded by distinct
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Glossary

A-domain: adenylation domains of non-ribosomal peptide synthetase (NRPS)

modules select, activate amino acids as amino acid adenylates, and transfer

them to the peptidyl carrier protein domains of NRPS modules.

AT: acyltransferase domains encoded in modular polyketide synthase

specifically select the acyl-CoA building-blocks and transfer them to acyl

carrier proteins (ACPs).

ACP: acyl carrier proteins contain a phosphopantetheine prosthetic group

tethering the reaction intermediates during polyketide biosynthesis.

BAC: bacterial artificial chromosomes are replicable circular DNA vectors

developed from the F-plasmid. They are usually used for cloning long

fragments of 150–350 Kb.

CRISPR–Cas9: clustered regularly interspaced short palindromic repeats

(CRISPR)-associated nuclease Cas9 is an RNA-guided endonuclease using

RNA–DNA base-pairing to cleave target DNA, which is demarcated by

protospacer adjacent motif (PAM) sequences. PAM sequences are short

nucleotide motifs that are specifically recognized and required by Cas9 for

DNA cleavage.

DH: the dehydratase domain of a PKS module is responsible for dehydrating

the b-OH group of a polyketide intermediate.

ER: the enoylreductase domain of a PKS module reduces a double bond to a

single bond between two adjacent extender units.

HDR: homology-directed repair is a template-dependent pathway for double-

strand break (DSB) repair.

KR: the ketoreductase domain of a PKS module is responsible for reducing the

b-keto of the polyketide intermediate group to a hydroxyl group.

NRPS: non-ribosomal peptide synthetases specifically activate and condense

proteinogenic or non-proteinogenic amino acids in an assembly-line fashion.

They are involved in the biosynthesis of many peptide antibiotics such as, for

example, vancomycin.

PKS: polyketide synthases condense acyl-CoA units to form a polyketide. There

are three types of PKS: type I PKSs are homologous to type I fatty acid

synthases that are found for example in mammals. They act either iteratively or

in an assembly-line fashion. Type II PKSs are homologous to type II fatty acid

synthases as found in many bacteria. Their products usually are aromatic

polyketides. Type III PKSs are homologs of plant chalcone/stilbene synthases.

Red/ET: Red/ET recombineering is a method to insert foreign DNA into

chromosomes or plasmids based on short homologous sequence regions

(<50 bp). The system makes use of the exonucleases/recombinases Reda/Redb

from l phage or RecE/RecT from Rac prophage.

SMBGC: secondary metabolite biosynthetic gene clusters contain all genes

required for biosynthesis, regulation, export, and very often resistance of

natural products/secondary metabolites, thus all genes are encoded side-by-

side. With only very few exceptions, bacterial secondary metabolite biosynth-

esis pathways are always organized in SMBGCs. However, SMBGCs can also

be found in fungal producers.

TALEN: transcription activator-like effector nucleases are fusions of the FokI

cleavage domain and DNA-binding domains derived from TALE proteins.

TALEs contain multiple 33–35 amino acid repeat domains, each of which

recognizes a single base pair.

TE: the thioesterase domain releases the polyketide or peptide intermediate

from the PKS or NRPS assembly line; in many cases the release is combined

with a macrolactonization, yielding cyclic molecules.

ZFN: zinc-finger nucleases are fusions of the non-specific DNA cleavage

domain from the FokI restriction endonuclease with zinc-finger proteins. ZFN

dimers induce targeted DNA DSBs that stimulate DNA damage response

pathways.
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gene clusters within their genomes, making the identifi-
cation of these clusters through genome mining an
important task [4]. Several major developments have
advanced such genome-mining efforts, in particular the
development of next-generation sequencing technologies,
increased knowledge about the secondary metabolism,
and novel mass spectrometry (MS) detection tools. The
resulting biological information has been incorporated
into several databases and software tools for the ge-
nome-wide prediction of gene clusters, the analysis of
their corresponding secondary metabolite biosynthetic
pathways, and the prediction of substrate specificities
[5]. The currently most widely used software to identify
such gene clusters is the antibiotics and secondary me-
tabolites analysis shell (antiSMASH) [6]. antiSMASH
includes rule-based as well as statistics-based algorithms
16
to identify secondary metabolite biosynthetic gene clus-
ters (SMBGCs; see Glossary) and offers various modules
for analyzing the relevant pathways.

In addition to computational tools, genome mining is
typically accompanied by proteome and/or metabolome
analyses using MS for accurate linking of a target sec-
ondary metabolite and its biosynthetic gene cluster
[7,8]. The biosynthesis of several classes of secondary
metabolites follows a conserved biochemical logic; this is
utilized to match secondary metabolite-derived analyti-
cal data with genes in the genome of the target organism
[9,10]. In addition to the biochemical logic, high-quality
genome annotation data for the target organism (e.g.,
high coverage and accurate open reading frame predic-
tions) and the availability of sufficiently sensitive mass
spectrometers determine the success of this MS-based
genome mining. In this approach, the analytical data of
secondary metabolites generated by MS (i.e., MSn data)
provide specific fragment patterns which contain amino-
acyl or glycosyl ‘tags’. Amino-acyl tags can be searched
against amino acid building blocks predicted from the
genome of the target organism using the conserved
biochemical logic for ribosomal or non-ribosomal pep-
tides [11–13].

Along the same lines, glycosyl tags from glycosylated
natural products can be linked to their corresponding
biosynthetic genes among all the glycosylation genes which
are initially characterized by mining the genome of the
target organism. These methods can be considered either
peptidogenomics or glycogenomics, depending on the use of
amino-acyl (or peptidyl) or glycosyl ‘tags’ obtained from the
target secondary metabolites, respectively, but the general
rationale of their approaches remains the same. Use of
peptido- and glycogenomics led to the discovery of novel
analogs of the antibiotics stendomycin from Streptomyces
hygroscopicus ATCC 53653 [11], and arenimycin B from
the marine actinobacterium Salinispora arenicola CNB-
527, an antibiotic effective against multidrug-resistant
Staphylococcus aureus [12], respectively. Although these
methods might need to be tailored for secondary metabo-
lites with hybrid or highly modified structures (e.g., non-
ribosomal and polyketide hybrids), they can still be appli-
cable to a variety of compounds to rapidly identify their
biosynthetic genes. In another recent example, significant
correlations between protein expression levels and the
activities of target secondary metabolites under several
different growth conditions were validated and used to link
target secondary metabolites to their specific gene clusters
[14]. Once positive links were identified, the respective
proteins were mapped onto the predicted gene clusters
of the target organism through quantitative proteomic
expression data.

After the gene cluster for a target secondary metabolite
has been identified, metabolic engineering can be con-
ducted by using a microbial strain that natively harbors
the specific gene cluster provided that it has adequate
growth characteristics and is amenable to genetic manip-
ulation. Otherwise, the identified gene cluster can be
cloned and expressed in a heterologous host. The recent
development of new cloning techniques has now greatly
expedited this process.
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Figure 1. Representative metabolic engineering pipeline with platform microorganisms (e.g., Escherichia coli and Saccharomyces cerevisiae), shown in upper boxes, and

additional considerations for actinomycetes, shown in lower boxes.
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Awakening the silent genetic potential
Mining of whole genomes from actinomycetes species on
average reveals the presence of 30–40 SMBGCs per strain,
thus indicating a great genetic potential to synthesize
secondary metabolites, including antibiotics. However, un-
der standard laboratory conditions only a fraction of these
clusters is expressed. Several methods have been devel-
oped that nonspecifically trigger the expression of such
‘silent gene clusters’. It has been observed that inducing
mutations in ribosomal proteins or RNA polymerase, sup-
plementing the fermentation broth with chemicals such as
rare earth elements, antibiotics, N-acetyl glucosamine, or
particular synthetic compounds can have positive effects
on the expression of SMBGCs and the yield of their result-
ing compounds [15]. Similar effects have been observed for
co-culturing approaches in which specific antibiotics are
produced upon co-cultivation of the antibiotic producer
with other microorganisms [16].

In many cases, the expression of ‘silent’ SMBGCs was
activated successfully by coexpression of homologous (i.e.,
from the same SMBGC) or heterologous (i.e., from a different
SMBGC) pathway-specific activator genes. For example,
production of glycopeptide ristomycin A could be activated
in Amycolatopsis japonicum MG417-CF17 by coexpression
of the balhimycin pathway specific activator bbr [17]. Alter-
natively, strong promoters can be inserted in front of the
native regulators to trigger the activation of the silent
SMBGCs, as shown for the 6-epi-alteramides of S. albus
J1074 [18], or pathway-specific repressor genes can be
inactivated. Finally, although the strategy of engineering
pathway-specific regulation can be successfully employed in
the native hosts, it is also very relevant for the heterologous
expression of SMBGCs in platform strains.
Advanced DNA synthesis and cluster assembly
techniques
If a cluster of interest cannot be expressed in its original
host, one must necessarily express the cluster heterolo-
gously. To achieve this the cluster must be cloned into a
suitable vector. There are several factors to consider
when choosing a cloning strategy. These include: wheth-
er genomic DNA is readily available to serve as a tem-
plate, whether one wishes to focus on a small number of
clusters or scan multiple clusters in a genome, and
whether to capture the cluster in its native form or to
refactor it.

If template DNA is readily available, for example from
genomic, environmental, or metagenomic sources, then
the traditional cloning strategy has been to break down
the DNA into random pieces and clone these smaller
fragments into E. coli to store them as a library. Cosmid/
fosmid library vectors are capable of carrying inserts up
to 45 kb, and bacterial artificial chromosome (BAC) vec-
tors can take inserts up to 200 kb. The library is then
screened using in situ colony hybridization [19] or colony
PCR [20] to identify colonies that contain fragments from
the target cluster. In some instances, a cluster will not be
cloned in its entirety into a single vector owing to its size.
Cluster lengths usually range from 10 to 100 kb, and
some can be even larger. When colonies containing frag-
ments from the target cluster have been identified, the
fragments can be reassembled into a single contiguous
piece using restriction–ligation, l-mediated recombina-
tion, or transformation-associated recombination (TAR)
in yeast [21]. A well-constructed library should contain
all the SMBGCs from a given source, allowing the anal-
ysis of multiple clusters.
17
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More recently, TAR [22] and a related technique, linear
plus linear homologous recombination (LLHR) [23], have
been used as direct cloning methods to capture a target
DNA sequence from a genomic DNA template more quickly
and efficiently than through library construction and
screening. S. cerevisiae or E. coli are transformed with
genomic DNA of the producers, and the target cluster is
captured into a replicable plasmid through homologous
recombination catalyzed by the native recombination ma-
chinery in yeast or by a bacteriophage-derived Red/ET
recombination system in engineered E. coli (Figure 2).
The upper size limit for cluster capture is not yet known,
but the 67 kb taromycin A cluster has been captured with
TAR [24], and a 52 kb cluster could be directly captured
with LLHR [23,25]. Once the clusters are captured, either
by traditional library methods or by direct cloning, they
can be further manipulated inside their S. cerevisiae or E.
coli hosts using standard recombination techniques
[23,25]. With these methods it is possible, for example,
to introduce new promoters or regulatory elements, modify
RBS sites, swap codons, or reconstruct gene modules to
generate new product derivatives [26].

A target cluster can also be assembled from smaller
fragments through the use of several different DNA as-
sembly techniques. Some of these, for example Gibson
assembly [27], ligation-independent cloning (SLIC) [28],
TAR [22] (or DNA assembler [29]), USER fusion [30], ligase
cycling reaction (LCR) [31], and successive hybridization
Genomic  DNA
(digested /undigested)

Linear cloning vector

Homologous
recombina�on

Replicable construct

Cotransforma�on

(A)

Yeast  or
E.  coli  expressing Red/ET

Yeast  or
E.  coli  expressing Red/ET

Lin

site-sp

+

(B

Figure 2. Direct cloning and reassembly of secondary metabolite biosynthetic gene cluster

prepared and then co-transferred with the cluster-harboring genomic DNA into yeast (T

mechanism in yeast or expressed Red/ET in E. coli, the homologous recombination be

construct. (B) For reassembly of a cluster, genes are isolated individually by PCR, subclon

with restriction sites, or specific recombination sites. Strong or inducible promoters can be

vivo homologous recombination in yeast, or by in vitro site-specific recombination or lig
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assembling (SHA) [32], do not depend on restriction or
specific recombination sites, and do not introduce scars,
making them especially well suited for cluster reconstruc-
tion. Genes, pathways, and even whole bacterial genomes
have been constructed from smaller fragments using these
techniques (Table 1) [33].

One of the major strengths of these approaches is their
use for cluster redesign. Each gene, promoter, or other
element can be viewed as an independent module that
can be replaced, deleted, or added to the cluster as desired.
It is thus possible to replace native promoters with synthetic
ones and bypass native regulation, to delete the transcrip-
tional repressors encoded on the cluster, or to create combi-
natorial pathways to produce new antibiotics [34]. For in
vivo homologous recombination-based methods, such as
DNA assembler and TAR, unintended recombination events
can occur between regions that have repeats or similar
sequences, such as those found in the gene clusters that
encode polyketide synthase (PKS) and non-ribosomal pep-
tide synthetase (NRPS). In these cases it is necessary to
verify the accuracy of the constructed sequence through
restriction mapping [24] or direct DNA sequencing. For in
vitro methods in which assembly is based on homologous
ends, for example Gibson assembly and SLIC, secondary
structures (hairpins and stem loops) in the homologous ends
can drastically lower assembly efficiency.

It should be noted that the GC content of SMBGCs from
actinomycetes is usually about 65–75%, which makes the
Yeast

Yeast

Genomic  DNA or  environmental  DNA

ear cloning vector

Homologous
recombina�onTransforma�on

E.  coli

In vitro
ecific recombina�on or liga�on

Gene  modules  with new  promoters

PCR
subcloning
or synthesis

+

)
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s. (A) To capture a long cluster, a linear cloning vector flanked with homology arms is

AR) or engineered Escherichia coli (LLHR). Catalyzed by the native recombination

tween the cluster ends and the vector homology arms yields a circular replicable

ing, or chemical synthesis, and are modified by the addition of homology ends, ends

 introduced in front of genes. Next, the gene fragments are assembled in a vector by in

ation. Assembled products can be further amplified in E. coli.



Table 1. Examples of isolating and reconstructing whole secondary metabolite biosynthetic gene clusters

Method Mechanisms Examples

Genomic library BAC library Cloning of the 128 kb daptomycin biosynthetic gene

cluster [62]

Linear–linear homologous

recombination (LLHR)

Red/ET recombination in

Escherichia coli

Direct cloning of 10 PKS-NRPS clusters of 10–52 kb

from predigested genomic DNA [23,63]

Restriction/ligation based

‘conventional’ cloning

PCR amplification/subcloning; cloning

into suitable expression vectors

Assembly of erythromycin polyketide synthase DEBS

[64] and the full erythromycin A biosynthetic pathway

[65]

Transformation-associated

recombination (TAR)

Homologous recombination in yeast Direct cloning of the 67 kb taromycin A (NRPS) cluster

from genomic DNA [24]

MASTER Ligation Type II endonuclease MspJI Assembly of the 29 kb actinorhodin (PKS) cluster

from four fragments [66]

DNA assembler Homologous recombination in yeast Assembly of the 42.6 kb spectinabilin (PKS) cluster

from three fragments [67]

Site-specific recombination-based

tandem assembly (SSRTA)

In vitro site-specific recombination by

Streptomyces phage uBT1 integrase

Assembly of the 56 kb epothilone cluster (PKS-NRPS)

from seven fragments [68]

Overlap extension PCR–yeast homologous

recombination method (ExRec)

Homologous recombination in yeast Assembly of the 45 kb xenoamicin biosynthesis gene

cluster (NRPS) from six fragments [69]
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handling of such DNA for sequencing, DNA synthesis, and
PCR amplification more challenging than the handling of
DNA with GC content closer to 50%. Consequently, assem-
bly and cloning procedures often require additional opti-
mization or verification steps to ensure that each cloned
fragment is correct.

In the future it will also be possible to obtain entire
clusters through chemical synthesis as the cost of DNA
synthesis continues to decline, thereby bypassing the need
for cluster cloning or assembly. At current prices, it is
common to purchase shorter fragments and assemble them
through the methods discussed above.

Heterologous expression and super-hosts
Actinomycetes are often chosen as hosts for the heterolo-
gous expression of SMBGCs in view of factors such as
matching GC content, the availability of biosynthetic pre-
cursors from primary metabolism that support secondary
metabolite biosynthesis, and the need for particular modi-
fication enzymes during secondary metabolite biosynthe-
sis. Heterologous expression becomes necessary when the
native host is difficult to culture or genetically intractable
[35]. For industrial production of secondary metabolites,
such as antibiotics, another important factor for choosing a
Table 2. Limitations for compound production and examples of i

Limitations Strategies for production improve

Regulation

(feedback inhibition)

Tuning of the expression of regul

Expression of genes involved in t

of signaling molecules (g-butyrola

Precursor supply Improvement of precursor availab

(improved precursor titers)

Expression and kinetics of

structural enzymes

Overexpression, inactivation, and

of structural enzymes

Self-resistance Overexpression of resistance gen

ribosome engineering

Export system (often determining

self-resistance)

Overexpression of export genes 

aSee also Table S1 in the supplementary material online.
heterologous host is genome stability [36] because the
genomes of actinomycetes can be unstable over time, which
can lead to a reduction or complete loss of secondary
metabolite production [37].

Several groups have recently developed genome-mini-
mized actinomycetes that show promise as ‘super-hosts’
and platform strains for heterologous expression. The
common feature among these strains is the removal of
unnecessary native SMBGCs. This allows the target com-
pound synthesized by the introduced gene cluster to be
detected more easily through routine analytical techni-
ques. In one case, four endogenous SMBGCs for actinor-
hodin, undecylprodigiosin, coelimycin, and calcium-
dependent antibiotic (CDA) were deleted from Streptomy-
ces coelicolor, and point mutations were introduced into
rpoB and rpsL to pleiotropically increase the level of
secondary metabolite production [38]. In another case,
different sets of SMBGCs were deleted from S. coelicolor
to create a series of genome-reduced hosts, including one
strain with all clusters deleted [39]. Vector-borne expres-
sion of the actinorhodin cluster in these strains, however,
resulted in different yields of actinorhodin among the
strains. In addition to S. coelicolor, the avermectin produc-
er Streptomyces avermitilis has also been subjected to
mproved production yield after strain engineeringa

ment Target compounds with

improved production yield

Refs

atory genes Doxorubicin [70]

Ristomycin [17]

he synthesis

ctones)

Actinorhodin and undecylprodigiosin [71]

ility Actinorhodin [43,72]

FK506 [73,74]

Erythromycin [75]

Balhimycin [44]

 engineering Erythromycin A [76]

es and Actinorhodin [77]

Doxorubicin [78]

Avermectin [79]
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genome reduction and probed as a potential super-host for
heterologous expression. A region of more than 1.4 Mb was
deleted from the 9.02 Mb linear chromosome of this organ-
ism [40,41]. The tractability of this S. avermitilis super-
host has recently been confirmed by successful heterolo-
gous expression of more than 20 exogenous SMBGCs in
this strain [40].

Despite these successes, the development of a single
super-host that can ensure efficient and high-level
Box 1. Antibiotic biosynthesis by molecular assembly lines

Polyketide synthases (PKSs) and non-ribosomal peptide synthetases

(NRPSs) are intracellular, multifunctional enzymatic machineries that

catalyze the biosynthesis of the complex core structures of many

polyketides or non-ribosomally synthesized peptides. These enzymatic

assembly lines have a modular organization: each biosynthetic module

is responsible for adding one building-block (acyl unit in the case of PKS

and amino acid in the case of NRPS) into the precursor molecule. The

assembly line modules in turn consist of functional enzymatic domains

that provide the required activity for polyketide or peptide biosynthesis.

The domains of PKS and NRPS have diverse functions (see Table 2 in

main text and Table S1 in supplementary material online) [9,10].

In the biosynthetic assembly line for the polyketide antibiotic

erythromycin (Figure I), which is produced by the actinomycete
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expression of every SMBGC is unlikely. Proficient gene
transfer and genetic manipulation, fermentation condi-
tions (e.g., suitable culture medium and conditions), and
an optimal trade-off of fluxes between primary and sec-
ondary metabolisms all play important roles in secondary
metabolite biosynthesis, and can vary from one host to
another. Additional hosts are likely to be created in the
future as high-throughput genome editing tools, such as
TALEN, ZFN, and CRISPR–Cas9 [42], become adapted for
Saccharopolyspora erythraea, the acyltransferase (AT) domain of the

loading module selects a propionyl-CoA unit and loads it onto a

phosphopantetheine group of its cognate acyl carrier protein (ACP).

The ATs of the remaining modules 1–6 are specific for methylmalonyl-

CoA building blocks, which also are loaded onto their cognate ACPs.

Ketosynthase (KS) domains then catalyze the decarboxylative con-

densation of the different acyl units. If a module contains optional

domains (e.g., KR, DH, and ER), the polyketide intermediate is further

modified while still tethered to the ACP. The last module has a terminal

thioesterase (TE) domain, which cleaves the precursor molecule from

the last ACP and cyclizes it to the precursor 6-deoxyerythronolide B. In

the final steps of erythromycin biosynthesis, this precursor molecule is

modified by tailoring enzymes to the end-product erythromycin A.
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ketide antibiotic erythromycin.
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use in actinomycetes. The use of such hosts is and will be
crucial to harnessing the biosynthetic potential of the
many cryptic SMBGCs.

Engineering secondary metabolite biosynthetic
pathways
While the techniques described above have emerged only
during the past few years, genetic engineering of SMBGCs
has a longstanding history in antibiotic and natural
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product discovery from actinomycetes. More recently, met-
abolic engineering strategies have been developed to in-
crease the production of a target molecule and to create
novel analogs. In cases where a molecule has been identi-
fied and is approved for clinical use, metabolic engineering
becomes especially important because strain improvement
and industrial fermentation are often the only routes to
obtain large quantities of the molecule. Large-scale chemi-
cal synthesis frequently cannot be applied because the
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structures of these secondary metabolites are too complex.
In such cases it is an advantage to identify factors, such as
global- or cluster-specific regulation, metabolic flux, or
insufficient self-resistance, which limit compound produc-
tion in the native or heterologous host (Table 2; Table S1 in
the supplementary material online).

Multiple approaches have been implemented to over-
come these limitations and boost compound production.
Several strategies, such as tuning the expression of regula-
tory genes, increasing the supply of precursors, and
Table 3. Engineering strategies for secondary metabolite biosynt

Strategies Examples 

Engineering of PKS and NRPS assembly lines

Combination of acyltransferase (AT) domains

and AT substitution

Erythromycin and rap

Geldanamycin 

Domain manipulations: dehydratase (DH) and

ketoreductase (KR) substitution

Avermectin and rapa

Shuffling of polyketide synthase (PKS)

subunits/hybrid PKS

Mederrhodin and dih

A and B)

Tylosin, spiramycin, 

Aureothin and luteor

Enzyme replacement by a fatty acid synthase

homolog

Undecylprodiginine (

enzyme by a fatty ac

PKS gene inactivation Pactamycin 

KR domain inactivation Amphotericin B 

Thioesterase fusions Erythromycin and no

Module fusion in PKSs Tetracenomycin and 

Non-ribosomal peptide synthetase (NRPS)

subunit alteration and module exchange

combined with structural gene deletion

Daptomycin 

NRPS-module fusions Daptomycin 

NRPS gene deletion Streptolydigin and ch

NRPS genes led to th

A-domain engineering Alteration of substrat

by site-directed muta

Directed evolution of

Engineering of other parts of the pathways

Modification of tailoring enzymes Modification and alte

glycosyltransferases,

methyltransferases, d

ketoreductase

Mutagenesis of tailoring enzymes P450 epoxidase inact

Ketoreductase inactiv

Hydroxylase inactiva

Inactivation of flavin-

monooxygenase, pho

oxidoreductase

Precursor alteration Gene inactivation an

combined with precu

Precursor alteration b

biology approaches

aSee also Table S2 in the supplementary material online.
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overexpressing the biosynthesis, resistance and export
genes, have all led to increased compound yields (Table 2;
Table S1 in the supplementary material online). For exam-
ple, the overexpression of the malonyl-CoA synthesizing
complex (acetyl-CoA carboxylase complex) led to a sixfold
increase in actinorhodin production in S. coelicolor [43]. In
the balhimycin producer Amycolatopsis balhimycina, the
overexpression of two genes from the shikimate pathway,
3-deoxy-D-arabino-heptulosonate 7-phosphate synthase
(dahp) and prephenate dehydrogenase ( pdh), increased
hetic gene clustersa
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the glycopeptide production by approximately threefold
[44]. Recently, a combined approach of classical random
mutagenesis and metabolic engineering resulted in en-
hanced FK506 production from Streptomyces sp. RM7011
[45].

Genetic engineering has also enabled the construction of
non-natural analogs of specific molecules. These studies all
focus on manipulation of the gene clusters that encode the
enzymatic machinery for secondary metabolite biosynthe-
sis. Two very important classes of secondary metabolites
with antibiotic activity are polyketides and non-riboso-
mally synthesized peptides. Most complex polyketides
(e.g., erythromycin) and non-ribosomally synthesized pep-
tides (e.g., vancomycin) are assembled by large multifunc-
tional proteins. These PKS and NRPS enzymes resemble
molecular assembly lines (Box 1) that synthesize a precur-
sor molecule by successive incorporation of polyketide
extender units or amino acids, respectively. Both enzyme
classes have a highly modularized organization; each mod-
ule contains several functional domains which catalyze
reactions required for biosynthesis of the backbone of
the core molecule (Box 1).

The modularity and assembly-line logic of PKSs and
NRPSs make manipulation of these mega-enzymes an
attractive strategy to create analogs. Whole genes, mod-
ules, domains, or only their specificities can be ‘mixed
and matched’ to generate derivatives or completely new
compounds. There have been many successful examples
of such ‘mix-and-match’ or ‘plug-and-play’ strategies
(Figure 3; Table 3; Table S2 in the supplementary mate-
rial online) [46]. One specific example is the incorpo-
ration of novel building blocks into the growing
backbone. Acyltransferase (AT) and adenylation (A)
domains act as ‘gatekeepers’ that determine which pre-
cursors are incorporated into the molecule during bio-
synthesis. Attempts to engineer these domains to alter
their substrate specificities have resulted in the isolation
of novel derivatives. Successful in vivo AT and A domain
substitutions and derivative production have been de-
scribed for erythromycin [47] and CDA [48], respectively.
A very recent and interesting example is the successful
reprogramming of a modular (type I) aureothin PKS into
a synthase producing luteoreticulin, a compound which
was initially isolated from a different strain [49].

Beyond the diversification of natural products by modi-
fication of the core assembly enzymes, tailoring enzymes
can also be manipulated to construct novel derivatives
of specific molecules (Figure 3; Table 3; Table S2 in the
supplementary material online). Tailoring enzymes act
after the biosynthesis of the core backbone is finished,
and they introduce a wide variety of modifications into
the molecule. Enzymes such as glycosyltransferases, halo-
genases, methyltransferases, and hydroxylases can deco-
rate the precursor molecule with additional chemical
moieties [50]. The inactivation or reprogramming of their
specificities either removes the modification step or intro-
duces chemical groups at new positions in the compound
structure. Erythromycin [51], vancomycin [52], and doxo-
rubicin [53] are pharmacologically relevant antibiotics that
have all been structurally modified through manipulation
of the tailoring enzymes.
Concluding remarks and future perspectives
The current period is likely to represent the beginning of a
new renaissance for the field of antibiotics and other
natural products discovery. Reasons for optimism include:
an enormous pool of SMBGCs from both culturable and
unculturable microbes for which the associated molecules
have not yet been detected; the ability to capture and
assemble these clusters much more easily than in the past;
the continued advances in metabolic engineering of host
strains to facilitate expression of the clusters, optimization
of metabolic fluxes, and detection of the molecules; and
improved understanding of the chemical and biological
mechanisms of secondary metabolite biosynthesis. The
availability of all this knowledge now can be used to
rationally design cell factories for the production of anti-
biotics and other natural compounds. We anticipate that
the future will bring even more exciting discoveries that
will greatly aid actinomycete strain engineering and het-
erologous, combinatorial, modular expression of natural
and synthetic genes. For example, genome-wide mapping
of all transcription units and transcription start-sites has
now been performed for different microorganisms [54,55],
and the acquisition of similar datasets for selected actino-
mycete strains will allow more precise engineering of the
genome. In addition, new impressive insights into the
biochemistry and architecture of key enzymes for antibiotic
biosynthesis (e.g., complex PKSs [56,57] and NRPSs [58]),
and new bioinformatic [59] and synthetic biology
approaches [60,61], will enable more accurate and directed
engineering of the powerful assembly lines. The next few
years promise to be an exciting time for metabolic engi-
neering of actinomycetes and new antibiotic compound
discovery.
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